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ABSTRACT 

 
The SARS-CoV-2 pandemic resulted in shortages of production and test capacity of FFP2-

respirators. Such facemasks are required to be worn by healthcare professionals when performing 
aerosol-generating procedures on COVID-19 patients. In response to the high demand and short 
supply, we designed three models of facemasks that are suitable for local production. As these 
facemasks should meet the requirements of an FFP2-certified facemask, the newly-designed 
facemasks were tested on the filtration efficiency of the filter material, inward leakage, and 
breathing resistance with custom-made experimental setups. In these tests, the facemasks were 
benchmarked against a commercial FFP2 facemask. The filtration efficiency of the facemask’s 
filter material was also tested with coronavirus-loaded aerosols under physiologically relevant 
conditions. This multidisciplinary effort resulted in the design and production of facemasks that 
meet the FFP2 requirements, and which can be produced at local production facilities. 
 
Keywords: Coronavirus filtration efficiency, Facemask, FFP2, NaCl particle filtration, Respirator 
 

1 INTRODUCTION 
 

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that 
was first identified in December 2019 in Wuhan, China, in patients suffering from acute 
respiratory syndrome (2019 coronavirus disease or COVID-19) (Zhu et al., 2020). SARS-CoV-2 was 
declared pandemic by the WHO on March 11, 2020.  

Healthcare professionals who are involved in aerosol-generating procedures on COVID-19 
patients are required to use FFP2-classified filter facepiece respirators for respiratory protection 
against SARS-CoV-2 infection. FFP2-respirators (from now on called ‘facemask’) filter at least 94% 
of the submicron-sized test aerosols with NaCl, according to the NEN-EN 149:2001+A1:2009 
standards (Table 1). These standards are used by the accredited test laboratories (the so-called 
notified bodies) within the European Union member states to test and certify the facemasks upon 
approval. According to these standards, FFP2-classified facemasks are also required to meet the 
criteria for inward leakage, maximal CO2-content of inhaled air, and breathing resistance, which 
are summarized in Table 1. 

As the global demand for FFP2-facemasks largely exceeded the production, distribution and 
test capacities of the conventional suppliers and notified bodies during the COVID-19 pandemic, 
we formed a Dutch collaborative initiative, consisting of the Reinier de Graaf hospital, Royal DSM, 
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Table 1. Requirements for FFP2-classified FFRs according to the NEN-EN149 standards. 

Filter penetration test FIT-test CO2 content test Breathing resistance test 

Max. penetration of 
120 mg NaCl test 
aerosol at 95 L min–1 

Max. inward leakage 
Max. CO2 content of 
inhaled air 

Inhalation Exhalation 

6% 8a or 11b % < 1% on average 0.7 mbar at 30 L min–1 

2.4 mbar at 95 L min–1 

3.0 mbar at 160 L min–1 

a for at least 8/10 individual wearer arithmetic means. 
b for at least 46/50 individual exercise results (e.g., 10 subjects × 5 exercises). 

 

Delft University of Technology, Leiden University Medical Center and Erasmus University Medical 
Center, with the aim to design facemasks that meet the FFP2-specifications. These facemasks 
were initially tested with custom-made test equipment on their filtration capacities of NaCl 
particles, fit, and breathing resistance under conditions that approximate the NEN-EN149 
standards before being tested by a certified test laboratory. Those setups have been described 
in detail in Blad et al. (2020). The facemasks were also tested on virus filtration efficiency (VFE) 
with the mouse hepatitis virus (MHV), a beta coronavirus that causes lethal hepatitis in mice 
(Gledhill et al., 1955), but that is non-pathogenic to humans. These studies identified mask 
designs that filter 99% of coronavirus-loaded aerosols, just as a commercial FFP2-facemask.  
 

2 METHODS 
 

2.1 Facemask Designs 
Three different types of in-house designed facemasks were tested in triplicate in various 

custom-made experimental setups. The “Reinier 0.1” facemask was constructed with a dental 
facemask, that consisted of two layers polypropylene nonwoven fabric (40 and 20 gr m–2) and a 
single layer of 20 g m–2 melt-blown fabric, to which two extra layers of spun-bond polypropylene 
filters (100 and 20 g m–2) was added. The “DSM 1.0” facemask consisted of five polypropylene 
nonwoven filter layers that consisted of 55 g m–2 spunmelt, 20 g m–2 melt-blown, 30 g m–2 melt-
blown, 20 g m–2 melt-blown, and 47 g m–2 spunmelt polypropylene filters. The name of this mask 
refers to the collaboration with the Dutch nutrition and health company Royal DSM during the 
development of this facemask. The “Reinier 1.0” facemask consisted of three layers of filter 
material, of which two layers of spun-bond polypropylene (100 and 20 gr m–2) and a single 20 gr m–2 
melt-blown polypropylene layer. These facemasks were benchmarked against the FFP2-certified 
3M Aura 1862(+) facemask. All layers of filter material were used throughout the masks and were 
therefore considered as homogeneously distributed. The electrostatic charge of the aerosols and 
material was not measured. 

 

2.2 The Dry Particle Penetration Test 
The dry environmental particle penetration test was performed to provide an initial indication 

of the filtering capacity of the in-house designed facemasks. The particles were counted by a 
Solair 3200 particle counter (Lighthouse), which is normally used for quality control measurements 
of the operating rooms. The particle counter was connected with a particle chamber, on which a 
facemask was fixed in an airtight manner. The particle counter generated a flow of 56.6 L min–1, 
which created an air velocity of 0.25 m s–1 through the facemask’s filter material. Particles in the 
range of 0.3–0.5 µm, 0.5–1.0 µm, 1.0–3.0 µm, 3.0–5.0 µm, and 5.0–10.0 µm in size were counted. 
First, a reference count of the number of environmental particles (# particlesRef) was performed 
in absence of a facemask and subsequently, the number of environmental particles was counted 
after fixing a facemask on the particle chamber (# particlesmask) and averaged over three one-
minute measurements. For each of the five particle size ranges, the filter capacity was calculated 
according to the following formula: 

 
Filter capacity (%) = ((# particlesRef – # particlesmask)/# particlesRef) × 100 (1) 
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2.3 NaCl Particle Penetration Test 
For the NaCl particle penetration test a PVC-tube system was constructed with a 90° bend, 

going from a vertical to a horizontal direction (the design and instructions to build are online 
available at https://projectmask.nl/testing/filter-material-penetration/build/). The vertical part 
of the tube system was connected with an Atomizer Aerosol Generator ATM 226, and the distal 
end of the horizontal part contained a PMMA tube with a sample holder in which a facemask was 
fixed in an airtight manner (Figs. S1 and S2). The aerosol generator produced NaCl particles from 
a 2% NaCl solution, resulting in a particle concentration of 2.5–3.5 ×  104 particles cm–3 in the tube 
system. The number of NaCl particles that passed through the facemask’s filter material was counted 
by a TSI PortaCount Pro 8030 particle counter, which detects particles in a 0.02 to > 1 µm size range 
and generated an air velocity of 0.1 m s–1 through the filter material of the facemasks. The number 
of particles that passed through the filter material was analysed with TSI FitPro+ software. 

 

2.4 The Fittest 
The fittest was performed to determine the leakage of particles around the edges of the 

facemasks. First, a probe was placed in the facemask by which it was connected to the PortaCount 
particle counter. To obtain representative results, each facemask was tested by three different 
individuals, who performed eight different exercises: normal breathing, deep breathing, moving 
the head side to side, moving the head up and down, talking, grimace, bending over and normal 
breathing, as described in the NEN-149 standards. The particle leakage was determined by 
comparing the number of particles in front and behind the facemask’s filter material and was 
recorded with a PortaCount particle counter. The data were analysed with the TSI FitPro+ software.  

 

2.5 The Breathing Resistance Test 
The breathing resistance of the facemasks was determined with a custom-made experimental 

setup (Fig. S3; the design and instructions to build are online available at https://projectmask.nl/ 
testing/breathing-resistance/build/). The facemask was placed on a manikin head (described in 
Zhuang and Bradtmiller, 2005) that was connected to a tube system, in which the pressure drop 
after the filter material was recorded. Before testing the facemasks, the pressure sensors were 
calibrated without any specimen at inlet or exit (open flow), blockage of the exit (blocked flow), 
or with a known flow resistance. When adding the masks, the increasing airspeed led to an 
increased airflow through the facemask and a pressure drop in the system, which was related to 
the resistance. 

 

2.6 Virus Filtration Efficiency Test 
As no standardized test procedures exist to determine the virus filtration efficiency of 

facemasks, an in-house designed experimental setup was developed that consisted of a curved 
tube with a 0.45 m vertical and a 0.9 m horizontal part with at the distal end a sample holder for 
airtight placement of a facemask (Fig. S4). This tube was connected to a mixing chamber, in which 
the virus-loaded aerosols were mixed with mist droplets of bidest, that was generated by a 
ultrasonic mist maker, for more efficient virus collection. The mixing chamber was connected to 
three SKC BioSampler impingers, in which the collected virus was impinged into 45 mL virus 
transport medium (VTM) (HMEM (Lonza), 12% v/v glycerol, 0.5% w/v Lactalbumin enzymatic 
hydrolysate, 0.02 mg mL–1 Polymyxin B sulfate, 0.01 mg mL–1 Nystatin, Penicillin/Streptomycin 
mixture 240/240 U mL–1 and 0.3 mg mL–1). The maximal airflow in each SKC BioSampler was 
12.5 L min–1, generating a total maximal flow of 37.5 L min–1. The facemasks were challenged 
with mouse hepatitis virus (MHV), a beta coronavirus that causes hepatitis in mice, to be able to 
perform these tests under laboratory biosafety level (BSL) 2 conditions. 108 plaque-forming units 
(PFUs) of MHV were aerosolized with an Aerogen Solo nebulizer, which produced small inhalable 
particles (MMAD 2.1 µm) in the vertical part of the tube. The particles were then directed 
through the 90° bend, and subsequently the horizontal part of the tube system with the airtight 
fixed facemask. The facemasks were placed in the sample holder in an airtight manner between 
two sanitary rings with a diameter of 40 mm, which created an air velocity of 0.42 m s–1 at a 
continuous airflow of 31.5 L min–1 (3 × 12.5 L min–1 minus 6 L min–1 for the mist maker). The self-
made facemasks were tested in triplicate and benchmarked against the FFP2-certified 3M Aura 
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1862(+) facemask. The aerosolized virus was also collected in the absence of a facemask as a 
reference. Between each test, the tube system was flushed with HEPA-filtered air for 15 min at a 
flow of 37.5 L min–1. 

 

2.7 Virus Quantification 
Viral RNA copy number was quantified by a quantitative reverse-transcription polymerase 

chain reaction (RT-qPCR) analyses and the number of infectious virus particles by plaque assays.  
For RT-qPCR, viral RNA was isolated from 135 µ l VTM with the QIAamp Viral RNA Mini Kit 

(Qiagen) according to the manufacturer's protocol. Equine arteritis virus (EAV) was added to the 
lysis buffer as an internal control for the RNA isolation and RT-qPCR efficiency as described in 
Scheltinga et al. (2005). The isolated RNA was converted to copy DNA (cDNA) and quantified in a 
TaqMan Fast Virus 1-step master mix (Applied Biosystems) in the presence of 450 nM primers 
(MHV-FPr1: ACGCCGCCTTATTAAAGATG, MHV-RPr1: GGCATAGCACGATCACATTT) and 200 nM 
probe (TexRed-TCCTGTACTCATGGGTT GGGACTATCC-BHQ2) that targets the viral gene nsp12, 
coding for RNA dependent RNA polymerase (RdRp). The primers and probe for the EAV internal 
control were also added and have been described in Loens et al. (2012). The reactions were run 
in a CFX384 Q-PCR Thermocycler (BioRad) with a two-step protocol: Cycle 1 (1×): 50°C, 5 min. 
and 95°C for 20 sec., and Cycle 2 (45×): 95°C for 5 sec. and 60°C for 30 sec. An MHV standard 
was generated by in vitro transcription with the T7 mMessage mMachine kit (ThermoFisher) 
according to the manufacturer's protocol and was also analysed as described above to determine 
the copy number of viral RNA in the samples.  

The number of infectious virus particles was determined by a plaque assay. 8 ×  105 17CL1 cells, 
derived from mouse (Mus musculus) BALB/c fibroblasts, were seeded in six-wells plates and 
incubated overnight at 37°C. The cells were inoculated with an undiluted or one of the diluted 
MHV samples from a ten-fold serial dilution for 1 hr at 37°C. After inoculation, the cells were 
washed twice with PBS, overlaid with an Avicell (Sigma) overlay, and incubated for an additional 
24 hrs at 37°C. The cells were subsequently fixated with 3.4% formaldehyde in PBS for 1 hr at 
room temperature and stained with 0.75% crystal violet staining solution for 5 min at room 
temperature. After removal of the staining solution, the wells were washed with water, and the 
number of plaques was counted.  
 

3 RESULTS AND DISCUSSION 
 

3.1 NaCl Particles were more Efficiently Filtered than the Environmental 
Particles of between 0.3–0.5 µm 

The filtering capacities of the new facemasks were initially determined by measuring the 
filtration of dry environmental particles in a broad particle size range (0.3–10 µm) with a Solair 
3200 particle counter by airtight placement of one of the facemasks on the particle chamber. A 
technical limitation of using the Solair 3200 particle counter is that only particles larger than 
0.3 µm were counted. The broad particle size range was chosen to obtain a general impression 
on the filtering capacities of the new facemasks. Furthermore, it is currently unknown what 
particle sizes are relevant for the airborne transmission of the SARS-CoV-2. The size of the virus 
particle is estimated to be 0.1 µm, but to which extend transmission takes places via aerosols 
(< 5 µm droplets) or larger respiratory droplets (> 5 µm) remains to be determined. When the 
FFP2-certified facemask was placed on the particle chamber, 99.4–99.9% of the environmental 
particles of between 0.3–10.0 µm was filtered (Fig. 1(a)). Two models of the self-designed masks 
showed significantly lower filtration efficiencies for particles of between 0.3–0.5 µm than the 
certified mask, in which the Reinier 0.1 filtered 74.6 ± 0.4% and the Reinier 1.0 88.2 ± 0.8%. The 
DSM 1.0 performed better than the other two models in this size range as this mask filtered 97.9 
± 0.3% of these particles. At least 96.9% of the particles larger than 0.5 µm were filtered by each 
of the three models. These observations indicate that the various types of masks are able to filter 
a significant amount of environmental particles. However, as the most penetrating particle size 
(MPPS) for fibrous filters has been shown in literature to vary between 0.03–0.5 µm (Lee and Liu, 
1980; Podgorski et al., 2006; Rengasamy et al., 2009), further testing with submicron-sized NaCl 
particles under standardized conditions is required. 
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(a)  

(b)  

Fig. 1. (a) Filtration efficiency (mean ± sd.) of environmental dry particles and (b) non-neutralized 
polydisperse NaCl particles by the manually-produced facemasks and benchmarked against an 
FFP2-certified facemask.  

 

The masks were therefore also challenged with non-neutralized polydisperse NaCl-particles 
(0.02–2.0 µm; MMD: 0.6 µm) under conditions that closely approximate the NEN-149 standards. 
According to these standards, FFP2-facemasks are required to filter at least 94% of the NaCl-
particles. The FFP2-certified facemask filtered 98.13 ± 0.84% of the NaCl particles (Fig. 1(b)). The 
Reinier-0.1 and -1.0 facemasks filtered respectively 98.9 ± 0.42% and 99.3 ± 0.36% of the NaCl 
particles. This is significantly more than observed for the dry environmental particles of between 
0.3–0.5 µm. These two models contained a single layer of melt-blown polypropylene and the 
above-described observations indicate that the two layers nonwoven fabric of the three-layer 
dental facemask of the Reinier-0.1 model can be removed without affecting the facemask’s 
filtering performance. The DSM 1.0-facemasks is the only type with three layers of melt-blown 
polypropylene filters and showed the highest NaCl-particle filtration efficiency of 99.83 ± 0.12% 
(Fig. 1(b)). This model also performed best in the environmental particle filtration test (Fig. 1(a)).  

The submicron-sized environmental particles were filtered less efficiently by the newly-
designed facemasks than the NaCl particles, which might be explained by the higher air velocity 
during the environmental particle filtration test. It has been well described in literature that an 
higher air velocity results in a lower filtration efficiency (Rengasamy et al., 2010, 2011, Miguel, 
2013, Gao et al., 2016, Mukhametzanov et al., 2016). Another explanation is that the MPPS of 
the Reinier-0.1 and -1.0 mask coincidently fell between 0.3–0.5 µm during the environmental 
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particle filtration test, while under the standard conditions with NaCl particles the MPPS might 
be an order of magnitude smaller as previously observed by Rengasamy et al. (2009), since the 
MPPS is dependent on aerosol type (He et al., 2013) and air velocity (Lee and Liu, 1980). 
Furthermore, it has been shown by others that particles of other sources might have higher 
penetration rates than the NaCl-particles (Penconek et al., 2013; Grima-Olmedo et al., 2014, 
Serfozo et al., 2017). Although the NaCl particle filtration test might overestimate a mask’s 
filtering performance, this test is currently the golden standard when assessing the facemask’s 
filter capacity. The NaCl-particle filtration efficiency of the Reinier 0.1- and DSM 1.0-facemasks 
was also verified by notified bodies and showed similar filtration efficiencies as in this study 
(Figs. S5 and S6), confirming that the custom-made setup indeed results in similar observations 
as under the conditions of the NEN149 standards. Hence, a good indication has been obtained 
that the filter capacity of the three types of facemasks meets the FFP2 requirement under 
standardized conditions. 

 

3.2 Reinier-0.1 and -1.0 Facemasks have Acceptable Inward Leakage and 
Breathing Resistance 

A proper fit and acceptable breathing-resistance are also crucial for the protective quality of a 
facemask. FFP2-certified facemasks are allowed to have an average inward leakage of maximal 8 
or 11%, depending on the number of tests and exercises, according to the NEN-149 standards. 
(Table 1). As our facemasks were tested by only three different persons, not the average, but 
maximal observed inwards leakage was taken as a measure for the fit of a facemask (Table 2), 
thus defining a worst-case scenario. The FFP2-certified facemasks showed a maximal inward 
leakage of 0.5% (Table 2). Of the self-designed masks, the Reinier-0.1 and -1.0 models have 
acceptable fits of below 8%, whereas the DSM 1.0 shown significant leakage of 14.6%. For the 
breathing resistance tests, the facemasks were placed on a manikin head and the pressure drop 
was recorded while the airflow was increased. The maximal pressure drop at an inhalation flow 
of 30 or 95 L min–1 according to the NEN-149 standards is 0.7 and 2.4 mbar respectively. The 
pressure drops varied between 0.14 and 0.16 mbar at a continuous flow of 30 L min–1, and at a 
flow of 95 L min–1, the pressure drop varied between 0.74 and 0.85 mbar for all three facemask 
models (Table 3). Exhalation at a continuous flow of 160 L min–1 resulted in a pressure drop of 
between 1.11 and 1.44 mbar for the three different designs, which is below the 3.0 mbar that is 
allowed according to the NEN-149 standards. These observations indicate that all three designs 
meet the NEN149 standards regarding breathing resistance. However, for the DSM-facemask this 
result might be due to the significant amount of inward leakage.  

 

3.3 The Prototype Facemasks Filter at Least 98% of Virus-loaded Aerosols 
The facemask were also challenged with virus-loaded aerosols as an extra testcase for the 

filtration capacities of the new facemasks in addition to the conventional test with NaCl particles. 

 

Table 2. Maximal and minimal observed inward leakage. 

Facemask Max. observed inward leakage (%) Min. observed inward leakage (%) 

3M Aura 1862+ (FFP2) 0.5 0.5 
Reinier 0.1  4.8 4.2 
DSM 1.0  14.6 6.7 
Reinier 1.0  0.8 0.5 

 

Table 3. Pressure drop over the self-designed facemasks at continuous inhalation flows of 30 or 95 L min–1 and an exhalation 
flow of 160 L min–1.  

Facemask 
Inhalation 30 L min–1 

(0.7 mbar max.) 
Inhalation 95 L min–1 

(2.4 mbar max.) 
Exhalation 160 L min–1 

(3.0 mbar max.) 

Reinier 0.1 0.14 ± 0.003 0.74 ± 0.009 1.44 ± 0.05 
DSM 1.0 0.14 ± 0.003 0.84 ± 0.008 1.31 ± 0.06 
Reinier 1.0 0.16 ± 0.002 0.85 ± 0.01 1.11 ± 0.06 

about:blank
about:blank


ORIGINAL RESEARCH 
Special Issue on COVID-19 Aerosol Drivers, Impacts and Mitigation (XI) https://doi.org/10.4209/aaqr.2020.07.0424 

Aerosol and Air Quality Research | https://aaqr.org 7 of 10 Volume 21 | Issue 3 | 200424 

Furthermore, this test was strongly demanded by the healthcare professionals. 108 PFU of MHV, 
a beta coronavirus that infects mice, was aerosolized in our custom-designed tube system and 
passed through the filter material of each airtight fixated mask. The high number of PFU was 
required to observe at least 2 logs decrease in the number of PFUs, equivalent to 99% filtration, 
as it was expected that most virus particles might be lost after aerosolization into the tube 
system. This number of virus particles is orders of magnitude larger than the number of infectious 
SARS-CoV-2 particles that was sampled in a patient room with two COVID-19 patients (Lednicky 
et al., 2020). The virus was aerosolized with an Aeroneb Solo nebulizer, which creates small 
inhalable particles (MMAD 2.1 µm). When those particles were passed through a tube over 0.9 m 
distance, 99% of the particles were < 5.0 µm in size (Fig. 2). Particles smaller than 5.0 µm are 
generally defined as aerosols that can be easily inhaled (Heyder et al., 1980). The three types of 
facemask were tested in two separate sessions, which resulted in two independent datasets 
(Fig. 3) In the no mask-control, MHV was sampled in absence of a facemask in the sample holder 
to determine the maximum amount of virus that could be recovered from the air. This resulted 
in virus recovery of 4.09 ± 0.21 log PFU mL–1 in the first, and 5.89 ± 0.21 log PFU mL–1 in the 
second session (Figs. 3(a) and 3(c)), indicating that the virus collection efficiency in the latter 
session was higher than in the first session. Nevertheless, the collection efficiency of infectious 
virus particles was high enough to observe at least a 2-logs decrease in virus collection after 
placing a facemask in the sample holder. When an FFP2-certified facemask was placed in the 
sample holder, the amount of infectious virus and viral RNA copies that were recovered behind 
the facemask were respectively on average 2.3- and 2.4-logs lower than in the no-mask control 
in the first session. This corresponds to filtration efficiencies of 99.4 and 99.6% (Fig. 3(b)). When 
this type of facemask was used in the second session, the infectious virus and viral RNA recovery 
decreased by respectively 3.1- and 3.5-logs on average, which corresponds to 99.92 and 99.96% 
filtration efficiency (Fig. 3(d)). The Reinier-0.1 facemasks reduced the recovery rates of infectious 
virus and RNA copies on average by 2.1 and 2.8-logs respectively compared to the no mask-
control (Fig. 3(a)). This corresponds with the filtration efficiencies of 99.2 and 99.9% (Fig. 3(b)). 
2.3 and 2.6-log reductions were observed with the DSM 1.0-facemasks, which corresponds with 
99.3 and 99.6% filtration efficiency. The Reinier-1.0 facemasks were tested in the second session, 
which reduced the infectious virus and total viral RNA copy numbers with 3.1- and 2.6 logs on 
average, corresponding to 99.92 and 99.71% filter efficiency (Figs. 3(c) and 3(d)). The RNA copy 
nr to PFU-ratio with and without facemask are similar within each experiment, indicating that 
the mask’s filter material does not inactivate the virus upon passage. 

The virus filtration efficiency of the facemasks was determined at a continuous air velocity of 
0.42 m s–1, which is significantly higher than during the NaCl particle penetration test, that was 
performed under conditions according to the NEN-149 standard. Similar filtration efficiencies 

 

 

Fig. 2. Particle size range distribution (mean ± sd.) after aerosolization of 100 µL virus diluent by 
the Aeroneb Solo nebulizer and passage through a 0.9 m tube. 
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(a) (c) 

  
(b) (d) 

Fig. 3. Physical (copy nr mL–1) and biological (PFU mL–1) collection of (a and c) aerosolized mouse hepatitis virus and (b and 

d) filtration efficiencies for the self-designed facemasks. The FFP2-certified mask was used as a benchmark. 

 

were nevertheless observed as in the NaCl particle filtration test, which might be explained by 
larger sizes of the virus-loaded aerosols compared to the NaCl particles. The penetration rates of 
specifically the submicron-sized virus-loaded aerosols could unfortunately not be determined in 
this experiment. The biological origin of the virus-loaded aerosols is not relevant for the filtration 
efficiency by a facemask (Rengasamy et al., 2017). The air velocity used in present study was also 
higher than described in various other studies where the virus filtration efficiencies of facemasks 
were tested (Borkow et al., 2010; Harnish et al., 2013, 2016; Rengasamy et al., 2017; Zhou et al., 
2018). It was chosen here to test at 0.42 m s–1 as this is a more physiological relevant air velocity 
during inhalation as the maximal air velocity during an inhalation cycle reaches up to 1 m s–1 
(Tang et al., 2013). Despite the higher air velocity and the usage of a different virus, at least 98% 
of the virus-loaded aerosols were filtered by the FFP2-certified facemask, similarly as observed 
in the prementioned studies. However, significant lower virus filtration efficiencies (79% on 
average) were observed in a recently published airborne simulation experiment at an air velocity 
of 2 m s–1 (simulating coughs) when testing airtight fixated N95 facemasks on a recipient mannikin 
head (Ueki et al., 2020). The virus-loaded aerosols can apparently be forced through the filter 
material at this air velocity, which severely affected the filtering efficiency a facemask. Furthermore, 
when the N95-mask was not airtightly fixed to the mannikin-head, which would be the case in 
practice, the virus filtration efficiency was found comparable with that of a surgical mask. So 
although our self-designed masks were shown here to filter submicron-sized NaCl particles and 
virus-loaded aerosols, and showed acceptable breathing resistance and fits, more research under 
realistic conditions is needed to assess the protective capacity of the new facemasks. 
 

4 CONCLUSION 
 

It is concluded that under standardized conditions the Reinier-0.1 and -1.0 facemasks meet 
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the requirements of the NEN-149 standards in terms of filtration capacity, breathing resistance 
and fit. The self-designed masks were also shown to filter 99% of virus-loaded aerosols after 
airtight fixation, but more research is needed to assess the protective capacity of these masks. 
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