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Abstract
In acute stroke care two proven reperfusion treatments exist: (1) a blood thinner and (2) an interventional procedure. The
interventional procedure can only be given in a stroke centre with specialized facilities. Rapid initiation of either is key
to improving the functional outcome (often emphasized by the common phrase in acute stroke care “time=brain”). Delays
between the moment the ambulance is called and the initiation of one or both reperfusion treatment(s) should therefore be
as short as possible. The speed of the process strongly depends on five factors: patient location, regional patient allocation
by emergency medical services (EMS), travel times of EMS, treatment locations, and in-hospital delays. Regional patient
allocation by EMS and treatment locations are sub-optimally configured in daily practice. Our aim is to construct a
mathematical model for the joint decision of treatment locations and allocation of acute stroke patients in a region, such that
the time until treatment is minimized. We describe acute stroke care as a multi-flow two-level hierarchical facility location
problem and the model is formulated as a mixed integer linear program. The objective of the model is the minimization of
the total time until treatment in a region and it incorporates volume-dependent in-hospital delays. The resulting model is
used to gain insight in the performance of practically oriented patient allocation protocols, used by EMS. We observe that
the protocol of directly driving to the nearest stroke centre with special facilities (i.e., the mothership protocol) performs
closest to optimal, with an average total time delay that is 3.9% above optimal. Driving to the nearest regional stroke centre
(i.e., the drip-and-ship protocol) is on average 8.6% worse than optimal. However, drip-and-ship performs better than the
mothership protocol in rural areas and when a small fraction of the population (at most 30%) requires the second procedure,
assuming sufficient patient volumes per stroke centre. In the experiments, the time until treatment using the optimal model
is reduced by at most 18.9 minutes per treated patient. In economical terms, assuming 150 interventional procedures per
year, the value of medical intervention in acute stroke can be improved upon up to e 1,800,000 per year.
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over drip-and-ship and time until treatment can
be reduced by at most 18.9 minutes per treated
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1 Introduction

Fast treatment of acute stroke is paramount and increases
the prospects of good clinical outcome [1–8]. The passing
of time is the most pivotal factor limiting clinical efficacy.
For example, for every 15 minute delay to treatment, the
chances of independent ambulation substantially decreases
and 1 month of disability-free life is lost [9]. Two options
are available to treat acute stroke, depending on patient
characteristics. Both treatments aim to re-establish blood
flow to the brain. The first is intravenous thrombolysis
treatment (IVT) for which the majority of patients are
eligible, but IVT is only effective within 4.5 hours from
onset of stroke. The second is intra-arterial thrombectomy
(IAT), which is a relatively new treatment option only
applicable to a subset of selected ischemic stroke patients
(4.5% according to Dutch Acute Stroke Audit), but can be
applied up to 24 hours after symptom start. Importantly,
in clinical practice, IAT is administered on top of IVT in
approximately 21% of the IVT treated patients, but this
percentage is increasing [19]. Moreover, of IAT treated
patients, over 90% were first treated with IVT [25].

Whereas IVT is a treatment option available in most
hospitals, so-called primary stroke centres (PSC’s), IAT is
only available in so-called comprehensive stroke centres
(CSC’s). In general, most regions possess a plurality of
PSCs, but only a few CSCs, since the latter requires
elaborate treatment techniques and specialized personnel.
Patient allocation by emergency medical services (EMS)
would ideally be based on IAT eligibility, but this requires
in-hospital assessment. This means IAT eligibility can only
be assessed at a centre and not at the patient location. It is
therefore key to determine appropriate CSC locations on the
regional level (i.e., decide which stroke centres are going to
administer IAT for their area).

The following five factors influence the regional time
delays in acute stroke care: (1) patient location; (2)
regional patient allocation (i.e., regional allocation protocol
prescribing to which type of stroke centre a suspected stroke
patient is allocated by the EMS); (3) travel times of EMS;
(4) PSC and CSC locations; and (5) in-hospital delays. It is
not possible to influence the patient location, but the other
factors can be controlled to some extent.
The focus of this paper is on the second and fourth
factor, respectively, the patient allocation protocol and the
PSC/CSC locations. These two factors also influence the
other two controllable factors, namely the EMS travel
times and in-hospital delays. Increased patient load in a
stroke centre improves in-hospital logistics and typically
leads to shorter delays in stroke care [14, 29–31]. In-
hospital delays can thus be controlled to an extent through
the clever allocation of patients. Currently, unsubstantiated
decisions regarding regional patient allocation and PSC

and CSC locations are prevalent. A model-based method
of organizing acute stroke care therefore offers great
opportunities for reducing time delays until start treatment.

In clinical practice, two different patient allocation
protocols are in use: drip-and-ship and mothership [17, 18,
28]. In the drip-and-ship protocol, suspected stroke patients
are always allocated to the nearest stroke centre (either PSC
or CSC) in order to initiate IVT as soon as possible. If a
patient admitted to a PSC appears IAT eligible, subsequent
allocation to a CSC follows. In general, this protocol results
in short delays before IVT, but longer delays to IAT due
to inter-hospital transportation. In the mothership protocol,
suspected stroke patients are allocated directly to a CSC,
often bypassing a PSC. In general, this protocol results in
short delays before IAT, but relatively longer delays before
IVT due to longer transportation times between patient
location and CSC, compared to the shorter allocation time
to a PSC. Essentially, neither protocol is optimal for a
given region. The optimal protocol for a certain region may
show elements of both the mothership and the drip-and-
ship protocols, but may also use another allocation (e.g.
allocate some demand to a PSC on the route to a CSC). The
optimal allocation follows from the optimization model as
introduced in Section 4.

Next to the allocation protocol, a strategic decision is the
determination of which stroke centre should only administer
IVT (i.e. become a PSC) and which should also administer
IAT (i.e. become a CSC). To guarantee a certain degree of
expertise at a CSC, a lower bound on the number of acute
stroke patients offered at a location is required. In addition,
the volume of acute stroke patients affects in-hospital delay
[14, 29–31]. As IAT becomes a more familiar treatment
option, this is an opportune moment to make well-founded
strategic location decisions for PSCs and CSCs.

In the current paper, we propose a mathematical
optimization model upon which to base the allocation
protocol and PSC and CSC locations to minimize regional
time delays, taking the impact of patient volume on in-
hospital delays into account. The model is formulated as
a mixed integer linear program (MILP) and solved using
CPLEX. We also compare our optimized patient allocation
protocol with drip-and-ship and mothership protocols,
providing insight in the differences in performance. This
research focuses on reducing delays to treatment initiation
for the patient.

We see that the relative performance of mothership and
drip-and-ship strongly depends on the region (population
densities, stroke centre locations) as well as treatment-
related parameters. As a rule of thumb, we observe the
following: mothership performs well in urban areas and in
regions where the CSCs are centrally located. Also, we see
that mothership typically shows near-optimal performance
when the fraction of IAT eligibility exceeds 50%. Vice
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versa, drip-and-ship performs well in rural areas and
fractions of IAT eligibility of 30% or smaller, assuming that
the patient volume per stroke centre is sufficiently large.

There are two related areas of existing literature. The
first area stems from the clinical domain for strokes. For
instance, [16, 20] assess eligibility of IAT through clinical
trials. More closely related are [15] and [17]. The paper [15]
considers some scenarios for patient allocation based on
clinical data, whereas [17] analyzes the difference between
the drip-and-ship and mothership protocols based on current
locations and allocation characteristics.

The second area of related work concerns the area
of facility locations problems. There is a long history
on location problems and a sizeable amount of literature
by now. We refer to the book [40] for an overview of
location problems in general, including some optimization
models. The book contains a chapter dedicated to location
problems in health care [39]; we also refer to [12] for
a survey on health care facility location problems. In the
drip-and-ship protocol, patient are allocated to the nearest
stroke centre. The studies [41, 42] also consider health care
settings that incorporate closest assignment constraints in
the optimization model.

Another branch of literature takes congestion into
account for facility location problems and the allocation of
clients to resources. The allocation prescribes the arrival
rates at locations, giving rise to queueing phenomena
[43]. Such models lead to non-linear optimization models,
which are optimized using heuristics in [44, 45]. In
[46, 47] the goal is to minimize travel times plus
waiting times in a health care network, where the
waiting times follow from queueing expressions; the
authors exploit an MILP combined with piece-wise linear
approximations to linearize the goal function and all
constraints.

Due to the two types of treatments and centres,
the problem falls in the class of multi-flow two-level
hierarchical facility location problems [10, 11]. An example
of a two-level hierarchical model with a proportion of
patients being transferred between health centres and
hospitals is [48]; the optimization model is solved using
five heuristic procedures. In [49] an MILP model is used
for location-allocation problems with district and central
hospitals. The design of a long-term multi-facility care
network using large scale MILP’s is considered in [34,
51]. Also of interest is [50], which considers a location-
allocation problem that aims to optimize health gains
directly using an MILP.

Even though many researches modelled healthcare
networks using MILP, our understanding is that there are no
studies that incorporate acute patients in a chain of stroke
centres and volume-dependent delays in the facility location
literature.

Our contribution is two-fold. First, we formulate
optimization models for locations and allocation protocols
for treatment of acute stroke in the spirit of two-level facility
location models. Specifically, we incorporate volume-
dependent in-hospital delays and practically common
protocols (drip-and-ship and mothership). Second, we
provide insight in the performance of the practically
oriented protocols. The optimization framework is generic,
but we imagine that the practical heuristics may be preferred
in practice.

The paper is organized as follows. In Section 2 we give
some background and introduce notation for the modeling
of stroke care. Some initial insights for the different
protocols is presented in Section 3 based on simulation
results of a stylized example. The optimization formulation
is given in Section 4. Numerical experiments can be found
in Section 5, whereas Section 6 concludes.

2Modeling regional acute stroke care
logistics

In this section, we provide some background about acute
stroke care and introduce notation for the model. In Fig. 1,
the possible patient flows from onset to start treatment are
depicted. We focus on the flow starting from departure
ambulance from patient location and ending with the start
of either IVT or IAT, as depicted by the red area in Fig. 1.
We call this time the SDST (Scene-Departure-to-Start-
Treatment). Thus, the time from onset until the ambulance
arrives at the scene is left out of scope; this duration depends
on many external factors and is not affected by patient
allocation protocols and PSC and CSC locations. Below, we
introduce the elements of the model.

Location A region is assumed to consist of a finite number
of non-overlapping areas, called locations. Typically, a
location corresponds to a postal code area (as in e.g. [13]).
The non-overlapping areas (or locations) are relatively small
such that the distance within a location may be assumed
to be zero. We assume that demand may occur from
each location, whereas there is a smaller set of treatment
locations of stroke centres.

Demand For the demand we consider all IVT- and IAT-
eligible patients. The suspected stroke patients that do not
require treatment are not affected by the allocation protocol
and the PSC and CSC locations. Therefore, this group is
considered to be out of scope. Note that this group does
affect the occupation of EMS to some extent. We denote
the demand per year at demand location i by wi , and let
P = ∑

i wi be the total demand in the region per year.
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Fig. 1 Visualization of the patient flow for acute stroke; we focus on the boxed area

Typically, the demand per location depends on demographic
characteristics and can be retrieved from open sources.

PSC and CSC locations The model allocates treatments (IVT
and/or IAT) to the potential treatment locations. These
typically correspond to existing stroke centres and are a
subset of all locations in a region. Treatment locations may
correspond to the locations of demand of IVT- and IAT-
eligble patients, but may also be considered as separate
locations.

Travel time We denote the travel time between locations i

and j by dij . In this study, travel times are based on average
emergency travel time estimates between two locations
provided by the Dutch National Institute for Public Health
and the Environment (RIVM). The model can also be used
with travel times from applications (e.g. Google Maps) or
distance measures; for the latter, we refer to [21] for a more
elaborate discussion.

Eligibility of IAT treatment The probability of being IAT
eligible, denoted by P(IAT ), depends on individual patient
characteristics [22], but not on location or transportation. In
this model, P(IAT ) is constant over time and is defined as
the fraction of IVT patients that are eligible to receive IAT.

In-hospital delays The in-hospital delay is the time from
arrival at the door of the stroke centre until the start of
the specific treatment (IVT or IAT). In-hospital delays
inversely depend on the volume of IVT treated patients with
higher volumes leading to shorter delays [14, 29–31]; larger
patient volumes provide experience and often also lead to
organizational improvements. In addition, very small patient
volumes are undesirable; a sufficient volume of patients
should be treated to ensure that skills are maintained and
efficiency is not becoming an issue [32]. Hence, we assume
that in-hospital delays behave as a convex function of the
patient volume.

Minimum volume requirement for IVT/IAT To maintain a
sufficient level of expertise in the treatment of acute stroke,
it is crucial to treat a minimum number of patients. In
clinical practice, there is a minimal requirement for the
volume of IVT/IAT patients [26]. In our model, the minimal
number of IVT and IAT patients per year are denoted by
rIV T and rIAT , respectively.

3 Insights from a stylized example

In this section, we investigate the impact of the different
allocation protocols that are currently in use by considering
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a stylized example. The primary goal is to obtain insight
in how the allocation protocols - mothership, drip-and-ship,
and optimal - behave for different values of p := P(IAT )

and the number of PSC facilities relative to the number of
CSCs. We assume that the region of interest is a square
and denote this square by U ; without loss of generality we
assume U to be the unit square. There is a single CSC and
there are n PSCs, which are uniformly distributed over U .
The demand point is also uniformly distributed over U . The
distance dij between two points i and j is given by the
Euclidean distance (the L2 norm); see Remark 3 for the
Manhattan distance.

Note that if the location of facilities are given and in-
hospital delays are independent of the number of patients
treated at the facilities (and there are no upper and lower
bounds), the optimal allocation protocol can easily be
obtained. This is due to the fact that the optimization can be
separately carried out for each demand point. The optimal
allocation for demand point i is then determined by

arg min
k=0,...,n

{
dijk

+ bk,IV T + p(djkj0 + bIAT )
}
, (1)

where j0 is the CSC location and jk is the location of PSC
k, k = 1, . . . , n (with dj0,j0 = 0). Here, bk,i denotes the in-
hospital delay for treatment i ∈ {IV T , IAT } at location k.
For mothership, the SDST is dij0 +b0,IV T +pbIAT , whereas
for drip-and-ship the SDST is
mink=0,...,n

{
dijk

} + bk∗,IV T + p(djk∗ j0 + bIAT ), where
k∗ = argmink=0,...,ndijk

. In this example, we focus on the
travel time and exclude in-hospital delays (that is, assume
them to be identical).

In Fig. 2, the mean of the travel distances are shown for
the three different protocols and for n = 1 and n = 4
based on 10,000 simulations per instance. We varied p

to see the impact of the three protocols. Naturally, the
mothership protocol does not depend on p and n. The
performance (generally) improves with 4 PSCs compared to
the situation with 1 PSC, which may be evidently explained

Fig. 2 Mean of the travel distances for various p = P(IAT ) and
allocation protocols

by a smaller distance to the nearest facility and more
options for routing patients in case of the optimal protocol.
Moreover, the optimal protocol clearly outperforms the
other two protocols (for the same number of PSCs). When
p ↓ 0 drip-and-ship is optimal as there is no need for further
allocation of patients to a CSC. On the other hand, for p ↑
1, mothership is optimal, as all patients should eventually
be allocated to a CSC. For p = 0.5 the relative gain in
mean travel distance of the optimal protocol compared to
mothership is roughly 7% and 18% for n = 1 and n = 4,
respectively.

Comparing mothership with drip-and-ship, we see that
drip-and-ship performs better for p smaller than 0.5 in case
n = 1, where roughly p = 0.5 is the break-even point. For
n = 4, the break-even point shifts to a slightly larger value
of p. Interestingly, when p is above 0.8 the drip-and-ship
protocol with n = 1 has a smaller mean distance than for
the case that n = 4. This is due to the fact that it is more
likely that the CSC is the nearest location in case n = 1 than
for n = 4.

The example above provides some fundamental insight
in how P(IAT ) and the number of PSCs affect the
allocation protocols. Moreover, Equation (1) provides
a simple heuristic for determining allocation strategies.
With volume-dependent IVT treatment times and different
demographic regions, the patterns described in this section
will roughly remain valid, but the performance loss may
shift. In Section 5, we elaborate on this when demographic
regions are taken into account in an optimization model.

Remark 1 Distances between random points have been
extensively studied in the literature on spatial point
processes. For instance, the average distance between two
random points in the unit square is(

2 + √
2 + 5(ln(1 + √

2)
)

/15 ≈ 0.5214, see p. 171 of

[23], corresponding to the simulation results for mothership.
We also refer to [23, 24, 27] for further examples.
Observe, however, that the drip-and-ship and optimal
allocation protocols are considerably more intricate to
derive analytically.

Remark 2 It may be easily verified that there is a p∗
such that drip-and-ship outperforms mothership for p <

p∗, and vice versa for p > p∗. This follows from the
intermediate value theorem, the fact that the performance
of drip-and-ship is decreasing in p (and independent of
p for mothership), and the boundary cases p = 0 and
p = 1.

Remark 3 Next to the Euclidean distance, another common
distance metric is the Manhattan distance (L1 norm). The
distance between points (x1, y1) and (x2, y2) is then |x1 −
x2| + |y1 − y2|. Although the actual distances for the L1
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norm differ from those of the L2 norm, the relative results
are very similar and are thus not presented here.

4 Optimization framework

In this section, we propose an optimization model for jointly
determining the allocation protocols and PSC and CSC
locations, in order to minimize the mean SDST. The model
is formulated as an MILP based on a modification of a
multi-flow two-level hierarchical facility location problem
[11]. A primary feature that we include is that in-hospital
delays depend on patient volumes. In addition to the optimal
allocation protocol, we also discuss the model for optimal
locations in case drip-and-ship is enforced.

4.1 Parameters and variables

An outline of regional stroke care, including notation, has
been given in Section 2. As mentioned, we assume that there
is a minimum requirement rc for patients treated of type
c ∈ {IV T , IAT } at open stroke centres. Especially because
IAT is still relatively new, we also include a maximum
number of PSC and/or CSC locations in the region, denoted
by pc. The binary decision variable hjc equals 1 if stroke
centre at location j ∈ J provides treatment type c ∈ C, and
0 otherwise.

The allocation of patients from their demand location
to the PSC is given by the binary decision variables yij

(i ∈ I, j ∈ J ), where yij takes value 1 if a patient from
demand point i is allocated to stroke centre location j , and 0
otherwise. Subsequently, the potential allocation of patients
from a PSC to a CSC is determined by vij , which equals the
total number of patients from PSC location i ∈ J to CSC
location j ∈ J . These locations can be identical in case a
stroke centre provides both IVT and IAT. The distance djj

(j ∈ J ), may take negative values to model the situation
where there is an efficiency gain in delays when the patient
remains in the same stroke centre. Thus, dij ≥ 0 for (i ∈
I ∪ J, j ∈ J ) and j 
= i, whereas djj ∈ R.

We assume that in-hospital delays are stroke centre
specific, i.e., let bj,c be the in-hospital delay for location j

and treatment of type c. As a relation between the number
of IAT patients and in-hospital delays has not yet been
established, we assume this delay to be independent of
the volume. From [14], it follows that in-hospital delay of
IVT depends on volume according to a convex function.
Specifically, bj,IV T is a function of the volume of the
location v := ∑

i wiyij ; that is the IVT time bj,IV T =
b(v) is convex in the volume v. In our MILP model, we
approximate the in-hospital delay of IVT by using N piece-
wise linear functions, see Fig. 3 for an example with N = 3.
These linear functions may be constructed from b(v) based

Fig. 3 Example of the piece-wise linear approximation of the in-
hospital delay as a function of volume of IVT treatments

on the tangent lines of b(v) in the points vn, n = 1, . . . , N .
The nth tangent line b̂n(·) has the form b̂n = αn · v + βn,
where the slope αn and intersect βn of the n-th linear
function should be chosen such that b(vn) = b̂n(vn) and
b′(vn) = αn (Table 1).

As bj,IV T depends on the volume and thus on the
allocation protocol, we need an auxiliary variable zij

representing the total in-hospital delay for IVT for patients
from demand location i receiving IVT at PSC location j . We
refer to Table 2 for notation related to the IVT in-hospital
delay and to Table 1 for the rest of the notation.

Remark 4 For acute stroke, we are primarily interested
in scenario’s where in-hospital delays are a decreasing
function of patient volume. In case patient volumes form
a considerable part of the overall volume offered at an
emergency department, large volumes may also lead to
congestion, which may be characterized using queueing
models [43–47]. It is well known that the mean waiting
times of the traditional M/M/c and M/G/1 queues are a
convex function of the offered load and thus the arrival rate
(i.e. volume of patients). As such, the model design is also
applicable to situations where congestion phenomena occur;
this is not the case for stroke care in our setting as the
average number of newly arriving stroke patients is at most
two per day.

4.2 MILP formulation

We now formulate the MILP for the optimal PSC and CSC
locations and allocation protocol. The solution of the MILP
provides the desired PSC and CSC locations (hj,IV T and
hj,IAT ) and the corresponding optimal allocation protocol
(yij and vij ). The objective is to minimize the sum of
the SDST (Scene-Departure-to-Start-Treatment) over all
patients in the region. The objective function, i.e., the total
SDST, in (2) is divided in two parts. The first part is the total
delay from scene departure until IVT. The second part is the
total additional delay from IVT until start of IAT.
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Table 1 Notation for
optimization models Sets

I Set of demand locations (of suspected stroke).

J Set of potential stroke centre locations.

C Set of treatments types (C = {IV T , IAT }).
Parameters

P(IAT ) Probability that patient requires IAT treatment.

wi Demand at location i.

dij Travel time from location i to location j .

rc Minimum number of patients with treatment c.

pc Maximum number of stroke centres that provide treatment type c.

bj,IAT In-hospital delay before start of IAT for stroke centre j .

Decision variables

yij 1 if demand point i is assigned to PSC j for IVT, 0 otherwise.

vij Flow of patients from PSC i to CSC j for IAT at location j .

hjc 1 if treatment of type c is given at location j , 0 otherwise.

Now, let M be a sufficiently large number. The
constraints (3) make sure that every demand point is
assigned to a PSC. Constraints (4) regulate the allocation
of patients from a PSC to a CSC in case IAT is required.
In particular, it states that the flow of patients into PSC j

that need IAT equals the flow out of PSC j . Constraints (5)
and (6) guarantee that the minimum number of IVT and IAT
patients are treated in case the location is open as a PSC and
CSC, respectively. Similarly, constraints (7) and (8) provide
that stroke centre j needs to be open for IVT and IAT,
respectively, in case IVT and IAT patients are assigned to
stroke centre j . Constraints (9) makes sure that the number
of stroke centres of type c is less than or equal to pc.

min Zopt =
|I |∑

i=1

|J |∑

j=1

[
yijwidij + zij

]

+
|J |∑

j=1

|J |∑

c=1

[
vjc(djc + bc,IAT )

]
(2)

s.t.
|J |∑

j=1

yij = 1 ∀i (3)

|I |∑

i=1

yijwiP (IAT ) =
|J |∑

c=1

vjc ∀j (4)

Table 2 Notation for piece-wise linear approximation of IVT in-
hospital delay

αn Slope of the nth tangent line of IVT in-hospital delay.

βn Intersect of the nth tangent line of IVT in-hospital delay.

bj,IV T In-hospital delay for IVT at stroke centre j .

zij Total in-hospital delay for IVT for demand i in stroke centre j .

|I |∑

i=1

yijwi ≥ rIV T hj,IV T ∀j (5)

|I |∑

i=1

vij ≥ rIAT hj,IAT ∀j (6)

|I |∑

i=1

yij ≤ Mhj,IV T ∀j (7)

|I |∑

i=1

vij ≤ Mhj,IAT ∀j (8)

|J |∑

j=1

hjc ≤ pc ∀c (9)

zij ≤ Myij ∀i, j (10)

zij ≤ bj,IV T wi ∀i, j (11)

zij ≥ bj,IV T wi − (1 − yij )M ∀i, j (12)

bj,IV T ≥
|I |∑

i=1

αnwiyij + βn ∀n, i, j (13)

yij ∈ {0, 1} ∀i, j (14)

vjj ′ ≥ 0 ∀j, j ′ (15)

hjc ∈ {0, 1} ∀j, c (16)

zij ≥ 0 ∀i, j (17)

bj,IV T ≥ 0 ∀j (18)

Observe that the total in-hospital delay from the demand
at location j is

∑
i yijwibj,IV T , where the in-hospital

delay per patient bj,IV T depends on IVT volume at
the corresponding location. Equations (10)–(12) avoid the
multiplication of the variables yij and bj,IV T by introducing
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the auxiliary variable zij . Specifically, the equations make
sure that zij = 0 if yij = 0 and zij = wibj,IV T if
yij = 1. Constraints (13) model the in-hospital delay per
patient at location j depending on total IVT volume at
location j using its convex relationship (and approximate
this function by n piece-wise linear functions). Finally, the
constraints (14)–(18) guarantee that all decision variables
are non-negative and that yij and hjc are binary.

4.3 Drip-and-ship andmothership

Although the allocation protocol is given in this section,
an optimization model can be used to determine which
treatment locations should be a CSC (and then also a PSC
for drip-and-ship). In fact, using the optimization model it
may be determined whether performance is improved when
some stroke centres no longer act as a PSC and CSC. For
the results, we do not take such scenario’s into account.
Next, we first discuss the drip-and-ship protocol, followed
by some comments regarding mothership.

The difference between the drip-and-ship protocol and
the formulation in Section 4.2 is that we need to ensure that
a patient is assigned to the nearest PSC. For any PSC i, let
J ∗

ij be the set of PSCs that are closer to demand i than PSC
j (which may also be an empty set). Then, in addition to all
constraints in Section 4.2, we need to impose the following
constraints
∑

k∈J ∗
ij

hk,IV T ≤ (1 − yij )M ∀i, j

This constraint regulates that no PSC in the set J ∗
ij may

be opened if demand i is assigned to PSC j , i.e., demand
should be assigned to the nearest open PSC. M is again a
sufficiently large number.

Observe that in the formulation above, some of the
stroke centres may no longer provide IVT (and should then
not be regarded as a stroke centre anymore). Although this
improves the mean SDST, a typical practical implementa-
tion may be a scenario where all considered stroke centres
should at least provide IVT. This can easily be accomplished
in the model by modifying Constraints (9) into

|J |∑

j=1

hjc = pc ∀c (19)

combined with the appropriate choice of pc.
In case of the mothership protocol, the model reduces to

a single-flow system as stroke centres can no longer be only
PSCs. As such, the problem is actually a regular facility
location problem. The key distinguishing feature, however,
is that in-hospital delays still depend on patient volume. The
formulation of the MILP for mothership can be found in
Appendix A.

5 Numerical experiments

In this section, we compare the different allocation pro-
tocols using six different regions that differ in the num-
ber of demand points, population size, surface area,
demand distribution and the potential stroke centre loca-
tions. In Section 5.1 the experimental setup is explained. In
Section 5.2 a single instance is highlighted for illustration.
Finally, in Section 5.3 a comparison of the different alloca-
tion protocols is given, with the computational time given in
Section 5.4.

5.1 Regional structure and parameters

In this subsection, we first discuss the regional structures,
followed by the choices of parameters.

We apply the models to 6 of the 24 ambulance regions
(RAVs) in the Netherlands: Amsterdam-Amstelland,
Holland-Midden, Haaglanden, Utrecht, Twente, and
Groningen. The regions are chosen based on population
density, following the classification in [38]; that is, we con-
sider urban (Amsterdam & Haaglanden), rural (Groningen
& Twente) and mixed (Holland-Midden & Utrecht) regions.
As demand points, we take the four-digit postal codes.

Figure 10 in Appendix B shows the lay-out of the six re-
gions. The surface area varies between 282 km2 (Amsterdam-
Amstelland) and 2336 km2 (Groningen). Recall that the
total demand in a region is equal to the model parameter P .
We assume that every demand location is assigned a fraction
of P proportional to the population density provided by the
RIVM. For the potential PSC and CSC locations per region,
we follow the categorization of [37]. In Fig. 10, the PSCs
are indicated with a small circle and the CSCs with a cross.

Next to the regional structure, we use the parameters
as indicated in Table 3. For each region, this provides
39 instances1 with a different parameter combination. The
probability of IAT eligibility is based on expert opinion
about the range of this probability [20]; in current clinical
practice 20% is realistic, but this value is expected to
increase. The minimum IVT requirement (rIV T ) is set to
‘0’ to mimic current practice and avoid that the drip-and-
ship protocol becomes infeasible due to the patient volume
for one of the PSCs dropping below rIV T . Finally, the in-
hospital delay for IVT is chosen according to the function
in Fig. 3, ranging from 20 to 60 minutes, depending on patient
volume. The in-hospital delay for IAT (bj,IAT ) is 29 minutes.

The allocation protocols are compared based on the
total delay from scene departure to start treatment (i.e., the
SDST), corresponding to the objective function Z of the

1We only consider parameter combinations leading to feasible
instances. For instance, with P(IAT ) = 20% and P = 300, there are
only 60 patients requiring IAT, such that rIAT > 60 is not feasible.
Consequently, we disregard six parameter combinations per region.
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Table 3 Parameter values for numerical experiments

Parameter Experiment values

P(IAT ) {20%, 30%, 40%, 50%, 60%}
Total number of patients (P ) {300, 600, 900}
Minimum IAT requirement (rIAT ) {50, 100, 150}

MILP. The relative difference in SDST for drip-and-ship and
mothership, compared to the optimal protocol, is denoted by

�p = Zp − Zopt

Zopt

× 100%,

where Zp is the objective function for protocol p and Zopt

is the objective function of the optimal model.

5.2 Insights from a single instance

To obtain insight in the impact of the different protocols,
we first elaborate on a single instance. We focus on the
Amsterdam-Amstelland region with P(IAT ) = 20%, the
total number of patients P = 600 per year and a minimum
IAT requirement rIAT of 50 per CSC.

The results of this Amsterdam-Amstelland instance is
given in Table 4. The optimal allocation is better than drip-
and-ship by 7.7% and than mothership by 11.5%. Moreover,
the number of PSCs differs between the protocols; the
optimal protocol has one less open PSC than drip-and-
ship, whereas there are by definition no open PSCs for
mothership. Finally, the fraction of patients that require IAT
and need to be transferred is 90.3% for the drip-and-ship
protocol; only 9.7% of the IAT patients are directly allocated
to a CSC. For the optimal protocol, the percentage of
required IAT transfers decreases slightly to 81.0%. We note
that these high number of IAT transfers can be explained by
the fact that the CSC is on the outskirts of Amsterdam and
at the edge of the region.

In Figs. 4, 5 and 6 the allocation of demand to the stroke
centres is indicated by black arrows. Figure 6 shows how
patients are allocated to the nearest PSC, including the PSC
at the top of the region, as required by the drip-and-ship
protocol. Figure 4 shows that in the optimal protocol the
PSC at the top of the region is no longer used for IVT
patients. Also, for many locations, the optimal protocol
allocates patients to the nearest PSC. An exception is the

Table 4 Results for single
‘Amsterdam-Amstelland’
instance (P(IAT ) = 20%,
P = 600, rIAT = 50)

Optimal Mothership Drip-and-ship

Sum of SDST 19069 21274 20531

Relative difference � - 11.5% 7.7%

Number of (PSC, CSC) (3,1) (0,1) (4,1)

Fraction of transferred IAT patients 81.0% 0% 90.3%

Fig. 4 Allocation of demand according to optimal model

southeastern area, for which it is better to allocate patients
directly to the CSC, which is similar to the allocation in the
mothership protocol (as illustrated in Fig. 5).

For this single instance we observe that drip-and-ship
outperforms mothership. This can be explained by the small
percentage of patients that require IAT and the location of
the CSC. Of course, results will strongly depend on the
regional layout and health-related parameters.

5.3 Analysis of different protocols

We compare the protocols for each region using the 39
feasible parameter combinations, resulting in a total of 234
instances.

Let us first focus on the difference between drip-and-
ship and mothership. Table 5 shows the fraction of instances
(in %) that mothership outperforms drip-and-ship in terms
of SDST for the different regions and different values of
P(IAT ). Not surprisingly, and in line with Section 3, we
see that mothership will perform better compared to drip-
and-ship as P(IAT ) increases. Next to P(IAT ), the trade-
off between the two practical protocols strongly depends
on the region and the locations of stroke centres. For
instance, we see that for the region Haaglanden mothership
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Fig. 5 Allocation of demand according to mothership

outperforms drip-and-ship for all instances. This can be
explained by the degree of urbanization and corresponding
short travel times. For the rural area Twente, we observe the
opposite; only in some cases and for a P(IAT ) of at least
50% it holds that mothership has shorter SDST than drip-
and-ship. Roughly speaking, we can see that mothership
gives better performance for urban areas, whereas drip-and-
ship works well for rural areas, which can be explained by
the impact of travel times.

In addition, the location of the CSC(s) seem to play a
crucial role. Amsterdam and Haaglanden are both urban
areas, but for Amsterdam the CSC is located near the

Fig. 6 Allocation of demand according to drip-and-ship

edge of the region. In Amsterdam, for smaller values of
P(IAT ), the longer travel times to a CSC in the mothership
protocol do not outweigh the additional travel times due to
transfers of IAT patients in drip-and-ship. Similar arguments
apply to the other regions; the CSCs in Twente (urban) and
Holland-Midden (mixed) are closer to the edge of the region
compared to Groningen (urban) and Utrecht (mixed).

In Fig. 7 the relative differences (�p) between drip-and-
ship (left) and mothership (right) compared to the optimal
protocol are visualized using boxplots based on the 39
instances per region. The observations above concerning
Table 5 also apply to a large extent to the performance per
region in Fig. 7. For instance, we see again that overall
mothership performs better than drip-and-ship in the urban
regions, where the reverse holds for rural areas (except
for some cases with P(IAT ) ≥ 50%). The variability
in performance for drip-and-ship can be considerably
larger than for mothership. For example, for the regions
Amsterdam and Utrecht the performance of drip-and-ship is
almost 40% worse than optimal for P(IAT ) = 60% and
P = 300. For mothership, the performance is only roughly
12% worse than optimal for the regions Amsterdam,
Holland-Midden, and Twente in case P(IAT ) = 20%
and P ≥ 600. On average the total SDST when using
the drip-and-ship protocol is 8.6% larger than the optimal
model, whereas for the mothership protocol this is only
3.9%. Nevertheless, the mothership protocol can perform
worse than the drip-and-ship protocol in all regions (except
Haaglanden). Specifically, for the regions Holland-Midden,
Twente and Groningen, the mothership protocol performs
worse in 68.4% of the instances. Over all instances, the
fraction of IAT patients that need to be transferred from PSC
to CSC in the optimal model is 59.4% on average with a
standard deviation of 25.1%. This shows that the required
number of transfers will be considerable, but strongly
depends on the region and health-related parameters.

Sensitivity of parameters So far, we primarily focused on
the impact of the regions on the performance. Below, we
further explore the impact of P(IAT ) and the total demand
P ; the impact of the minimum IAT requirement rIAT is
related to the impact of P(IAT ) and P . In Figs. 8 and 9
you may find the mean (line) and interquartile range (shaded
area) of the total SDST for the two practical protocols
relative to the optimal protocol against P(IAT ) and P ,
respectively. As may be expected, the performance of
the drip-and-ship protocol decreases as P(IAT ) increases,
whereas the performance of mothership improves. In fact,
for P(IAT ) = 60% we see that SDST for mothership is
close to optimal. For small values of P(IAT ), e.g. when
P(IAT ) = 20%, drip-and-ship typically performs better
than mothership, but the performance is not necessarily
close to optimal. Specifically, in the case with small patient
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Table 5 Fraction of instances (in %) in which mothership outperforms drip-and-ship per region for different values of P(IAT )

Region Rurality P(IAT)

20% 30% 40% 50% 60% Total

Haaglanden urban 100.0 100.0 100.0 100.0 100.0 100.0

Amsterdam urban 16.7 14.3 62.5 66.7 100.0 56.4

Utrecht mixed 50.0 57.1 100.0 100.0 100.0 84.6

Holland-Midden mixed 0.0 0.0 0.0 0.0 100.0 23.1

Twente rural 0.0 0.0 0.0 33.3 33.3 15.4

Groningen rural 16.7 14.3 25.0 100.0 100.0 56.4

volumes (P = 300), the SDST of drip-and-ship for Utrecht
is still 41.9% worse than optimal.

Figure 9 shows the performance of the protocols relative
to optimal as the total number of patients P varies. For P =
300, the performance of drip-and-ship varies considerably.
Specifically, the performance for the regions Utrecht and
Amsterdam is quite poor in that case, and are at least 37%
(Utrecht) and 31% (Amsterdam) worse than optimal for all
values of P(IAT ). This can be explained by the in-hospital
delay that becomes rather big when there are quite some stroke

centres (6 and 5 for Utrecht and Amsterdam, respectively)
and the total patient volume is small. These examples show
that drip-and-ship is vulnerable when the number of patients
per stroke centre becomes small; the order of magnitude
also clearly depends on the function chosen for bIV T

when patient volumes become small. For mothership, the
relative performance compared to optimal decreases when
P increases. Again, this follows from in-hospitals delay; as
P is larger, the optimal protocol will use more PSCs for its
allocation without excessive in-hospital delays for IVT.

Fig. 7 Relative differences with
optimal protocol for
drip-and-ship (top) and
mothership (bottom)
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Fig. 8 Mean relative difference with the optimal protocol against
P(IAT ) (the area between the 25% and 75% percentile is shaded)

Remark 5 Although the drip-and-ship and mothership
protocols may show close to optimal performance in
some instances, it seems difficult to give any reasonable
performance guarantees. For instance, consider a simplified
situation with P(IAT ) = 0, such that we may focus on IVT.
Assume that there are 3 demand locations (I = 3) and two
possible PSC locations (J = 2) that are the same as demand
locations 1 and 2. Moreover, let d12 = d21 = D, d31 =
D − δ and d32 = δ for some δ > 0 sufficiently small and
D large. Consider the following demands: w1 = rIV T − ε,
w2 = rIV T , and w3 = ε for some small ε > 0.

In the optimal allocation, both PSC locations are open and
patients of locations 1 and 3 are assigned to PSC location
1 such that the minimum volumes of IVT are met for both
PSCs. The optimal total travel time is then ε(D−δ), which is
only due to patients from location 3. When applying a drip-
and-ship protocol it is not possible to open both locations,
as PSC location 2 would be the nearest PSC to demand
location 3. Hence, for drip-and-ship it is only feasible to
open one location without violating the minimum volume
requirements. Opening location 2 as a PSC, then provides
the smallest total travel time of (rIV T − ε) × D + ε × δ =
rIV T D − ε(D − δ). Observe that both the absolute and

Fig. 9 Mean relative difference with the optimal protocol against P

(the area between the 25% and 75% percentile is shaded)

relative difference in total travel time between optimal and
drip-and-ship explode when D → ∞ and ε ↓ 0.

5.4 Computational time

The numerical experiment is run on an Intel Core i7-4770k
CPU @ 3.50GHz with 24 GB RAM. In this experiment,
a single instance of the model takes approximately one
minutes; with 270 instances and three models (mothership,
drip-and-ship, and optimal) the total experiment takes
roughly 13 hours to complete.

6 Conclusion and discussion

In this paper, we model the joint decision of PSC and CSC
locations and the allocation of acute stroke patients in a
region as a two-level hierarchical facility location problem.
Specifically, we include the impact of the volume of IVT
patients on in-hospital delays in our MILP, and compare the
optimal model with the protocols in practice: mothership
and drip-and-ship.

From our numerical experiments we see that the
performance of the protocols depends on a variety of
elements. In general, mothership performs better than drip-
and-ship in urban areas, in particular in case of more
centrally located CSCs; vice versa, drip-and-ship performs
well in rural areas and stroke centres spread over the region.
Additionally, for P(IAT ) ≤ 30% drip-and-ship seems
preferable, unless the total patient volume per PSC becomes
rather small, whereas mothership performs excellent for
P(IAT ) ≥ 50%. On average, mothership and drip-and-ship
are 3.9% and 8.6% worse than optimal, whereas drip-and-
ship seems more sensitive to parameter choices.

In our experiments, the optimal protocol leads to a
decrease between 0 and 41.9 percentage points in SDST for
a region. This corresponds to a gain between 0 and 18.9
minutes per treated patient, based on an average SDST of
45 minutes. A measure to evaluate the impact of medical
treatments in economical terms is QALY’s (quality-adjusted
life years) [33]. Within the first six hours of onset, every
hour of delay results in an average loss of 0.77 QALY’s
for IAT patients [36]. Assuming linearity, this results in an
improvement between 0 and 0.24 QALY’s for an individual
IAT patient. For a region with 150 IAT patients per year,
with a value of e 50,000 per QALY [35], the value of
medical intervention in acute stroke care has the potential to
gain a value up to e 1,800,000 per year using the optimal
model, although the potential strongly depends on the region
and the parameters.

The model precisely prescribes which stroke centres should
become PSCs and CSCs and how patients should be alloca
ted depending on the location of onset. As a consequence,
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the flow of stroke patients, including patient trans-
fers, will typically change and stroke centres will be faced
with different patient volumes. As patient volume is key to
any hospital, the potentially required modifications will be
a subject of debate. Due to the rather recent introduction
of IAT, there is now a practical need to re-establish the
allocation of ischemic stroke patients. The insights from
the numerical experiments provide an initial estimate of
a proper organization and the potential gain. Moreover,
the application of the optimal model for a specific region
and situation should facilitate the debate about locations of
PSCs and CSCs and the corresponding allocation. Even if
the optimal model is not fully implemented, it shows the
direction to look for when reorganizing acute stroke care.

Finally, there are some limitations to the model that
may be studied in the future. The regional layout and the
parameters, such as P(IAT ) and bIV T , may have a consid-
erable impact on which protocol is better, but these parame-
ters are difficult to estimate in current practice. Also, the
value of P(IAT ) may change in the future and may depend
on the population demographics and IAT eligibility criteria.

The overall observations from our numerical experiments
provide insight in the differences between the two practical
protocols, but for any region it would be preferred to apply
an optimization for finding the actual optimal allocation.

Also, in the current model we minimize the total time
SDST, but the actual criterion is the condition of the patient
after IVT and/or IAT. From a computational perspective, it
may be observed that the problem is NP-hard. This implies
that the size of the region that can be calculated to optimality
using an MILP formulation is limited.
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Appendix A : Mothershipmodel

In this section, we provide the MILP formulation for the
mothership protocol, i.e., the locations of CSC facilities. Since
the allocation between stroke centres is no longer possible,
Constraints (4) should be removed and the problem is now a
single-level system. Due to the absence of PSCs, the notations
may be simplified. However, we choose to use the same nota-
tion for consistency with the models for the other protocols.

Observe that Constraints (25) makes sure that each
location either provides both IVT and IAT, or no treatment
of acute stroke. Constraints (30) are similar to the drip-and-
ship protocol and guarantees that each patient is allocated to
the nearest location.

MinimizeZmoth =
|I |∑

i=1

|J |∑

j=1

zij + yijwi

(dij + bj,IAT P (IAT )) (20)

s.t.
|J |∑

j=1

yij = 1, ∀i (21)

|I |∑

i=1

yijwi ≥ rIV T hj,IV T ∀j (22)

|I |∑

i=1

yijwiP (IAT ) ≥ rIAT hj,IAT ∀j (23)

|I |∑

i=1

yij ≤ Mhj,IV T ∀j (24)

hj,IV T = hj,IAT ∀j (25)

zij ≤ Myij ∀i, j (26)

zij ≤ bj,IV T wi ∀i, j (27)

zij ≥ bj,IV T wi − (1 − yij )M ∀i, j (28)

bj,IV T ≥
|I |∑

i=1

αnwiyij + βn ∀n, i, j (29)

∑

k∈J ∗
ij

hk,IV T ≤ (1 − yij )M ∀i, j (30)

yij ∈ {0, 1} ∀i, j (31)

hjc ∈ {0, 1} ∀j, c (32)

zij ≥ 0 ∀i, j (33)

bj,IV T ≥ 0 ∀j (34)
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Appendix B : Region structures

(a) Haaglanden (urban)

(d) Holland-Midden (mixed)

(e) Twente (rural)

(f) Groningen (rural)

(b) Amsterdam-Amstelland (urban)

(c) Utrecht (mixed)

Fig. 10 Lay-out of the six regions
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