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Hemoglobin (a2b2) is encoded by the a- and b-globin gene
clusters. Analyses of mutations within the a-globin cluster that
downregulate a-globin expression (a-thalassemia) provide the
basis for genetic counseling and prenatal diagnosis of this
common form of anemia.1 Understanding the mechanisms by
which such mutations cause a-thalassemia has established many
of the principles by which mammalian genes are regulated and
how human genetic disease can occur. Here we describe an
individual with a unique a-globin genotype which addresses
how the human a-globin cluster is normally regulated.

The a-globin cluster on chromosome 16 (16p13.3) includes an
embryonic z-globin gene and duplicated a-globin genes (aa/aa)
arranged in the order 59-z-a2-a1-39. a-Globin transcription is regu-
lated by 4 cis-acting enhancers (R1-R4) located 10 to 48 kb upstream
of thea-gene cluster (Figure 1A). Previous studies have shown that in
human R1 and R2 are the most important enhancers, accounting for
;10% and ;90% of a-globin expression, respectively.2-4

Previously reported patients have inherited chromosomes in which
R2 is deleted with or without deletions of the other enhancers.1,5-9

Of importance, heterozygotes for a deletion removing both R1 and
R2 have a hematological phenotype indistinguishable from those

with a deletion of both a-globin genes (--/aa), with a reduction in
mean corpuscular volume and mean corpuscular hemoglobin to-
getherwith occasional red cells containing hemoglobinH (HbH;b4)
inclusions. This suggests that R3 and R4 provide little, if any, en-
hancer activity, consistent with similar findings in mouse.10 Indi-
viduals who inherit a single allele in which just R2 is deleted
[(aa)DR2/aa] have a phenotype that appears milder than the --/aa
genotype with no HbH inclusions seen in the peripheral blood.5,11

This is consistent with residual activity from R1. An individual
homozygous for a 3.3-kb deletion including R2 [(aa)ALT/(aa)ALT] has
HbH disease with a severe hematological phenotype.3,5

We report a 26-year-old office worker of mixed ethnic origin, who
has a hematologically very severe form of a-thalassemia. Despite
this, she has only received 2 previous transfusions as a child, which
were associated with concurrent infections. Growth and devel-
opment were normal. She participated in normal childhood
sports, although “feeling tired” during them. Ultrasound showed
splenomegaly but no hepatomegaly. Hematological analysis
revealed a severe hypochromic, microcytic anemia, and HbH
inclusions in 30.7% of cells, but no evidence of iron overload
(Figure 2A-C; supplemental Table 1, available on the BloodWeb
site). Genotypic analysis showed that both a-globin genes are
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deleted from her maternal allele (--SEA). Therefore, all a-globin
transcription in this patient comes from her paternal allele affected
by a previously reported mutation [(aa)ALT] in which R2 is deleted
(Figures 1A and 2D). From this paternal allele, R1 alone drives
expression of the 2 a-globin genes in cis. The patient thus pro-
duces only 50% of the a-globin produced by the previously

described (aa)ALT/(aa)ALT homozygote with severe HbH disease:
the total a-globin output compared with normal would be pre-
dicted to be 0% from the maternal (--SEA) allele, and just 5% from
the (aa)ALT allele. Given such a severe predicted reduction, it was
surprising that the patient survives without transfusions. Of in-
terest, this patient is heterozygous for HbE (bA/bE) and therefore
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Figure 1. Schematic representation of the human a-globin cluster: characterization of open chromatin and chromatin interaction profiles. (A) Schematic diagrams of the
a-globin locus located in the subtelomeric region of chromosome 16. The top track represents the wild-type (WT) locus (aa). The tracks beneath represent the 2 alleles inherited
by the patient. For clarity, intervening genes and structural elements are not included. The paternal allele is (aa)ALT and the maternal allele is --SEA. (B) The open chromatin
landscape at the a-globin locus (ATAC-seq) in primary erythroid cells on day 13 of erythroid differentiation. The top track is generated from cells derived from 3 unrelated WT
controls (aa/aa), the middle is from a carrier of the SEA mutation (aa/--SEA), and the bottom is from the patient (--SEA/(aa)ALT). In the patient’s cells, marked reduction in ATAC
signal is observed at the R2 enhancer and the a-globin genes. No new peaks are seen. Genes and pseudogenes are annotated below the scale bar. (C) Chromatin interaction
profiles between the a-globin promoters (arrowheads) and the surrounding chromatin in primary erythroid cells (Capture-C). Peaks along the track represent interactions with the
a-globin promoters. Although there are increased interactions with chromatin adjacent to the promoters due to proximity effects, in theWT setting, there is a marked increase in
interactions with chromatin regions containing the enhancers, even though they lie up to 70-kb away. The top track depicts the mean interaction profile observed in cells from
three unrelatedWT controls (aa/aa), and themiddle track is the interaction profile observed in cells taken from the patient, which shows an absence of interactions between the
a-globin promoters and R2, in keeping with its deletion on that allele. The bottom track depicts the reduction in interactions when comparing the patient and the WT controls,
represented as log-adjusted P values. There is a highly significant reduction in interactions between the a-globin promoters and R2 because of its deletion, and a modest
reduction in interactions between the promoters and R1, R3, and R4. Intersection of the Capture-C, ATAC-seq, and dbSNP data reveals that this reduction in interactions in cis
with the deleted R2 is also matched by reduced chromatin accessibility on the same allele at R3 asmeasured by ATAC-seq (the patient did not have any SNPs in R1 or R4 so these
could not be assessed). SNP, single nucleotide polymorphism.
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her genotype is consistent with that seen in patients with AE Bart
disease.12

To investigate further, CD341 cells were selected from pe-
ripheral blood and differentiated along the erythroid lineage.13

At peak globin production, the a/b-globin messenger RNA
(mRNA) ratio was markedly reduced when compared with wild-
type cells (aa/aa) and those of a patient carrying the --SEA de-
letion (aa/--SEA) (supplemental Figure 1). Even so, the reduction
in a-globin expression was not as great as predicted. These
findings initially suggested that the other enhancers on this allele
may compensate for the loss of R2.

We therefore asked if the remaining enhancers (R1, R3, and R4)
or previously unknown enhancers on the (aa)ALT allele may have
compensated for the loss of R2. Enhancers can be identified by
their accessibility to transposases (ATAC-seq), reflecting their
accessibility to transcription factors in vivo. We observed a re-
duction in the ATAC peak corresponding to R2 (Figure 1B), in
keeping with its deletion from one allele. However, we did not
observe any new peaks forming in a 150-kb region including and
surrounding the a-globin genes, or any compensatory increase
in the peak heights of the remaining enhancers, although
functional alterations in transcription factor binding without
changes in accessibility cannot be ruled out. Consistent with
the reduction in a-globin transcription, there was a reduction

in ATAC signal over the a-globin genes compared with
control. No significant changes were observed at the b-globin
locus (not shown).

We next determined if interactions between the enhancers and
promoters had changed. Capture-C, a sensitive assay to detect
physical interactions between selected regions of chromatin, was
performed.14 When capturing from the intact a-globin promoters,
present only on 1 allele in cis with the R2 deletion, no interactions
with R2were detected. This clearly shows that the single copy of R2
in trans on the --SEA allele was not interacting with the a-globin
genes on the other allele and therefore not driving a-globin ex-
pression. Surprisingly, when compared with 3 normal controls,
interactions between the a-globin promoters and the intact R1,
R3, and R4 enhancers on the (aa)ALT allele were also reduced
rather than enhanced as might be expected if they were com-
pensating for the loss of R2 (Figure 1C).

Why was the phenotype not as severe as expected? The patient
appears to have a well-compensated hemolytic anemia with no
evidence of significant ineffective erythropoiesis. The a/b-globin
mRNA ratio was lower than reported from most patients with
HbH disease.1 z-globin was not significantly activated to com-
pensate for the loss of a-globin (supplemental Figure 2A-C). One
ameliorating factor may have been the co-inheritance of the bE

mutation that acts as a mild form of b-thalassemia, thereby
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Figure 2. Hematological characterization and family pedigree. The patient originates from Surinam, a country with mixed ethnicity on the northeast Atlantic coast of South
America. (A) Red blood cell parameters at the time of diagnosis of the patient and her parents. HbH inclusionsweremanually counted fromablood smear prepared after stainingwhole
blood in an equal volumeof Brilliant Cresyl Blue (BCB). Glycolytic enzyme analysis of the patient’s blood indicated the red bloodcell populationwas composed of young cells, although
the reticulocyte count was notmarkedly raised (hexokinase, 5.8 [normal range, 0.8-1.5], pyruvate kinase, 27.3 [6.1-12.3 U/gHb], reticulocyte count, 1273 109/L). *Reference values are for
nondeletional HbH disease, which is more severe than the deletional form.15 (B) Peripheral blood smear, Giemsa stained, from the patient. which shows marked hypochromia and
anisopoikilocytosis (indicated by arrowheads) consistent with a diagnosis of hematologically severe HbH disease. (C) Peripheral blood HbH smear, BCB stained, from the patient.
Arrowheads indicate typical cells containingHbH inclusions. (D) Family pedigree of the patient with annotated genotypes.Micrographs were taken using anOlympus BX60microscope
with an oil immersion 1003 lens and Infinity 3S Lumenera camera. Hct, hematocrit; MCV, mean corpuscular volume; MCH, mean cell hemoglobin.
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reducing globin imbalance. In the absence of evidence for
compensation via the remaining enhancers, an only mildly raised
RBC (5.853 1012 cells per liter) and a normal erythropoietin level
(14 IU/L) at diagnosis, it seems most likely that the relatively mild
clinical phenotype occurs because of selection of red cells with
the least globin chain imbalance. Interestingly the a/b-globin
mRNA ratio in the patient was more balanced in peripheral
blood than in CD341 culture-derived erythroid precursors
(supplemental Figure 1B). Because there will be a normal dis-
tribution of the a/b globin ratios around the mean in any
population of erythroid precursors, this selective process at the
cellular level may play an important role in this remarkable clinical
phenotype. Another contributing factor may be that the patient’s
genotype is similar to that seen in individuals with AEBart disease,
in which a severe reduction in a-globin synthesis occurs in
combination with the bE mutation. Although the patient has more
severe thalassemia than previously described in these cases owing
to her unique genotype, individuals with a-thalassemia who co-
inherit b-thalassemia may have a milder phenotype than other-
wise expected.12

In summary, these findings support the conclusion that the
enhancer elements in the human a-globin locus contribute
;10% (R1), 90% (R2), ,2% to 3% (R3), and ,2% to 3% (R4) to
transcription compared with 40% (R1), 50% (R2),,2% to 3% (R3),
and 10% (R4) in mouse.10 They also show that, although at some
loci, compensation in gene expression may be mediated by
enhancer redundancy, other pathophysiological mechanisms
may compensate in whole organ/cell systems. Finally, these
results show that when evaluating the effects of enhancers on
gene expression, it is important to consider other influences on
the ultimate cellular and organismal phenotype.
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