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Chronic exposure to high circulating levels of glucocorticoids has detrimental effects
on health, including metabolic abnormalities, as exemplified in Cushing’s syndrome
(CS). Magnetic resonance imaging (MRI) studies have found volumetric changes in
gray and white matter of the brain in CS patients during the course of active
disease, but also in remission. In order to explore this further, we performed
MRI-based brain volumetric analyses in the AdKO mouse model for CS, which
presents its key traits. AdKO mice had reduced relative volumes in several brain
regions, including the corpus callosum and cortical areas. The medial amygdala,
bed nucleus of the stria terminalis, and hypothalamus were increased in relative
volume. Furthermore, we found a lower immunoreactivity of myelin basic protein (MBP,
an oligodendrocyte marker) in several brain regions but a paradoxically increased
MBP signal in the male cingulate cortex. We also observed a decrease in the
expression of glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes) and
ionized calcium-binding adapter molecule 1 (IBA1, a marker for activated microglia)
in the cingulate regions of the anterior corpus callosum and the hippocampus.
We conclude that long-term hypercorticosteronemia induced brain region-specific
changes that might include aberrant myelination and a degree of white matter
damage, as both repair (GFAP) and immune (IBA1) responses are decreased.
These findings suggest a cause for the changes observed in the brains of human
patients and serve as a background for further exploration of their subcellular and
molecular mechanisms.

Keywords: glucocorticoid, glia, myelin basic protein, glial fibrillary acidic protein, ionized calcium binding adaptor
molecule 1
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INTRODUCTION

Glucocorticoid hormones (GCs) are mediators of the response to
stress, a state following real or perceived threat to homeostasis
(Smith and Vale, 2006). GCs act throughout the body via
the widely expressed glucocorticoid receptor (GR) and the
mineralocorticoid receptor (MR) (Pujols et al., 2002). GC
binding to its receptors results in a wide array of genomic and
non-genomic signaling changes at the cellular level (Kadmiel
and Cidlowski, 2013). A major aspect of GR-mediated effects
concerns its metabolic effects on carbohydrate, lipid, and protein
metabolism (from their action on liver, adipose tissue, and
muscle), which in the long term predispose for obesity and
metabolic syndrome. Chronic exposure to high levels of GCs
increases visceral adipose tissue (Debono et al., 2013) and
upregulates the expression of lipogenic pathway genes (Hochberg
et al., 2015). Accordingly, central obesity and dyslipidemia are
very common signs in Cushing’s syndrome (CS) patients, a
disorder caused by prolonged exposure to excess GCs (Angeli
et al., 1997; Garrapa et al., 2001; Sharma et al., 2015). By screening
populations of patients with simple obesity, prevalence rates of
CS might be as high as 9% (Tiryakioglu et al., 2010).

GCs also affect brain function. The effects on peripheral
energy metabolism and immunity alone may already do
this (Koorneef et al., 2018), but MR and GR are also
widely (but differentially) expressed in neurons and other cell
populations in the brain. Cortisol affects a wide range of brain
processes, including food intake (mirroring peripheral effects on
metabolism), cognition, emotion, and autonomic responses. The
effects may involve biochemical and structural changes (de Kloet
et al., 2005). The study of GC actions in the brain has served
to illustrate two closely related concepts: (1) The effects of GC
can be adaptive or deleterious, and (2) cellular responses to GCs
are different depending on the duration of exposure (acute vs
chronic) (McEwen et al., 2015). These two concepts are also
illustrated clinically by changes in the brain of CS patients.

Cushing’s syndrome patients in active disease have been
reported to present with smaller hippocampal volumes
(Starkman et al., 1992), larger ventricular diameters, and
cerebral atrophy (Simmons et al., 2000; Bourdeau et al., 2002).
Strikingly, patients in long-term remission present smaller
volumes in total gray matter (Resmini et al., 2012), particularly
in the anterior cingulate cortex (Andela et al., 2013), as well
as decreased cortical thickness (Crespo et al., 2014; Bauduin
et al., 2020). Changes are not limited to gray matter though, as
these patients also present significant reductions in white matter
integrity (van der Werff et al., 2014).

Recently, we developed mouse models of endogenous CS: the
AdKO mice, which carry an inactivating deletion of the gene
encoding the regulatory subunit 1 alpha of the PKA, specifically
targeted to the adrenal cortex. These mice present adrenal
hyperplasia, chronic hypercorticosteronemia, lack of negative
feedback after exogenous GCs, and even fat accumulation in the
back of the neck (“buffalo hump”), which is one of the most
visible signs in CS patients (Sahut-Barnola et al., 2010; Drelon
et al., 2016; Dumontet et al., 2018). Here, we used brain magnetic
resonance imaging (MRI) in order to find whether the changes

observed in human patients were mirrored in our mice. We
also performed immunohistochemical staining of glial cells in an
attempt to explore the origins of such changes.

MATERIALS AND METHODS

Mice
All animal work was conducted according to French and
European directives for use and care of animals for research
purposes and received approval from the French Ministry of
Higher Education, Research and Innovation (APAFIS#21153-
2019061912044646 v3). The Sf1-Cre (Cre expression in all
steroidogenic cells of the adrenal cortex from its inception)
(Bingham et al., 2006) and Prkar1afl/f l (floxed allele of Prakar1a
that allows Cre-mediated inactivation of R1α subunit and
subsequent constitutive activation of PKA catalytic activity;
Kirschner et al., 2005) were used as breeders. Mice were all
maintained and bred on a mixed background. Throughout the
manuscript, AdKO2.0 refers to Sf1-Cre::Prkar1afl/fl, and WT
refers to littermate control animals. ACTH-independent CS
features of mice bearing R1α inactivation in the adrenal cortex
using various Cre-expressing lines were previously described
(Sahut-Barnola et al., 2010; Drelon et al., 2016; Dumontet et al.,
2018). AdKO2.0 mice were used here because of their more severe
CS phenotype compared to the original AdKO line that used the
Akr1b7 Cre driver (Sahut-Barnola et al., 2010). Mice from both
sexes were analyzed at 8–10 weeks of age (n = 6 for males, n = 6
for females). Femur length was measured for a subset of the mice
(n = 3 for male, n = 4 for females).

Magnetic Resonance Imaging
Mice were anesthetized with 2% isoflurane and perfused for
1 min with 1 × phosphate-buffered saline (PBS) and for
4 min with 4% paraformaldehyde (PFA). The skull was freed
from the skin and fat tissue and stored in 4% PFA overnight
and then transferred to 4% PFA + 1:40 v/v gadoteric acid
0.5 mmol/ml (Dotarem, Guerbet, France) at 4◦C for 3 weeks.
Then they were transferred to a solution of 1 × PBS, 1:40
v/v Dotarem, and 0.01% sodium azide, and after 2 days, an
MRI scan was acquired. MRI acquisitions were performed on
a 9.4-T Bruker magnet (Bruker, Germany). The magnet was
equipped with a 15-mm microimaging radiofrequency (RF) coil
and maximum gradients up to 1.5 T m−1 along the three
axes. The fixed brain was introduced inside a flat-bottom 15-
mm NMR tube (Hilgenberg, Germany), and Fomblin R© (Sigma-
Aldrich, France), a perfluorinated polyether, was added to limit
the magnetic susceptibility at the interfaces without generating
any NMR signal. 2D fast low-angle shot (FLASH) acquisition
pilot scans were performed in three planes: axial, sagittal, and
coronal. A whole-brain image was acquired based on a 3D-
FLASH protocol. The echo and repetition times were set to 5.3
and 15.0 ms, respectively. The flip angle was 30◦ with a bandwidth
of 3 kHz. The field of view (FOV), covering the whole brain, was
16 mm × 14 mm × 15 mm with a matrix of 320 × 280 × 300
points, leading to an isotropic resolution of 50 µm. Eight
averages were performed, leading to an experimental time of
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FIGURE 1 | Differences in brain volumes in AdKO2.0 mice. (A) Coronal MRI slices showing significant differences (FDR 1%) in absolute volume between AdKO2.0

mice and age-matched controls. M: male, F: female. The images show coronal MRI slices with the level of significance superimposed. Positive t-statistics are shown
in red and indicate absolute volume decreases in AdKO2.0 mice compared to controls. Negative values are shown in blue and indicate an increase of absolute
volume compared to controls. (B) Absolute whole-brain volumes. (C) Femur lengths for a subgroup of mice. Black dots: wild type. Gray squares: AdKO2.0.
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FIGURE 2 | Relative volumes of brain areas and regions, compared with
two-way ANOVA. (A–D) Areas with smaller relative brain volumes in the
AdKO2.0 mice. (E–G) Areas with bigger relative brain volumes in the AdKO2.0

mice. (H) CA1 s. radiatum as representative for the hippocampus. S2:
secondary somatosensory cortex; BNST: bed nucleus of the stria terminalis;
CA1: cornu ammonis 1. S, G, and S × G: p value of the source of variation
(sex, genotype, and interaction, respectively). Black dots: wild type. Gray
squares: AdKO2.0. AU, arbitrary units.

around 2 h and 50 min. One MRI data set (WT male) was
excluded from further MRI analysis due to the presence of
imaging artifacts.

The MRI scans were linearly (six parameters followed by
12 parameters) and subsequently nonlinearly registered using
a combination of mni_autoreg tools (Collins et al., 1994) and
advanced normalization tools (ANTs; Avants et al., 2008, 2011),
resulting in unbiased alignment of all scans. A population atlas
was created by resampling all MRI scans with the appropriate
transform and by averaging the scans. Regional measurements
were calculated by registering a preexisting classified MRI
atlas on to the population atlas, which parcellated the brain
into a volumetric measurement of 182 different brain regions
(Dorr et al., 2008; Richards et al., 2011; Ullmann et al., 2013;
Steadman et al., 2014). Subsequently, the deformation of the
individual brains to the final atlas space was calculated and
analyzed (Nieman et al., 2006) using the Jacobian determinant
for each voxel between the genotypes. All statistical analyses
were performed in R. We ran a linear model separately for
each sex including genotype as contrast. Multiple comparisons
were controlled for by using the false discovery rate (FDR) at a
stringent setting of 1% (Genovese et al., 2002). FDR limits the
expected number of false positives in a set of results to a certain
predetermined percentage. For example, if a result is considered
significant at a 1% FDR, this means that no more than 1% of the
results would be expected to be a false positive. The entire pipeline
was made available by the Mouse Imaging Centre in Toronto
(1Lerch et al., 2017).

Immunohistochemistry
Brains were frozen and cut in a cryostat, and 12-µm sections
were collected directly on glass slides, at coordinates Bregma
1.10 (anterior brain) and -1.82 (hippocampus), according to the
Paxinos and Franklin Mouse Brain Atlas (Paxinos and Franklin,
2001). Glass slides were washed in PBS+ Tween 20 0.3% (PBST),
3 min × 5 min. After washing, they were boiled in citrate buffer
(Sigma) for 20 min and cooled in ice to room temperature.
Slides were then washed again in PBST, 3 min × 5 min, and
then incubated in PBST + 2% goat serum (Sigma) (PBSTG)
at room temperature for 90 min. Sections were then incubated
with antibodies for MBP (MAB386, Merck Millipore; 1:1,000),
GFAP (PA1239, Boster Bio, 1:200), or Iba1 (019-19741, Wako
Chemical, 1:1,000) diluted in PBSTG, overnight at 4◦C. The
sections were washed in PBST, 3 min × 5 min, and incubated
in H2O2 3% for 30 min. After another wash in PBST, slides
were incubated with ImpressTM HRP anti-rat (MBP; Vector
Labs) or EnVision+ system HRP anti-rabbit (GFAP and Iba1;
Dako) for 45 min. After this, they were washed once again
in PBST for 3 min × 5 min and colored with NovaREDTM

solution (Vector Labs). After 7 min, reaction was stopped by
adding excess deionized water. Slides were air-dried and mounted
with coverslips using Histomount R© (National Diagnostics). Due
to long-term immersion in fixative supplemented with contrast
medium, an elevated level of background was obtained. Digital
images of selected fields were acquired in an Olympus microscope
equipped with an Olympus digital camera connected to a Dell
OptiPlex PC and were displayed using cellSens Standard 1.14
software (Olympus). A 10× objective was used. Digital images

1https://github.com/Mouse-Imaging-Centre
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FIGURE 3 | Localization of the areas that were analyzed for immunohistochemical staining. (A,B) Indications of the regions of interest (ROIs) in the corresponding
levels of the Paxinos atlas for the anterior brain (Bregma 0.98–0.86 mm), and dorsal hippocampus (Bregma -1.82 to -1.94) (Reprinted with permission by Elsevier
Ltd.). (C,D) orresponding MR images, with smaller volumes indicated in color. Cg1, cingulate cortex 1; Cg2, cingulate cortex 2; CC (lp), corpus callosum
lateroproximal; CC (m), corpus callosum medial; S2, secondary somatosensory cortex; CA1, cornu ammonis 1; CA3, cornu ammonis 3.

were then analyzed with ImageJ. In order to bypass the high
amount of background in our images, we devised a method of
signal quantification. Briefly, images were transformed from RGB
to 8 bit, with a resolution of 2,560 × 1,920 pixels, and mean,
median, mode, and standard deviation of the gray values in
the entire picture were obtained. With these values, the signal
threshold for each picture was determined by subtracting a fixed
amount of standard deviations from the mode of the entire
picture, which represents the background staining. The number
of standard deviations was kept constant within the entire series
of pictures for each antibody (2 for MBP, 2.5 for GFAP, and 3
for Iba1). The amount of positive signal marked by the threshold
was expressed as the percentage area of total ROI and compared
with two-way ANOVA with sex and genotype as factors. In GFAP
and Iba1, we estimated the total number of cells, by counting the
number of objects (cell bodies) above 250 pixels (∼20 µm2). The
threshold for a significant effect was set at p < 0.05. Each animal
from each subgroup contributed with only one section per brain
area for this analysis.

RESULTS

Magnetic Resonance Imaging
To assess whether a CS phenotype results in neuroanatomical
changes, we scanned ex vivo brain samples using high-resolution
MRI. We observed volumetric differences that were widespread
over the brain, including both gray and white matter areas
(Figure 1A), with prominent differences, particularly in the
corpus callosum and large parts of the cortex. Looking at
absolute volumes, we found a significantly reduced brain size in
males, with a trend toward significance in females (Figure 1B).
For a subgroup of animals, the femur length was measured,
showing a significantly smaller value in the transgenic animals
(Figure 1C), indicating that the large difference in brain volume
between WT and transgenic mice may be due to generalized
growth retardation and not brain specific. Therefore, we also
normalized the segmented structures for the whole-brain volume.
Relative volume differences were then apparent for a number
of brain regions. Supplementary Table 1 provides an overview
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FIGURE 4 | Staining and quantification of MBP at the anterior level. Numbered polygons in stained sections indicate neuroanatomical parcellations. (A–D) In the
cingulate cortex (Cg), AdKO2.0 mice had a male-specific increase in MBP-positive area compared to WT mice. (E,F) In the somatosensory cortex (S2), there was a
reduction in MBP-immunopositive area in AdKO2.0 mice of both sexes. S, G, and S × G: p value of the source of variation (sex, genotype, and interaction,
respectively). Black dots: wild type. Gray squares: AdKO2.0.

of all brain structures with differential relative volumes and
uncorrected significance level. A list of all segmented structures
with absolute and relative volumes and uncorrected p-values is
given in Supplementary Table 2.

After FDR correction for multiple comparisons, the corpus
callosum showed a robust significant difference in males, with a
significantly smaller relative volume in AdKO2.0 males than in
WT males (Figure 2A). Lower volumes were also observed in
frontal cortical areas, independent of sex, as well as cerebellar
white matter (Figures 2B–D). In contrast, the bed nucleus of the
stria terminalis, hypothalamus, and medial amygdala were found
to be larger in AdKO2.0 mice brain (Figures 2E–G). Finally,
no hippocampal structures differed in relative volumes between
genotypes; although the CA1 stratum radiatum appeared larger
in male AdKO2.0 mice compared to WT male counterparts in
the pairwise comparisons available in the MRI pipeline. However,
subsequent two-way ANOVA showed no significant effects for
factors sex and genotype or their interaction (Figure 2H).

Immunohistochemistry
Figures 2, 3 show the relative volumetric differences between
the brain structures that were chosen for immunohistochemistry,
selected on prior data in active disease (hippocampus) (Starkman
et al., 1992, 1999; Burkhardt et al., 2015), long-lasting effects in

CD patients (Cg) (Andela et al., 2013), and reduced volumes in
the present MRI analysis (S2). As mentioned before, we obtained
a high level of background in our preparations due to long-
term immersion in fixative supplemented with contrast medium,
which we corrected for by using our thresholding method.
MBP as a marker for oligodendrocyte function showed a main
effect for genotype in cingulate cortex areas (Cg1 p = 0.043,
Cg2 p = 0.005), indicating increased immunoreactivity in the
AdKO2.0 mice. For the Cg1 area, this effect was male specific
(interaction effect p = 0.015). This interaction between sex
and genotype was present at the trend level of the Cg2 area
(p < 0.1) (Figure 4). At the hippocampal level, however, there
was decreased MBP immunoreactivity in the CA1 and CA3
fields (CA1: s. oriens p = 0.005, s. pyramidalis p = 0.033, s.
radiatum p = 0.014; CA3: s. lucidum p = 0.048, s. radiatum
p = 0.012) (Figure 5). At this frontocaudal level, a decrease
of MBP signal in AdKO2.0 mice was also observed in the S2
cortex (main effect p < 0.001) (Figure 5). MBP signal showed
a main effect of sex in the hippocampal CA3 area (CA1: s.
moleculare p = 0.047; CA3: s. radiatum p = 0.003, s. moleculare
p = 0.001) and S2 cortical area (area 3 p = 0.023), reflecting higher
immunoreactivity in female mice. Overall, at the hippocampal
level and somatosensory cortex, MBP immunohistochemistry
was reduced in AdKO2.0 mice, while in the cingulate cortex, there

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 604103

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-604103 February 9, 2021 Time: 11:51 # 7

Amaya et al. Long-Term Corticosteroid in Brain

FIGURE 5 | Expression of MBP in the dorsal hippocampus. Coded polygons in stained sections indicate neuroanatomical parcellations. (A,C–E) In CA1, AdKO2.0

mice showed a decrease in MBP-positive areas in both sexes in oriens (O) and radiatum (R) strata and a male-specific decrease in the pyramidal layer, compared to
WT mice. (B,F) In CA3, AdKO2.0 mice showed a decrease compared to WT mice in expression in both sexes in the s. radiatum. (G,H) In the s. moleculare (M) and s.
lucidum (L), a female-specific decrease was shown. S, G, and S × G: p value of the source of variation (sex, genotype, and interaction, respectively). Black dots: wild
type. Gray squares: AdKO2.0.

was a male-specific increase. All significant effects are listed in
Supplementary Table 3A.

GFAP immunohistochemistry was used as a reactive astrocytic
marker. Two-way ANOVA tests showed a main effect of

genotype, reflecting a decrease of immunoreactivity in the
AdKO2.0 mice throughout the brain regions. This was found in
the corpus callosum (p = 0.036) and in the hippocampal CA1
(s. radiatum p = 0.014) and dentate gyrus (DG; granular layer
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FIGURE 6 | Expression of GFAP in the corpus callosum (A), hippocampal CA1 area (B), and DG (C). Coded polygons in stained sections indicate neuroanatomical
parcellations. In the three regions, reduced immunostaining in the AdKO2.0 mice of both sexes was observed compared to that in WT mice (D–F). S, G, and S × G:
p value of the source of variation (sex, genotype, and interaction, respectively). Black dots: wild type. Gray squares: AdKO2.0.

p = 0.015) (Figure 6). Also, a main effect of sex was found
in CA1 (s. moleculare p < 0.001), CA3 (p = 0.030), and DG
(granular layer p = 0.034), which indicates a higher expression
in females. The number of GFAP-positive cells was not different
between genotypes (Supplementary Table 4A). Overall, in both
frontocaudal levels, GFAP staining was diminished in ADKO2.0
mice. All significant effects are listed in Supplementary Table 3B.

Microglial activity was assessed by means of Iba1
immunohistochemistry. Two-way ANOVA showed that Iba1
immunoreactivity in the anterior brain of the AdKO2.0 mice was
significantly decreased in the corpus callosum (medial p = 0.001,
lateroproximal p = 0.003, cingulate p = 0.017) (Figure 7).
Likewise, at the hippocampal level, decreases were also observed
in CA3 (s. moleculare p = 0.033) and DG (polymorph p = 0.040)
(Figure 8) in AdKO2.0 mouse brains. There were no effects
of sex or interaction. In the corpus callosum, we observed a
reduced total number of Iba1-positive cells (Supplementary
Table 4B). Overall, in both frontocaudal levels, Iba1 staining was
diminished in ADKO2.0 mice. All significant effects are listed in
Supplementary Table 3C.

DISCUSSION

The present study used ADKO2.0 mice to study the consequences
of long-term GC exposure for the brain. The AdKO2.0 mice

had decreased relative volumes in a number of anterior cortical
brain structures (cingulate cortex and somatosensory cortex) and
in a number of white matter structures (corpus callosum, but
also cerebellar white matter tracts). In contrast, we observed
higher relative volumes in the medial amygdala, BNST, and
hypothalamus. Markers for non-neuronal cell types showed that
there were bidirectional effects on MBP, that is, a male-specific
increase in immunoreactive area in the cingulate cortex and a
sex-independent decrease in the somatosensory cortex and the
hippocampus. Activated astrocyte and microglial markers GFAP
and Iba1 were suppressed at both the anterior and hippocampal
levels independent of sex.

Our analysis was based in one section per brain area per
animal. This may increase technical variation, which would
increase the chance of a false-negative result. For most markers,
data provided clear indication of widespread changes, and
we may underestimate the number of brain areas in which
they might occur.

The volumetric changes found in the AdKO2.0 mouse brains
were extensive and widespread. In principle, the whole-brain
volume reduction reflects previous findings in human studies
during active CS. Both pediatric and adult CS patients have a
decrease of total brain volume (Bourdeau et al., 2002; Merke et al.,
2005). In the analysis of individual brain areas, our results are
in line with human studies that found changes in cerebellum
and cortex volumes (including insular and cingulate regions) but
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FIGURE 7 | Expression of Iba1 in the corpus callosum (medial and lateroproximal) (A,B). Coded polygons in stained sections indicate neuroanatomical parcellations.
In medial and lateroproximal (lp) areas, a decrease in expression in AdKO2.0 mice compared to that in WT mice was observed (C,D). In the cingulum (cng), there was
a male-specific decrease in the AdKO2.0 mice (E). S, G, and S × G: p value of the source of variation (sex, genotype, and interaction, respectively). Black dots: wild
type. Gray squares: AdKO2.0.

found no effects when measuring the hippocampus or amygdala
(Merke et al., 2005; Santos et al., 2014; Jiang et al., 2017a,b;
Hou et al., 2020). However, other studies reported decreases in
hippocampal volume (Starkman et al., 1992, 1999; Burkhardt
et al., 2015), and this was also observed after chronic exogenous
GC exposure (Zhang et al., 2015). In the AdKO2.0 brains,
volumetric decreases were prominent in white matter areas, such
as the corpus callosum and cingulate cingulum. In human studies,
patients show smaller absolute volumes of white matter (Jiang
et al., 2019; Tirosh et al., 2020), as well as reduced fractional
anisotropy and increased mean diffusivity, which indicate white
matter deterioration (Pires et al., 2015).

The overall parallels between the data from human imaging
studies and ours indicated that the AdKO2.0 is an adequate model
of CS effects on the brain and opened the opportunity to study
the origins of such changes in further detail. It was particularly
interesting that the corpus callosum was smaller than in wild-
type mice, because this region has been described to still be

affected in long-term remission (Andela et al., 2013; van der
Werff et al., 2014). We decided therefore to focus our analyses
on glial cells in areas that showed reduced relative volumes. We
also included the hippocampus, given the extensive literature on
its response to GCs.

We observed a decrease in MBP expression in the
hippocampus, which may relate to the long-term loss of
white matter integrity in remitted CS patients. We did not
acquire diffusion tensor imaging (DTI) data in our mice;
thus, a direct comparison is not possible. A body of literature
suggests inhibiting effects of GCs on oligodendrocyte function
and proliferation (Miguel-Hidalgo et al., 2019; hippocampus
and pyriform cortex) and white matter (Dunlop et al., 1997;
Alonso, 2000; Quinlivan et al., 2000). Work in multiple sclerosis
models also supports negative effects of GCs on MBP expression
and white matter (Sieve et al., 2004; Chari et al., 2006). The
reduced MBP expression seems a logical correlation to the
reduced white matter volume in the MRI data of our mice.
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FIGURE 8 | Expression of Iba1 in the hippocampal CA3 (A) and DG (B). Coded polygons in stained sections indicate neuroanatomical parcellations. In the stratum
moleculare (M) of CA3, AdKO2.0 of both sexes showed a decrease in expression, compared to WT mice (C). In the polymorph (Po) layer of DG, there is a
female-specific decrease in AdKO2.0 mice (D). Data were analyzed by two-way ANOVA, α: 0.05. S, G, and S × G: p value of the source of variation (sex, genotype,
and interaction, respectively). Black dots: wild type. Gray squares: AdKO2.0.

However, the literature also reports protective effects of GCs,
mainly in oligodendrocyte cultures (Kumar et al., 1989; Byravan
and Campagnoni, 1994; Lee et al., 2008; Xu et al., 2009).
A protective role was also observed in in vivo settings (Raschke
et al., 2008; Sun et al., 2010). The contradictory literature on
GC effects on MBP expression may reflect a biphasic effect,
with low doses stimulating and high doses being detrimental
(Almazan et al., 1986).

MBP immunoreactivity was higher in parts of the prefrontal
cortex of AdKO2.0 mice, in apparent contrast with the lower
volume observed in both active and remitted patients (Andela
et al., 2013; Hou et al., 2020), as well as in our mice. The
increased MBP immunoreactive surface area in conjunction with
lower volume might be due to a different myelin organization,
perhaps a more open myelin conformation (“loose myelin”).
In fact, it has been observed that myelin lamellae fail to
associate and compact after chronic GC treatment (7 days) in
rats (Chari, 2014). Overall, our data suggest that in the mouse

brain, this cingulate cortex has a particular sensitivity to long-
term GC exposure.

The decrease in expression of GFAP is also in line with
previous reports on the effects of GCs on astrocytes. It has
been shown in other studies that GCs, e.g., corticosterone
and dexamethasone, decreased cell viability and proliferation
in astrocyte cultures and GFAP expression in vivo (Unemura
et al., 2012; Guo et al., 2013; Zhang et al., 2015; Freitas et al.,
2016). Similarly, chronic stress has been shown to decrease
astrocytic cell size, count, and process length in the hippocampus
and prelimbic cortex (Czeh et al., 2006; Banasr and Duman,
2008). Chronic stress also decreased expression of GFAP in
the hippocampus and brainstem (Ye et al., 2011; Imbe et al.,
2013; Lou et al., 2018). However, in some experimental settings,
stressors and GCs led to increased astrocyte activation, in a GR-
dependent manner (Revsin et al., 2009; Shields et al., 2012; Zia
et al., 2015; Huet-Bello et al., 2017). It is well-known that GC
effects can be context dependent (Meijer et al., 2019). Our data
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are in line with the notion that in the adult brain, in the absence
of overt stressors or pathology, GCs suppress astrocyte activity.

Microglial immunoreactivity was clearly lower in the AdKO2.0
mice, an effect that is in line with a general immunosuppressive
effects of chronically elevated GCs. In agreement with our
data, previous works have described that microglia shrink and
stop proliferating when corticosterone is added to microglial
cultures (Tanaka et al., 1997; van Olst et al., 2018). Cell
viability was compromised due to a cytotoxic effect of GCs,
and this effect could be blocked by mifepristone (Nakatani
et al., 2012; Cerqueira et al., 2013). Chronic corticosterone
administration induces retraction of microglial processes in the
hippocampus of mice (Park et al., 2011; Freitas et al., 2016),
and adrenalectomy greatly increases microglial activation in the
hippocampus and hypothalamus after acute stress; this response
is ablated by exogenous corticosterone administration in rats
(Sugama et al., 2013). In models of neuronal damage, the same
trend has been observed for synthetic GCs (methylprednisolone
and triamcinolone) (Schroter et al., 2009; Li et al., 2011).

A number of reports, however, described different effects. GCs
may potentiate microglial responses via a priming mechanism,
concomitant with an increase of Iba1 but suppression of cytokine
production (Frank et al., 2014). Moreover, chronic restraint
stress paradigms increased Iba1 immunoreactivity in various
areas of the brain, including the anterior cingulate cortex and
hippocampus (Tynan et al., 2010; Hinwood et al., 2012) and
stimulated microglial process lengthening and branching out
(Hinwood et al., 2013). However, this effect was observed only
in large cells, and there might be a timing factor involved,
as it has been also observed that induction of microglial
proliferation by stress is time limited (Nair and Bonneau,
2006). The conflicting data may be resolved by taking time of
exposure into account, since some studies showed stimulatory
effect of short-term exposure but inhibitory effects of long-
term exposure (Kreisel et al., 2014; Winkler et al., 2017).
Our mutant mouse data are compatible with the latter, as
they had been exposed to chronic hypercorticosteronemia (8–
10 weeks).

The diversity of effects of GCs and stress on brain volume
and on cell morphology might be related to age, duration
of treatment, sex, stress context, or type of GC molecule, as
synthetic GCs may differ from endogenous steroids in some
of their effects (Meijer and de Kloet, 2017). Our model closely
resembles the conditions of endogenous GC excess in humans in
terms of physiological traits and, particularly, the time course of
the endocrine imbalance. It remains to be determined to what
extent the observed effects depend on direct activation of brain
GRs and to what extent the context of, for example, changed
metabolism-related factors contributes to the observed effects, as
it is known that GR activity is also influenced by its association
to (tissue-specific) coregulators and other transcription factors
(Spaanderman et al., 2018; Viho et al., 2019). Thus, further studies
are necessary to identify specific transcriptional changes that are
associated with, and perhaps causal for, the changes in brain
morphology that are apparent in these mice.

The present work is, to our knowledge, the first translational
study to assess brain volumetric differences together with

alterations in glial cell markers. In both aspects, we found
significant changes in the selected brain regions. The
hippocampus and prefrontal cortex are key regions in the
brain for cognitive processing and integration, respectively.
In human studies in CS patients both with active disease and
in remission, various degrees of cognitive deficit are found.
Cognitive performance has been related to myelin integrity,
particularly in the hippocampus and prefrontal cortex (Nickel
and Gu, 2018). In a similar manner, microglial morphological
changes in the prefrontal cortex have been reported in obesity-
related cognitive impaired rats (Bocarsly et al., 2015). We
consider that our present results provide an opportunity to
contribute to the study of participation of glial cells in cognition;
thus, in the future, a number of neurobehavioral assays should be
tested in the AdKO mice.
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