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To achieve the ambitious targets for tuberculosis (TB) prevention, care, and control stated
by the End TB Strategy, new health care strategies, diagnostic tools are warranted. Host-
derived biosignatures are explored for their TB diagnostic potential in accordance with the
WHO target product profiles (TPPs) for point-of-care (POC) testing. We aimed to identify
sputum-independent TB diagnostic signatures in newly diagnosed adult pulmonary-TB
(PTB) patients recruited in the context of a prospective household contact cohort study
conducted in Andhra Pradesh, India. Whole-blood mRNA samples from 158 subjects
(PTB, n = 109; age-matched household controls, n = 49) were examined by dual-color
Reverse-Transcriptase Multiplex Ligation-dependent Probe-Amplification (dcRT-MLPA)
for the expression of 198 pre-defined genes and a Mesoscale discovery assay for the
concentration of 18 cytokines/chemokines in TB-antigen stimulated QuantiFERON
supernatants. To identify signatures, we applied a two-step approach; in the first step,
univariate filtering was used to identify and shortlist potentially predictive biomarkers; this
step may be seen as removing redundant biomarkers. In the second step, a logistic
regression approach was used such that groupmembership (PTB vs. household controls)
became the binary response in a Lasso regression model. We identified an 11-gene
signature that distinguished PTB from household controls with AUCs of ≥0.98 (95% CIs:
0.94–1.00), and a 4-protein signature (IFNg, GMCSF, IL7 and IL15) that differentiated PTB
from household controls with AUCs of ≥0.87 (95% CIs: 0.75–1.00), in our discovery
cohort. Subsequently, we evaluated the performance of the 11-gene signature in two
external validation data sets viz, an independent cohort at the Glenfield Hospital, University
Hospitals of Leicester NHS Trust, Leicester, UK (GSE107994 data set), and the Catalysis
treatment response cohort (GSE89403 data set) from South Africa. The 11-gene
signature validated and distinguished PTB from healthy and asymptomatic
org February 2021 | Volume 11 | Article 6260491
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M. tuberculosis infected household controls in the GSE107994 data set, with an AUC of
0.95 (95% CI: 0.91–0.98) and 0.94 (95% CI: 0.89–0.98). More interestingly in the
GSE89403 data set, the 11-gene signature distinguished PTB from household controls
and patients with other lung diseases with an AUC of 0.93 (95% CI: 0.87–0.99) and 0.73
(95% CI: 0.56–0.89). These criteria meet the WHO TTP benchmarks for a non–sputum-
based triage test for TB diagnosis. We suggest that further validation is required before
clinical implementation of the 11-gene signature we have identified markers will be possible.
Keywords: transcript signature, protein signature, tuberculosis, adult, non-sputum
INTRODUCTION

Tuberculosis (TB) is one of the top 10 causes of death worldwide
and the single infectious pathogen responsible for the most
deaths–even after the emergence of the covid-19 pandemic. In
2018, a total of 1.5 million lives were lost to TB (1), and the goals of
the End TB Strategy; to achieve a 90% reduction in TB incidence
and a 95% reduction in TB mortality by 2035, are challenging (2).
Much of the mortality attributed to TB occur in low-resource
settings, so effective diagnostic tests applicable in these settings are
essential to meet these goals. The WHO has defined the
performance and operational characteristics of tests applicable
for primary care or at the point-of-care (POC) in its high-priority
target product profiles (TPPs) (3). To meet the TPPs, a rapid
biomarker-based test would ideally be i) instrument-free or
feasible with limited instrumentation and ii) based on easily
accessible samples such as blood, urine, or breath (4).

In recent years, efforts have been made to identify which of
the diagnostic needs should be of highest priority for biomarker-
based assays balancing efficiency, affordability, and access in
high-endemic limited resource settings (3, 5). The top priority is
a rapid biomarker-based, non-sputum POC test i) to detect TB
disease and guide immediate initiation of TB treatment, thus
avoiding loss of cases from diagnostic delay (3, 5), and ii) for
triage, ruling out TB disease with high sensitivity, allowing
targeted referral to more expensive and accurate confirmatory
tests (6). Ideally, such POC tests would perform satisfactorily
with pulmonary and extrapulmonary disease in both children
and adults regardless of HIV coinfection (7). In recent years,
there have been exciting developments, including sputum-based
and non-sputum-based TB diagnostics. However, the
Lipoarabinomannan (LAM) test, which detects M. tuberculosis
(Mtb) complex LAM in urine, is hitherto the only non-sputum
test endorsed by WHO.

Over the past few years, the search for host biomarker(s) or
biosignatures has gained increased attention in attempts to
develop companion diagnostic platforms (8–20). Although
expensive and resource-demanding, genome-wide analyses of
transcriptomes offer unbiased identification of genes and
immunologic pathways relevant for the understanding of TB
pathogenesis, and risk of progression to disease (21–23). In the
search for a unifying signature, a landmark study by Sweeney et
al. (24) using data from publicly available human genome
repositories, identified a 3-gene signature (3-gene TB score)
org 2
derived from three discovery datasets of adults, that separated
subjects with TB from healthy controls,Mtb infection, and other
diseases in validation datasets of children and adults. However,
the mean diagnostic accuracy obtained in the validation sets did
not meet initial WHO criteria for a diagnostic POC test.
Subsequently, Warsinke HC et al. (25) evaluated the
performance of the 3-gene TB score in three different TB
cohorts (25–27) and found that outcomes approached the
WHO TTP benchmarks for a non-sputum-based triage test,
with a high negative predictive value. Further, a very recent
study evaluated 27 eligible identified signatures in a systematic
meta-review, from which four signatures (Sweeney3, Kaforou25,
Roe3, and BATF2) fulfilled the WHO minimum diagnostic
accuracy parameters required for a TB triage test (28).

Genome-wide analysis of transcriptomes has been applied as a
first step in identifying markers with potential for subsequent
refinement as POC tests (12). To simplify the search for
transcriptional signatures with diagnostic relevance in TB, we
applied a user-friendly and inexpensive technique; the dual-color-
Reverse-Transcriptase-Multiplex-Ligation-dependent-Probe-
Amplification (dc-RT MLPA). In addition, a Mesoscale discovery
assay was applied for protein analysis. The present study aimed to:
i) Identify transcriptional and proteomic signatures with the
ability to distinguish pulmonary TB (PTB) from household
controls. ii) Validate the identified transcriptional signature in
an independent cohort from the UK (17) comprising adult TB
patients and healthy household contacts with/without Mtb
infection as well as in the South African Catalysis Treatment
Response Cohort (CTRC) (27) comprising adult TB patients,
subjects with other lung diseases, and healthy controls. iii)
Investigate the performance of the signature in adult TB patients
identified in the present study in a recently-described pediatric
population (11). iv) Compare the diagnostic abilities of the
previously identified 10-gene signature (11) for pediatric PTB in
the present adult study population.
MATERIALS AND METHODS

Ethical Consideration
Ethical approval for this study was obtained from the
Institutional Ethical Review Board (IERB) of St. John’s Medical
College, Bangalore (IERB/1/527/08). The material transfer
agreement between St. John’s Medical College, Bangalore, and
February 2021 | Volume 11 | Article 626049
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the University of Bergen, Norway was obtained from the
Department of Biotechnology, Government of India (No.BT/
Med.II/Adv (SS)/Misc./02/2012). Ethical approval was also
obtained (Ref no: 2018/1614 D) from the Regional Committee
for Medical and Health Research Ethics, Western Norway.

Study Population
A prospective cohort study of adult PTB index cases and their
household contacts were conducted in Palamaner and Kuppam
Taluks, Chittoor district, Andhra Pradesh, India (3.200°N,
72.7500°E, altitude 683 m) between September 2010 and April
2012. In total, 176 index cases were identified at the microscopy
centres of the Revised National Tuberculosis Control
Program (RNTCP) (Government of India). Of these, 164 were
recruited following written informed consent, and 150 had
confirmed TB (presence of Mtb in sputum smear and/or
culture) with/without abnormal chest X-rays. All were treated
with standard anti-TB treatment (ATT) and followed until the
end of the 6-month ATT course. Household contacts of the 176
index cases were asked to participate and 525 household contacts
recruited following written informed consent were followed for
one year. For all children parents/guardians gave their written
informed consent to participation. For participants >7 years, an
additional written assent was obtained.

Clinical Assessments and Sampling
Baseline Assessments of PTB Index Cases and Household
Contacts: Medical History (including BCG vaccination status,
history of TB exposure, prior TB/TB treatment and habitual risk
factors), demographic, anthropometric, and clinical data were
recorded. At baseline, a tuberculin skin test (TST) was performed
by a trained nurse (2 TU/0.1 ml of tuberculin; Span Diagnostics,
Surat, India) and read after 48–72 h; an induration ≥10 mm was
defined as positive. Three independent radiologists interpreted
the chest X-ray (anteroposterior view) at baseline. Agreement by
at least two radiologists was required for a conclusion of findings
suggestive of TB. Although not a pre-requisite for participation,
HIV testing was performed in consenting subjects following pre-
test counseling.

External Validation Cohort
Gene expression data from the Singhania A et al; GSE107994 (an
independent cohort of PTB and close contacts of household at
the Glenfield Hospital, University Hospitals of Leicester NHS
Trust, Leicester from UK) (17) and Thompson EG et al;
GSE89403 (CTRC from South Africa) (27) data sets were used
for external validation. The normalized log 2 data were back-
transformed and multiplied by 100, to match the expression level
with the dcRT-MLPA assay).

Gene expression data from our previous pediatric TB cohort
(11) was used for validation. In addition, the 10-gene signature
originally identified in the pediatric cohort (which consists of TB
cases and asymptomatic TB-exposed household controls) was
evaluated in the present adult PTB study cohort.

For the external validation, no proteomic data from TB-
antigen (ag) stimulated QuantiFERON (QFT) supernatants
were available for the proteomic signature evaluation.
Frontiers in Immunology | www.frontiersin.org 3
Sample Collection, RNA Extraction, and
Selection of Transcriptional Biomarkers
Peripheral whole blood (approx. 2.5 ml) was drawn into
PAXgene blood RNA tubes (PreAnalytiX, Hombrechtikon,
Switzerland) and stored at -80°C until RNA extraction
(PAXgene Blood RNA kit; PreAnalytiX, Hilden, Germany).
Total RNA concentration and purity were measured
using a Nanodrop spectrophotometer (Thermoscientific,
Wilmington, DE, USA) and ranged between 0.4 –13.2µg
(average 3.8 ± 1.65µg).

A total of 198 genes (including 4 housekeeping genes),
distributed in 3 panels were assessed, based primarily on their
posited or confirmed roles in TB immunology; the first 48-gene
set (identified by the partners in the Bill and Melinda Gates
Foundation Grand Challenge project #6 consortium) has been
described in our previous studies (10, 13). The second 92-gene
set included genes known to be involved in general inflammation
and myeloid cell activation, and genes involved in the adaptive
immune system, comprising Th1/Th2-responses, regulatory T-
cell markers, and B-cell associated genes. The third 58-gene set
included type 1-interferon-inducible genes (21) known to be up-
regulated in adult TB and genes associated with prediction of TB
risk in South African neonates (29). In total, thirty genes were
present in more than one panel. For the 30 repeated genes that
were present in more than one panel, geometric mean expression
was used as done in our previous studies (11, 30). In total, there
were 145 unique genes were analyzed and presented in the
Supplementary Table 1 (11, 30).

Dual-Color-Reverse-Transcriptase-
Multiplex-Ligation-Dependent-Probe-
Amplification (dcRT-MLPA)
For each target sequence, a specific RT primer was designed,
located immediately downstream of the left- and right-hand half-
probe target sequence. A total of 125 ng RNA was used for
reverse transcription, applying MMLV reverse transcriptase
(Promega, Madison, WI, USA), followed by hybridization of
left- and right-hand half-probes to the cDNA at 60° C overnight.
The remaining steps were performed as described elsewhere (13,
31). All 158 samples were run in two (96-well) plates for each of
the gene panels. The PCR fragments were analyzed on a 3730-
capillary sequencer in Gene scan mode (Life Technologies,
Carlsbad, CA, USA), using GeneMapper version 5.0 (Life
Technologies, Carlsbad, California, USA). Primers and probes
were obtained from the Department of Infectious Diseases,
Leiden Medical University, the Netherlands. GAPDH was used
for normalization.

Multiplex Cytokine/Chemokine Assays
Biomarkers at the proteomic level were analyzed in peripheral
whole blood stimulated with a mixture of Mtb-specific antigens
(e.g., QFT supernatants): Early Secretory Antigenic Target-6
(ESAT-6), Culture Filtrate Protein-10 (CFP-10) and TB
antigen 7.7. A pilot study was conducted on 12 randomly
selected baseline samples from TB Cures (n = 4), Treatment
Failures (n = 4) and household controls (n = 4) using the V-plex
February 2021 | Volume 11 | Article 626049
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human pro-inflammatory, cytokine, and chemokine panels from
Meso Scale Discovery (MSD, Rockville, Maryland, USA)
according to the manufacturer’s instructions. Six of ten
biomarkers from each panel [pro-inflammatory panel (IL1b,
IL10, IL4, IL12p70, IFNg, and TNFa), cytokine panel (GM-
CSF, IL15, IL17A, IL5, IL7, and VEGF), and chemokine panel
(Eotaxin3, IL8, IP10, MCP1, MDC, and MIP1b)] were analyzed.
The analysis of biomarkers at the proteomic level has been
described elsewhere (30).

Data Analysis
Patient characteristics were summarized using mean and
minimum/maximum or count and percentage, as appropriate.
TB disease and household controls were compared using the
Mann-Whitney test, Pearson’s chi-square test with Yates
Continuity Correction, or Fisher’s exact test, as appropriate.

Both PTB cases (n = 48) and age-matched household
controls irrespective of Mtb infection status (n = 49) were
randomly divided into a training set (2/3), and a test set (1/3).
Signatures were identified by means of a two-step approach
previously used for biosignature identification (11). In short,
the approach consisted of 1) univariate feature selection
analysis using logistic regression, selecting markers by
applying stringent p-value (p<0.01), and LASSO regression
analysis based on the markers identified in step 1. The
resulting LASSO model fits provided estimated coefficients
(not reported in the present study, see Sivakumaran et al.
(30) for an example). The model fits also enabled prediction
of the probability of being a PTB for each participant. A
predicted probability of >0.5 resulted in classification as a
PTB case and <0.5 resulted in classification as a control. This
model-based classification was compared to the actual “true”
classification of participants and the number of correctly
classified participants could be identified. Specifically, the
predictive abilities of the signatures (to classify participants
correctly) in both training and test set were summarized by
means of receiver operator characteristic (ROC) curves,
specifically sensitivity, specificity, and area under the curve
Frontiers in Immunology | www.frontiersin.org 4
(AUC). Analyses were carried out using R (R Core Team) (32)
through the graphical user interface RStudio (www.
rstudio.com).
RESULTS

Baseline Clinical Characteristics of
the PTB Index Cases
Blood samples at baseline were obtained from 109 of the 150
participants with confirmed TB, but only 48 were collected
before ATT initiation and thus selected for further biomarker
analysis. The remaining PTB (n = 61) cases were stratified based
on timepoint for sample collection after ATT initiation (≤72 or
>72 h) and analyzed separately (Figure 1). In the training set, the
mean age was 43.9 years in PTB cases (range: 19–70) and 35.7
years in household controls (range: 18–80), and in the test set,
46.5 years in PTB cases (range: 19–69) and 38.2 years (range:
19.5–65) for household controls. In the training set, males
constituted 90.6% (29/32) of PTB cases, and 31.3% (10/32) of
household controls (p<0.001); in the test set, males constituted
75.0% (16/17) of PTB cases and 23.5% (4/17) of household
controls (p<0.01; Table 1). Further baseline characteristics are
shown in Table 1.

The mean age of the UK cohort was 40.3 (range: 20–75), 39.6
(range: 16–72), and 35.2 (range: 16–79) years for PTB, healthy
Mtb infected household contacts, and contacts, respectively.
Males constituted 67.9%, 57.1%, and 60% of each cohort. For
PTB cases in the CTRC cohort the mean age was 33 years (range::
17–66) and males constituted 65.0%.
Identification of an 11-Gene Signature
The mean expression of unique 145 transcriptional biomarkers
(in arbitrary units) are shown in Supplementary Table 1. We
identified an 11-gene signature, comprising CASP8, CD3E,
CD8A, CD14, GBP5, GNLY, NLRP2, NOD2, TAGAP, TLR5,
and TNF (Table 2A) able to distinguish PTB cases from
FIGURE 1 | Study flow chart. PTB, pulmonary tuberculosis; ATT, anti TB therapy.
February 2021 | Volume 11 | Article 626049
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household controls with an AUC of 0.99 and 0.98 in the training
and test sets, respectively (Table 3A).

Subsequently, we tested the performance of this 11-gene
signature in PTB index cases ≤72 h and >72 h after ATT
initiation as prior work suggested that in some cases gene
Frontiers in Immunology | www.frontiersin.org 5
expression can change significantly within first week of
treatment (33). In this case, the results showed that ≤72 h after
ATT-initiation, the TB cases had a similar, or marginally lower
AUC (0.97, 95% CI, 0.94–1.00) compared to the >72 h ATT-
initiated TB cases (AUC = 0.99; 95% CI, 0.99–1.00).

Evaluation of the Identified 11-Gene
Signature in Other Data Sets
Study 1: Singhania A et al.; GSE107994
Adult Data Set
The performance of the 11-gene signature was then evaluated in
the GSE107994 data set (UK cohort as validation set 1 and 2),
which provided an AUC of 0.95 (95% CI: 0.91–1.00) correctly
classifying 41 of 53 PTB (sensitivity 77.4%, 95% CI, 63.5–87.3),
and 46 of 50 healthy Mtb-uninfected household contacts
(specificity 92.0%, 95% CI, 79.9–97.4). Similarly, the 11-gene
signature differentiated PTB from Mtb-infected household
contacts with an AUC of 0.94 (95% CI: 0.89–0.98), with a
specificity of 89.8% (95% CI, 77.0–96.2; Table 3A and Figure 2).

Study 2: Thompson EG et al.; GSE89403
Adult Data Set
The performance of the 11-gene signature was also evaluated in
the GSE89403 data set (South African CTRC as validation set 3
and 4), where it gave an AUC of 0.93 (95% CI: 0.87–0.99) correctly
classifying 50 of 95 PTB cases (sensitivity 52.6%, 95% CI, 42.2–
62.8), and 20 of 21 healthy controls (specificity 95.2%, 95% CI,
75.1–99.7). Interestingly, given the real-life diagnostic challenges
faced in differentiating TB patients from other symptomatic
patients, the 11-gene signature differentiated PTB from other
lung diseases with an AUC of 0.73 (95% CI: 0.56–0.89), with a
specificity of 82.4% (95% CI, 55.8–95.3; Table 3A and Figure 3).
TABLE 2A | Expression and regression coefficients for each biomarker of the
identified 11-gene signature.

TB disease expression Genes Regression co-efficient

Increased CD14 6.24E-05
GBP5 4.92E-05
NOD2 5.12E-04
TLR5 4.22E-04

Decreased CASP8 -1.41E-04
CD3E -2.65E-04
CD8A -1.83E-04
GNLY -2.16E-06
NLRP2 -2.31E-04
TAGAP -2.59E-04
TNF -2.15E-03
TABLE 1 | Baseline characteristics of discovery data sets.

Clinical Characteristics Training set p-value Test set p-value

TB disease (n = 32) Household controls (n = 32) TB disease (n = 16) Household controls (n = 17)

Demographics
Age in years (mean) 43.9 35.7 0.012 46.5 38.2 0.1
Range 19–70 18–80 19–69 19.5–65
Gender (Male) 29 10 <0.001 12 4 0.003
Mycobacterial exposure
Known BCG vaccination 12 15 0.6 8 11 0.65
Unknown 4 5 2 1
Tuberculin skin test
Positive (≥10 mm) 26 17 0.02 11 9 0.5
Median (mm) 16.8 14.2 15.5 15.3
QuantiFERON Gold in tube
Positive (≥0,35 IU/ml) 24 19 0.14 12 8 0.09
Indeterminate 1 1 0 0
Median (IU/ml) 3.05 2.78 5.07 8.2
Symptoms
Cough >2 weeks 29 0 <0.001 16 0 <0.001
Fever >1 week 25 1 <0.001 13 0 <0.001
Weight loss 22 0 <0.001 11 0 <0.001
Findings
Abnormal Chest X-ray 31 0 <0.001 16 0 <0.001
BMI < 18.5 (under weight) 23 10 0.001 10 11 0.89
February 2021 | Volume 11 | Article
The significant p-values are in bold.
TABLE 2B | Expression and regression coefficients for each biomarker of the
identified 4-protein signature.

TB disease
expression

Proteins Regression
co-efficient

Increased IL7 2.07E+00
IL15 7.87E-02

Decreased IFNg -1.10E-06
GMCSF -7.65E-03
626049
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Study 3: JE Gjøen et al.; Pediatric Data Set
Finally, the performance of the 11-gene signature was
evaluated in a pediatric data set collected previously by our
group (validation set 5), presented an AUC of 0.69 (95% 0.57–
Frontiers in Immunology | www.frontiersin.org 6
0.80), which correctly classified 17 of 47 PTB (sensitivity
36.2%, 95% CI, 23.1–51.5), and 34 of 36 household controls
(specificity 94.4%, 95% CI, 80.0–99.0; Table 3A and
Figure 4A).
FIGURE 2 | ROC curves for signature that distinguishes PTB from household
controls in the training set, test set, whereas in validation set 1 (ATB vs.
healthy recent contacts) and validation set 2 (ATB vs. LTBI).
FIGURE 3 | ROC curves for signature that distinguishes PTB from household
controls in the training set, test set and in validation set 3 (PTB from healthy
controls) and validation set 4 (PTB from other lung diseases).
TABLE 3A | Identification and performance of 11-gene signature.

Data sets Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI) Accuracy in %

PTB vs. Household controls
Training set 93.8 (77.8–98.9) 100.0 (86.7–100.0) 0.99 (0.99–1.00) 96.9
Test set 100 (75.9–100.0) 88.2 (62.3–97.9) 0.98 (0.94–1.00) 93.9
PTB vs. Household controls
Validation set 1 77.4 (63.5–87.3) 92.0 (79.9–97.4) 0.95 (0.91–0.99) 84.5
PTB vs. Mtb infected
Validation set 2 77.4 (63.5–87.3) 89.8 (77.0–96.2) 0.94 (0.89–0.98) 83.3
PTB vs. Healthy controls
Validation set 3 52.6 (42.2–62.8) 95.2 (75.1–99.7) 0.93 (0.87–0.99) 60.3
PTB vs. Other lung diseases
Validation set 4 52.6 (42.2–62.8) 82.4 (55.8–95.3) 0.73 (0.56–0.89) 57.1
PTB vs. Household/asymptomatic controls
Validation set 5 36.2 (23.1–51.5) 94.4 (80.0–99.0) 0.69 (0.57–0.80) 61.4
February 2021 | Volume 11
TABLE 3B | Identification of 4–protein signature.

PTB vs. Household controls

Training set 87.5 (70.1–95.9) 90.6 (73.8–97.5) 0.96 (0.92–1.00) 89.1
Test set 68.8 (41.5–87.9) 94.1 (69.2–99.7) 0.87 (0.75–0.99) 81.8
| Article 62
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Evaluation of Our Pediatric 10-Gene
Signature in the Adult TB Population
in the Present Study
As the 11-gene signature identified in adults performed poorly in
children, we asked if our previously identified diagnostic 10-gene
pediatric signature would perform better in our adult PTB cases,
but the AUC of 0.70 (95% CI, 0.60–0.80) obtained was similar to
validation set 5 (Figure 4B).

Identification of Proteomic Signature
The median concentration (pg/ml) of the 18 protein biomarkers
measured are shown in Supplementary Table 2. We applied Lasso
regression analysis directly on data from the 18 protein biomarkers
tested, and identified a 4-protein signature, comprising IFNg,
GMCSF, IL7, and IL15 (Table 2B) that differentiated PTB from
healthy household controls with an AUC of 0.96 (95% CI, 0.92–
1.00) in the training set, correctly classifying 28 of 32 PTB cases
(sensitivity 87.5%, 95% CI, 70.1–95.9), and 29 of 32 household
controls (specificity 90.6%, 95% CI, 73.8–97.5). In the test set, the
identified signature generated an AUC of 0.87 (95%CI, 0.75–0.99),
correctly classifying 11 of 16 PTB cases (sensitivity 68.8%, 95% CI,
41.5–87.9), and 16 of 17 household controls (specificity 94.1%, 95%
CI, 69.2–99.7; Table 3B and Figure 5).

Similarly, we tested the performance of the 4-protein
signature in the ATT-initiated participants vs. household
controls. PTB cases initiated on ATT ≤72 prior to sampling
had a slightly higher AUC value (0.89, 95% CI, 0.81–0.97)
compared to PTB cases initiated on ATT >72 h prior to
sampling (AUC = 0.88; 95% CI, 0.75–0.99).
DISCUSSION

An ideal diagnostic biomarker or multiple marker biosignature for
TB could be either pathogen- or host-derived and should be
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specific to the underlying disease process (4, 34). Several
transcriptional signatures based on testing in different ethnic
populations have been proposed for this purpose by numerous
research groups (14, 17, 21, 24, 35, 36). However, limited overlap
in genes differentially expressed between PTB and household
controls have been found when comparing these signatures. A
recent meta-analysis identified eight signatures with an equivalent
performance that showed moderate to high correlation for
diagnosing incipient TB. Overlapping constituent genes only
partially accounted for correlation between signatures,
A B

FIGURE 4 | ROC curves for signature that distinguishes PTB from household controls (A) the training set, test set, validation of adult 11-gene signature in the
pediatric population and (B) the training set, test set, validation of pediatric10-gene signature in the adult population.
FIGURE 5 | ROC curves for protein signature that distinguishes PTB from
household controls in the training set and test set.
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suggesting that they reflect different dimensions of the typical host
response to infection with Mtb, and strongly supported the
identification of IFN and TNF signaling pathways as statistically
enriched upstream regulators of the genes across the eight
signatures (37). Several attempts have been made to reduce the
large number of genes identified by these studies as potentially
relevant into smaller candidate signatures that could form the
basis of a potential clinical diagnostic. However, there is still no
agreement as to which genes to include in an optimal
diagnostic signature.

In this study, we report that our 11-gene whole blood
transcriptomic signature gave promising diagnostic performance
across diverse populations (India, UK, South Africa) from both
low-endemic and high-endemic countries, based on a capacity to
distinguish PTB from household controls with an AUC ≥ 0.93.
However, the 11-gene signature was less successful in efficiently
discriminating TB disease from other lung diseases. The evaluation
of this 11-gene signature in the UK-derived cohort indicated
reasonable diagnostic accuracy (> 80.0, Table 3) for the
identification of PTB. However, in the CTRC cohort, the
performance of the 11-gene signature was lower. Aiming for a
POC triage test to ascertain targeted referral of symptomatic
subjects in the field, this shortcoming in accuracy can to some
extent be overcome by clinical algorithms that include
reassessment and referral of subjects with lack of improvement
from assumed intercurrent infections (with or without antibiotics
dependent on clinical presentation). The reasons for discrepancy
between the two cohorts are likely multifactorial reflecting
differences in ethnicity, sample size, mean age (in years) and lack
of other lung disease controls in our cohort. The transcriptional
signature identified in the present study meets WHO TTPminimal
requirement for a screening test, but further evaluation will be
required before clinical implementation is possible.

Warsinske HC, et al. (25) have analyzed the performance of
the 3-gene TB score (GBP5, DUSP3, and KLF2) in three different
TB cohorts. i) South African adolescent cohort of TB progressors
(age in years, 12–18): those who progressed from latent Mtb
infection to PTB compared with non-progressors (26), ii) Brazil
Active Screening Study Cohort (age in years, 18–80): all positive
sputum culture for Mtb compared with controls that were
sputum culture-negative (25), iii) South African CTR Cohort
(age in years, 17–66): comprises culture-positive patients with
PTB, healthy controls, and patients with other lung diseases
(pneumonia or asthma). PTB patients all received standard
treatment following diagnosis (27). Across all three cohorts, at
a TB disease prevalence of 4%, the 3-gene TB score identified TB
patients with a 90% sensitivity, a specificity of 70%, and a
negative predictive value of 99.3% (25). Notably, the GBP5
gene was also up-regulated and is included in our pediatric 10-
gene and adult 11-gene signatures. Besides, GBP5 was also
reported previously by Esterhuyse MM (38) and Zak DE (26)
et al. These findings suggest that GBP5 could be a potential
component in a unified biomarker signature for TB.

Previous studies have identified different transcript signatures
for distinguishing TB from latent TB and other diseases in
Malawian and South African pediatric (35) and adult (14)
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cohorts, which could highlight the differences in pathogenesis
of adult versus pediatric TB. This is consistent with the findings
from the present study where the adult biosignature’s poor
performance in the pediatric cohort and vice versa suggests
that it may be challenging to find a universally-applicable POC
triage test for TB. This is despite the fact that the differentially
expressed genes (whether down or up-regulated) showed the
same trend in both pediatric and adult populations. Despite
decades of research, significant investment, and numerous
reports on new biomarker candidates, few biomarkers have
been independently validated for both clinical trials and
routine clinical use, and translated into new diagnostic tests
(39, 40). This problem is not unique to TB; it is true for
biomarker research in general that very few of the identified
biomarkers have advanced to approved diagnostic tests in
clinical use.

Interestingly, 3 genes do overlap (GBP5, NOD2, and CD3E)
between the pediatric 10-gene signature and the adult 11-gene
signature. Of these, two genes were up-regulated (GBP5 and
NOD2) and one gene down-regulated (CD3E) in PTB disease
compared to household controls. Notably, both signatures were
identified in an Indian population recruited from the same area
when applying the same dcRT-MLPA method. This method is
sensitive, and has high-throughput, but gives limited
transcriptional data compared to RNA sequencing. This may
explain some of the lack of overlap with transcript signatures
identified in other studies, as not all genes of interest reported in
other studies were included in our pre-defined gene panels.

In recent years, there have been more studies attempted to
identify protein signature for TB disease in adults (9, 18, 41, 42)
and children (43). A recent study hypothesized that a blood
protein-based host response signature for active PTB could
discriminate it from other TB-like disease (OTD) in adult
patients with persistent cough and provide the foundation for
a community-based triage test for PTB. The study identified a
host blood protein signature consisting of IL-6, IL-8, IL-18, and
VEGF, that discriminated active PTB from OTD with an AUC of
0.80, corresponding to a sensitivity of 80% and a specificity of
65% (41). The present study also identified a 4-protein signature
(IFNg, GMCSF, IL15, and IL7) in TB-ag stimulated QFT
supernatants that distinguishes PTB patients from their
household controls with AUCs ≥ 0.87, providing proof of
concept for a protein-based approach.

The present study has some limitations: i) No formal sample
size calculation was carried out since the maximum sample size
was defined by the availability of samples for biomarker analysis,
a factor exacerbated by the need to divide the samples into
training and test sets. To some extent, however, this limitation
was offset by the use of multiple validation cohorts, as described;
ii) Lack of validation in extra-pulmonary TB cases—a population
in which non-sputum based diagnostics are strongly needed; iii)
Inability to cross-validate the identified proteomic signature due
to the lack of comparable samples from other cohorts. Although
host-response-based diagnostics are believed to be less
dependent on bacterial load, an obvious advantage for TB
diagnosis, it is unclear if these tools can be further optimized
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to meet the WHO target for a universally applicable POC test.
With the increasing number of blood-based signatures for TB
diagnosis being proposed, it is crucial to pool data across cohorts’
diverse in geographic, genetic, demographic and endemic
characteristics in order to diminish time and costs for POC
test evaluation with regard to the WHO TPP, and subsequent
validation prior to translation to clinical practice.
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