
Experimental evaluation of train and test split strategies in link
prediction
Bruin, G.J. de; Veenman, C.J.; Herik, H.J. van den; Takes, F.W.; Benito, R.M.; Cherifi, C.; ...
; Sales-Pardo, M.

Citation
Bruin, G. J. de, Veenman, C. J., Herik, H. J. van den, & Takes, F. W. (2021). Experimental
evaluation of train and test split strategies in link prediction. Complex Networks & Their
Applications Ix, 79-91. doi:10.1007/978-3-030-65351-4_7

Version: Accepted Manuscript
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3243035

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3243035

This is an Author Accepted Manuscript version of the following

chapter: de Bruin G.J., Veenman C.J., van den Herik H.J., Takes F.W.,

Experimental Evaluation of Train and Test Split Strategies in Link

Prediction, published in Complex Networks & Their Applications IX,

edited by Benito R.M., Cherifi C., Cherifi H., Moro E., Rocha L.M.,

Sales-Pardo M., 2020, Springer reproduced with permission of

Springer. The final authenticated version is available online at:

https://doi.org/10.1007/978-3-030-65351-4_7

https://doi.org/10.1007/978-3-030-65351-4_7

Experimental Evaluation of Train and Test Split
Strategies in Link Prediction

Gerrit Jan de Bruin1, Cor J. Veenman1,3, H. Jaap van den Herik2, and
Frank W. Takes1

1 Leiden Institute of Advanced Computer Science (LIACS), Leiden University
g.j.de.bruin@liacs.leidenuniv.nl

2 Leiden Centre of Data Science (LCDS), Leiden University
3 Data Science Department, TNO

Abstract. In link prediction, the goal is to predict which links will
appear in the future of an evolving network. To estimate the performance
of these models in a supervised machine learning model, disjoint and
independent train and test sets are needed. However, objects in a real-
world network are inherently related to each other. Therefore, it is far
from trivial to separate candidate links into these disjoint sets.
Here we characterize and empirically investigate the two dominant ap-
proaches from the literature for creating separate train and test sets in
link prediction, referred to as random and temporal splits. Comparing
the performance of these two approaches on several large temporal net-
work datasets, we find evidence that random splits may result in too
optimistic results, whereas a temporal split may give a more fair and re-
alistic indication of performance. Results appear robust to the selection
of temporal intervals. These findings will be of interest to researchers
that employ link prediction or other machine learning tasks in networks.

Keywords: link prediction, performance estimation, machine learning

1 Introduction

Machine learning has emerged as a powerful instrument to analyze all kinds
of datasets. Here, we focus on supervised learning, of which the use on non-
relational (i.e., tabular) data is rather straightforward. However, supervised ma-
chine learning on network data is more challenging due to problems of obtaining
an independent train and test set [1]. A common type of machine learning in
networks is link prediction, where the goal is to predict whether a link will form
in some future state of an evolving network. In this work, we focus specifically
on the generalization of link prediction methods. Link prediction is defined as
the problem where given the current state of a network, new edges between pair
of nodes are inferred for the near future [2]. This method has many applications
in different kinds of real-world scenarios, such as spam mail detection, friend
recommendations in online social networks and identifying related references
in a publication. In recent years, there has been an increasing interest in link
prediction and hence several review papers on this topic exist [3,4,5].

2 de Bruin et al.

A crucial first step in machine learning in networks is feature engineering,
where network topology data is converted into features with potentially useful
information for a predictive model. The main established approaches for feature
engineering in link prediction are based on similarity, probabilistic and maximum
likelihood, and dimensionality reduction [3]. We will focus on the similarity-based
approach. In this approach, pairs of nodes (candidates for links formed in the
future) are assigned scores according to their similarity. We will exclusively use
topological properties to assess similarity, such that we can apply the feature
engineering also to networks where no additional information is available about
the nodes. The similarity-based approach provides at least three benefits. First,
similarity-based features provide more accurate results compared to embedding
techniques [6]. Second, the similarity-based approach provides easily explainable
features compared to other approaches. Third, most features can be obtained at
relatively low computational costs for the larger networks used in this study.

This brings us to the main problem addressed in this paper. For proper val-
idation in any machine learning task, instances belonging to the training set,
on which the model is trained, should be disjoint and independent of features
belonging to the validation and test set. However, because many dependencies
exists between nodes in a network, this is inherently difficult to achieve. This
possibly results in too optimistic performance measurements or, equivalently,
overestimating the so-called generalization performance of the model [7]. Ac-
cording to Ghasemian et al. it is yet unclear how common machine learning
steps, such as cross-validation and model selection methods, extend from non-
relational to network data [8].

Assessment of the performance in supervised machine learning is important
for at least two reasons. The first is model selection. Different models can be con-
structed for a certain task, ranging from completely different classifiers to iden-
tical models with different (hyper)parameters. The performance of such models
for train data is not informative, as one wants the model with the best general-
ization performance on an independent test set. An independent validation set
allows the detection of overfitting. The second reason for assessing model per-
formance is to estimate the prediction error on new, unseen data. This should
be assessed using the test data, not used in any part of training the model and
neither used in choosing the right hyper-parameters or selecting a model [7]. In
the current research we investigate to what extent differences in collecting the
train and test set influence the generalizability score of the classifier.

The contributions of this work are as follows. First, we investigate the two
most common ways in which pairs of nodes can be split in disjoint and inde-
pendent train and test sets in link prediction. Second is an in-depth comparison
of these two approaches, on a number of evolving real-world networks. We con-
tribute to a better understanding of performance estimation in link prediction.

The remainder of this paper is organized as follows. Related work is discussed
in Section 2. We continue with definitions and our approach towards reporting
generalization performance in Section 3. Section 4 features information about

Evaluation of Train and Test Split Strategies in Link Prediction 3

the datasets used. Then, Section 5 is concerned with the experimental setup,
results and discussion. Conclusions and future work are provided in Section 6.

2 Related Work

There is a relatively small body of literature that is directly concerned with
splitting a network dataset into train and test set to evaluate the performance
for machine learning purposes. Hence, we start our exploration of the literature
with work on performance estimation in general, before focusing specifically on
prediction tasks in networks.

One of the causes of too optimistic performance estimation is what is of-
ten described as “test set re-use” [9]. A well-known example is the p-hacking
problem [10]. In short, p-hacking is the application of many different models to
the same data in search for a statistically significant result with a high enough
p-value. This misuse can result in increasing probability that applied research
findings are false. More specific to data-driven research, too optimistic perfor-
mance estimation is suspected in Kaggle competitions. In these online compe-
titions participants all get the same dataset and compete for the best classifier
performance on some predictive task, without having access to the test data.
However, Kaggle allows users to repeatedly probe test data to obtain the per-
formance of a submitted model. This is argued to lead to too optimistic results
[11], which was experimentally only observed to a limited extent [9].

Returning more specifically to the topic of machine learning on networks,
Ghasemian et al. [8] investigated under- and overfitting in networks. They did
so in an attempt to estimate the performance of various community detection
algorithms. The performance on link prediction and so-called link description
task are used as a diagnostic to evaluate the general tendency of such algo-
rithms to under- and overfit. The authors define the link prediction task a little
differently, since they do not necessarily have temporal information about the
edges. Hence they remove a fraction of edges from a network and employ a ma-
chine learner to find these removed links from all pairs of nodes that are not
connected anymore. The link description problem is different. Again a network
is sampled, but now the task for the machine learner is to find the remaining
edges of the sampled network from all pairs of nodes. The authors explain that
no algorithm can excel at both the link prediction and link description task and
that these two tasks force an algorithmic tradeoff, like the bias-variance tradeoff
in non-relational data [7]. In this work, we likewise want to bring the notion
of overfitting from non-relational data to relational data. While [8] focusses on
overfitting caused by the bias-variance tradeoff, we investigate too optimistic
estimation of generalization performance caused by test set reuse in networks.

3 Approach

This section will start with a formal description of the link prediction problem.
In Section 3.2 we explain how we split the data into a train and test for the link

4 de Bruin et al.

prediction classifier. Section 3.3 continues with the features used. Section 3.4
provides information about the used classifier. Finally, in Section 3.5 we explain
the performance metrics used.

3.1 Link prediction problem

We base our procedure of supervised link prediction in evolving networks upon
definitions used by Liben-Nowell et al. [2], Lichtenwalter et al. [12], and Kumar
et al. [3]. To ensure uniformity, we use sometimes slightly different terminology
than aforementioned works.

The temporal, potentially undirected, network G = (V,E) consists of a set
of nodes V and edges (u, v, t) ∈ E connecting nodes u, v ∈ V with time t ≥ t0.
Time t0 indicates the time of the first edge occurring in G. Parallel edges with
different timestamps can exist. Since the network is temporal, we can construct
snapshots of network G for a given time interval. We denote such a snapshot with
G[ta,tb] = (V[ta,tb], E[ta,tb]) with E[ta,tb] being a set consisting only of edges occur-
ring between ta and tb (with ta < tb) and V[ta,tb] the nodes taking part in these
edges. We make two such snapshots, G[ta,tb] and G[tb,tc] from two time intervals
[ta, tb] and [tb, tc] with ta < tb < tc. This procedure is shown in Figure 1a.

The task for the supervised binary link prediction classifier (see Section 3.4) is
to predict from G[ta,tb] whether a pair of nodes will connect in G[tb,tc]. Hence, the

input for the classifier is all pairs of nodes X[ta,tb] =
(
V[ta,tb] × V[ta,tb]

)
\E[ta,tb],

see also Figure 1b. The network G[ta,tb] needs to be “mature” enough that the
underlying static topology is well captured [12] and hence we call [ta, tb] the
maturing interval. Subsequently, we define the probing interval [tb, tc]. For every
pair of nodes xi ∈ X[ta,tb], we probe whether the pair is present in the probing
interval (indicated with yi = 1) or not (indicated with yi = 0). The entire
procedure is summarized in Figure 1.

3.2 Splitting strategies

Now that we described the general procedure of link prediction, we need a strat-
egy to separate the pairs of nodes into a train and test set for the classifier.
The classifier is learned on the train set and the performance is determined on
the test set. We will now explain two dominant ways encountered in literature
to split the dataset. While the procedure of applying a temporal split is more
complicated than the random split due to the various parameters, it prevents to
a greater extent the reuse of node and edge set information from the test set in
training.

Random split This procedure for example used in [12], consists of three steps,
which are also shown in Figure 2a. The first step is to obtain all pairs of nodes
that are not connected during the maturing phase, X[t0,tb]. Second, we determine
for each of these pairs of nodes whether they connect (the value of yi) in the

Evaluation of Train and Test Split Strategies in Link Prediction 5

a b

Fig. 1. (a) The evolution of a temporal network divided into different snapshots. (b)
Instances considered in the classifier. Positive instances (yi = 1) are shown in green
solid lines, while negatives (yi = 0) are shown in red dashed lines.

probing phase E[tb,tc], as shown in Equation 1.

yi =

{
1 if xi ∈ E[tb,tc]

0 if xi 6∈ E[tb,tc]

for xi ∈ X[t0,tb] (1)

Third, these pairs of nodes X[t0,tb] are separated into into two disjoint sets Xtrain
[t0,tb]

and Xtest
[t0,tb]

such that Xtrain
[t0,tb]

∪ Xtest
[t0,tb]

= X[t0,tb] and Xtrain
[t0,tb]

∩ Xtest
[t0,tb]

= ∅. We
will refer to this split procedure as the random split, as the train and test set
are taken at random from the instances in X[t0,tb].

Temporal split A different procedure is for example used by Hasan et al. [13],
which we will call temporal split. In this procedure, the train and test set are made
by applying the probing phase on two different, consecutive snapshots called the
training interval [t0, tc] and test interval [t0, td]. The four steps of this process
are shown schematically in Figure 2b. The training set is constructed in the first
two steps as follows. First, we consider all node pairs that are not connected in
the maturing phase of the train interval X[t0,tb]. Second, for each of these node
pairs we determine whether it will connect in the probing phase of the train
interval, like Equation 1. In steps three and four the test set is constructed in a
similar way as the train set. In step three, we consider all pairs of nodes X[t0,tc].
Finally, in step four we determine for each of these pairs of nodes in whether
they connect in the probing phase of the test interval, as shown in Equation 2.

yi =

{
1 if xi ∈ E[tc,td]

0 if xi 6∈ E[tc,td]

for xi ∈ X[t0,tc] and with tc < td (2)

6 de Bruin et al.

time

maturing phase probing phase

train + test instances

consider non-edges check links formed3

21

split in train and test at random

train interval

probing phase

train instances

consider non-edges

1 2

check links formed

test instances

consider non-edges
not used in training

3 4

check links formed

b

a

maturing phase (test) probing phase (test)

time

random split

temporal

split

maturing phase

test interval

Fig. 2. Different strategies to obtain train and test set for classifier f , discussed in
Section 3.2. a) Train and test set are obtained by randomly splitting instances from
a single probing phase. b) Train and test set are obtained by two consecutive probing
phases obtained from two different time intervals.

3.3 Features

As input for a classifier one needs a feature representation for all pairs of nodes
xi ∈ X. As discussed in the introduction, in this work we use the well-established
similarity-based approach, where the feature for each pair of nodes xi = (u, v)
consists of a particular score for each feature Sfeature(u, v). These scores are
based solely on topological properties intrinsic to the network itself and not on
any contextual information [12,14]. Hence, features used can be employed in
any network, without requirements on node information available. Nodes with
similar scores and hence a high similarity are then more likely to connect. The
score is either neighbor-based (similarity in local properties of the two nodes) or
path-based (quasi-local or global properties of the two nodes) [3,15]. We use the
so-called HPLP feature set defined in [12], as these are known to obtain good
performance while keeping the number of features limited.

In the definitions that follow, the set Γ (u) denotes the neighbors of node u
and deg(u) the degree of node u. Parallel edges can exist in the network, and
hence the number of neighbors of node u, |Γ (u)|, is not necessarily equal to
the degree of node u, deg(u). In directed networks, we differentiate between the
neighbors connecting to node u, indicated by Γin(u), and the neighbors node u
connects to, Γout(u). Likewise, we differentiate also between the indegree and
outdegree of node u, degin(u) and degout(u), respectively.

Evaluation of Train and Test Split Strategies in Link Prediction 7

Neighbor-based features Neighbor-based features take only the direct neigh-
bors of the two nodes under consideration into account.

Number of neighbors (NN) This feature is determined differently for
undirected and directed networks. For directed networks, we use both the num-
ber of neighbors connecting to nodes u and v and the numbers of nodes connected
by u and v. Hence, we get four features: SNN-in-u(u, v) = |Γin(u)|, SNN-in-v(u, v) =
|Γin(v)|, SNN-out-u(u, v) = |Γout(u)|, and SNN-out-v(u, v) = |Γout(v)|. In the undi-
rected case, the same score for pairs of nodes (u, v) and (v, u) is desired and
there is no difference between the number of nodes connecting from or to node u.
Hence we report both the maximum and minimum for a given pair of nodes, i.e.,
SNN-min(u, v) = min (|Γ (u)|, |Γ (v)|) and SNN-max(u, v) = max (|Γ (u)|, |Γ (v)|).

Degree (D) The degree feature is defined similarly as the number of neigh-
bors, except that the number of edges is considered instead of the number of
nodes connected. For directed networks, we obtain again four features, viz.
SD-in-u(u, v) = degin(u), SD-in-v(u, v) = degin(v), SD-out-u(u, v) = degout(u),
and SD-out-v(u, v) = degout(v). For undirected networks, we obtain the maxi-
mum and minimum degree of nodes u and v, SD-min(u, v) = min (deg(u),deg(v))
and SD-max(u, v) = max (deg(u),deg(v)).

Common Neighbors (CN) The number of common neighbors for a given
pair of nodes is calculated by SCN(u, v) = |Γ (u) ∩ Γ (v)|. For directed networks,
the score is calculated by considering the nodes that are connected from nodes
u and v, i.e. SCN(u, v) = |Γout(u) ∩ Γout(v)|.

Path-based features Path-based features take into account the paths between
the two nodes under consideration. Since many paths can exist, these features
are computational more expensive than the neighbor-based features.

Shortest Paths (SP) This measure SSP(u, v) indicates the number of short-
est paths that run between nodes u and v.

PropFlow (PF) The PropFlow measure, SPF(u, v), corresponds to the
probability that a restricted random walk starting from node u ends at node
v within l steps [12]. We use the commonly used value of l = 5. We collapse the
network with multiple edges (occurring at different timestamps) to a weighted
network where the weight is equal to the number of parallel edges running be-
tween two nodes. Higher weights result in a higher transition probability for the
random walk. This method is known to potentially obtain different scores for
pairs of nodes (u, v) than for (v, u), even in the undirected case [16]. Hence, we
use the mean of the scores obtained for the pairs of nodes (u, v) and (v, u) in
the undirected case.

3.4 Classifier

We used a tree-based gradient boost learner for our classifier, as these are known
to perform well in generic classification tasks. The Python implementation of
XGBoost was used [17]. This classifier has various hyperparameters. While exten-
sive hyperparameter tuning is beyond the scope of this paper, we cross-validate
two important hyperparameters, viz. maximum depth of tree and class weights.

8 de Bruin et al.

3.5 Performance metric

Link prediction is associated with extreme class imbalance, lower bounded by
the number of nodes in the network [12]. Ideally, performance metrics used to
evaluate the classifier, should be robust against this class imbalance. The com-
monly encountered Receiver Operator Characteristic (ROC) lacks this robust-
ness [18,16] and is hence not used. We are especially interested in correctly
predicting positives without loosing precision, i.e., keep the number of false pos-
itives low, and without loosing recall, i.e., make sure we find all true positives.
The Average Precision (AP) metric, which is equal to the weighted mean of
precisions achieved at each threshold in the precision-recall curve, is well-suited
in this case.

4 Data

Since our research aims to split the network into different snapshots based on
time, temporal networks are needed. In this work, we use six different temporal
networks, spanning a broad range of different domains. Properties of these net-
works are shown in Table 1. The density, diameter Ø and mean distance d̄ were
calculated on the underlying static network, i.e., the network without parallel
edges. Below, we briefly discuss the six datasets used in this work. Except from
the Condmat network, all datasets were obtained from KONECT [19].

AU The Ask Ubuntu (AU) network is an online contact network. Interactions
were gathered from the StackExchange site “Ask Ubuntu”. The nodes are the
users, and a direct edge is created when a user replies to a message of another
user. These interactions can consist of an answer to a question of another user,
comments on another user’s question, and comment on another user’s answer.
Each edge is annotated with the time of interaction.

Condmat This scientific co-authorship dataset entails condensed matter
physics collaborations from 1995 to 2000, obtained from https://github.com/
rlichtenwalter/LPmade. A temporal undirected network is created by adding a
node for each author in a publication and adding an edge between all authors of
a publication [18]. For each edge, the date of the publication connecting these

Table 1. Statistics of networks used in this study. Edges and nodes in giant component
(GC) are indicated between brackets. Mean distance between nodes is given in column
d̄ and the column Ø indicates the diameter of the networks.

dataset directed nodes (gc) edges (gc) density d̄ Ø

AU 3 159,316 (96%) 964,437 (100%) 4.0 × 10−5 3.9 13
Condmat 7 17,218 (88%) 88,090 (100%) 3.7 × 10−4 6.3 19

Digg 3 30,398 (98%) 87,627 (100%) 1.9 × 10−4 4.7 12
Enron 3 87,273 (97%) 1,149,072 (100%) 7.9 × 10−5 4.9 14

Slashdot 3 51,083 (100%) 140,778 (100%) 9.0 × 10−5 4.5 17
SO 3 2,601,977 (99%) 63,497,050 (100%) 8.7 × 10−6 3.9 11

https://github.com/rlichtenwalter/LPmade
https://github.com/rlichtenwalter/LPmade

Evaluation of Train and Test Split Strategies in Link Prediction 9

authors is used. We observe that the number of authors per paper increases
over time. This may cause varying performance in link prediction for different
temporal snapshots. We deemed this outside the scope of the current research.

Digg The Digg network is a communication network and contains the reply
network of the social news website Digg. Each node in the network is a person,
and each edge connects the user replying to the receiver of the reply. Each reply
is annotated with the time of that interaction.

Enron The Enron dataset is a communication network and contains over
one million emails sent between employees of Enron between 1999 and 2003 [20].
For each email present in the dataset, sender and recipient are added as nodes
and a directed edge from sender to recipient indicates the date of the email.

Slashdot Technology website Slashdot is a popular English website. The
website allows commenting on each page, where users can start threaded discus-
sion. The communication network is constructed from these threads where users
are nodes and replies are edges, annotated with the time of the reply.

SO Like AU, the Stack Overflow (SO) network is collected from StackEx-
change and can be considered an online contact network. Nodes are users, and
directed edges represent interactions, annotated with the time of the interaction.

5 Experiments

This section starts with the experimental setup used. We continue then in Sec-
tions 5.2 and 5.3 with the results and robustness checks.

5.1 Experimental setup

A few parameters need to be addressed to run the link prediction task. We
highlight the following four in the next sections. First, the selection of node pairs
using their distance in the network are considered. Second, the time intervals for
the maturing and probe phase(s) need to be chosen for both the random and
temporal split, as explained in Section 3.2. Third, the number of pairs of nodes
used for training and testing are discussed. Fourth, the value of two hyper-
parameters of the classifier are determined. Lastly, we explain how multiple
snapshots from a network are constructed for robustness checks.

Distance selection The task of link prediction is computationally intensive for
larger networks, since

∣∣(V[t0,tb] × V[t0,tb]) \ E[t0,tb]

∣∣ instances needs to be consid-
ered in the classifier. One way to reduce computational complexity, and reduce
class imbalance as well, is to only consider pairs of nodes at a certain distance
in the network [18]. We consider only pairs of nodes at a two-hop distance.

Time intervals The time intervals used for the maturing and probing phase
in both the random and temporal split, can potentially have an effect on the
obtained results. Hence, these values needs to be consistent for various networks.

10 de Bruin et al.

Since a similar set-up is used as [12], timestamps of tb, tc and td were set in such
a way that the proportion of edges in the maturing and probing phase remains
roughly similar for the condmat network in [12]. This ratio

∣∣E[t0,tb]

∣∣ :
∣∣E[tb,tc]

∣∣ is
approximately equal to 5 : 1. To allow fair comparisons between the random and
temporal split, the probing phase of the test interval should contain a similar
number of edges as the probing phase of the training interval, i.e.,

∣∣E[t0,tb]

∣∣ ≈∣∣E[tc,td]

∣∣.
For computational reasons, we choose tb, tc and td for all networks such that

the number of edges in each interval remains similar to the Condmat network.
This means that

∣∣E[t0,tb]

∣∣ ≈ 50000 and
∣∣E[tb,tc]

∣∣ ≈ ∣∣E[tc,td]

∣∣ ≈ 10000.

Training and testing In case of random splitting,the instances X[t0,tb] should
be split into two disjoint sets, as explained in Section 3.2. 75% of the instances

are used for training and the remainder for testing, i.e.
∣∣∣Xtrain

[t0,tb]

∣∣∣ = 3
∣∣∣Xtest

[t0,tb]

∣∣∣.
Hyper-parameters Default parameters for the XGBoost were used, except
for the following. The weights of the positive instances can be adjusted during
training in such a way that the total weight of the positive and negatives samples
are equal. In a 5-fold cross-validation setting applied on the training data, we
determined for each network separately whether this improved performance on
the train set. Furthermore, the maximum tree depth used for the base learners
was also determined in the same 5-fold cross-validation.

Robustness checks We check whether our results are robust. Hence, the entire
procedure is repeated ten times on Ask Ubuntu. We create ten non-overlapping
snapshots by shifting intervals such that each next interval starts (ta) at the end
of the previous interval (tc for random split, td for temporal split).

5.2 Results

The average precision score (AP) of the classifiers for the six networks with
the random split and temporal split method is shown in Table 2. This metric
shows large performance differences between the random and temporal split.
The performance of the temporal split is for all networks lower than the random
split. This may indicate that the random split provides an overly optimistic
indication of the performance value. The difference between the random and
temporal splits, varies widely between the networks, which may indicate that
the extent to which the test set is reused, varies per network. Notably, the AP of
the Ask Ubuntu network drops with 80%, demonstrating that the test set reuse
could be severe.

5.3 Robustness checks

We check the robustness of the findings, by following the procedure outlined in
Section 5.1. We find an AP of 0.025 ± 0.009 (mean±standard deviation) when

Evaluation of Train and Test Split Strategies in Link Prediction 11

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is
io
n

2

0 2

Fig. 3. Precision-recall curves for ten snapshots of the AskUbuntu network.

using the random split, while an AP of only 0.0061 ± 0.0016 is found for the
temporal split. The different average precision curves are shown in Figure 5.3.
The random split precision - recall curves clearly dominate their temporal coun-
terparts at all snapshots.

6 Conclusion

The aim of the present research was to analyze different ways of obtaining the
train and test set in link prediction. The results of this investigation on various
large networks indicates that the random split consistently show better perfor-
mance than the temporal split.

In future work, we plan to investigate new splitting strategies to separate
train and test set. While the procedure of the temporal split prevents using the
exact same temporal information of a given node, it still allows that the same
node is both used in train and test set. More rigorous strategies should be devised
to ensure to a further extent that the train and test set are truly disjoint and
independent.

Table 2. Comparison of performance on the link prediction classification measured
using average precision.

dataset random split temporal split

Askubuntu 0.023 0.0046
Condmat 0.012 0.0048

Digg 0.0043 0.0014
Enron 0.016 0.012

Slashdot 0.0076 0.0021
StackOverflow 0.0029 0.0013

12 de Bruin et al.

References

1. W. L. Hamilton, R. Ying, and J. Leskovec, “Representation Learning on Graphs:
Methods and Applications,” arXiv preprint arXiv:1709.05584, 2017.

2. D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social net-
works,” Journal of the American society for information science and technology,
vol. 58, no. 7, pp. 1019–1031, 2007.

3. A. Kumar, S. S. Singh, K. Singh, and B. Biswas, “Link prediction techniques,
applications, and performance: A survey,” Physica A: Statistical Mechanics and
its Applications, vol. 553, p. 124289, 2020.

4. L. L. Linyuan and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: Statistical Mechanics and its Applications, vol. 390, no. 6, 2011.

5. M. Al Hasan and M. J. Zaki, “A survey of link prediction in social networks,” in
Social Network Data Analytics, pp. 243–275, Springer, 2011.

6. A. Ghasemian, H. Hosseinmardi, A. Galstyan, E. M. Airoldi, and A. Clauset,
“Stacking models for nearly optimal link prediction in complex networks,” Pro-
ceedings of the National Academy of Sciences, p. 201914950, 2020.

7. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Science & Business Media, 2009.

8. A. Ghasemian, H. Hosseinmardi, and A. Clauset, “Evaluating Overfit and Underfit
in Models of Network Community Structure,” IEEE Transactions on Knowledge
and Data Engineering, 2019.

9. R. Roelofs, J. Miller, M. Hardt, S. Fridovich-keil, L. Schmidt, and B. Recht, “A
Meta-Analysis of Overfitting in Machine Learning,” NeurIPS, p. 11, 2019.

10. J. P. Ioannidis, “Why most published research findings are false,” Getting to Good:
Research Integrity in the Biomedical Sciences, vol. 2, no. 8, pp. 2–8, 2018.

11. C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth, “Preserv-
ing statistical validity in adaptive data analysis,” Proceedings of the Annual ACM
Symposium on Theory of Computing, pp. 117–126, 2015.

12. R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives and
methods in link prediction,” in Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 243–252, 2010.

13. M. A. Hasan, V. Chaoji, S. Salem, M. Zaki, and N. York, “Link Prediction using
Supervised Learning,” in SDM06: workshop on link analysis, counter-terrorism and
security, pp. 798–805, 2006.

14. E. C. Mutlu and T. A. Oghaz, “Review on graph feature learning and feature
extraction techniques for link prediction,” arXiv preprint arXiv:1901.03425, 2019.

15. Z. Huang, X. Li, and H. Chen, “Link prediction approach to collaborative filtering,”
ACM/IEEE Joint Conference on Digital Libraries, pp. 141–142, 2005.

16. Y. Yang, R. N. Lichtenwalter, and N. V. Chawla, “Evaluating link prediction meth-
ods,” Knowledge and Information Systems, vol. 45, no. 3, pp. 751–782, 2015.

17. T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost: extreme
gradient boosting,” R package version 0.4-2, pp. 1–4, 2015.

18. R. Lichtenwalter and N. V. Chawla, “Link prediction: Fair and effective evalua-
tion,” Proceedings of the 2012 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, ASONAM 2012, pp. 376–383, 2012.

19. J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of the 22nd
International Conference on World Wide Web, pp. 1343–1350, 2013.

20. B. Klimt and Y. Yang, “The Enron corpus: A new dataset for email classification
research,” in European Conference on Machine Learning, pp. 217–226, 2004.

	Experimental Evaluation of Train and Test Split Strategies in Link Prediction

