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Abstract

Background: Drawing genotype-to-phenotype maps in tumors is of paramount importance for understanding
tumor heterogeneity. Assignment of single cells to their tumor clones of origin can be approached by matching the
genotypes of the clones to the mutations found in RNA sequencing of the cells. The confidence of the cell-to-clone
mapping can be increased by accounting for additional measurements. Follicular lymphoma, a malignancy of mature
B cells that continuously acquire mutations in parallel in the exome and in B cell receptor loci, presents a unique
opportunity to join exome-derived mutations with B cell receptor sequences as independent sources of evidence for
clonal evolution.

Methods: Here, we propose CACTUS, a probabilistic model that leverages the information from an independent
genomic clustering of cells and exploits the scarce single cell RNA sequencing data to map single cells to given
imperfect genotypes of tumor clones.

Results: We apply CACTUS to two follicular lymphoma patient samples, integrating three measurements: whole
exome, single-cell RNA, and B cell receptor sequencing. CACTUS outperforms a predecessor model by confidently
assigning cells and B cell receptor-based clusters to the tumor clones.

Conclusions: The integration of independent measurements increases model certainty and is the key to improving
model performance in the challenging task of charting the genotype-to-phenotype maps in tumors. CACTUS opens
the avenue to study the functional implications of tumor heterogeneity, and origins of resistance to targeted
therapies. CACTUS is written in R and source code, along with all supporting files, are available on GitHub
(https://github.com/LUMC/CACTUS).
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Background
Tumor heterogeneity and clonal evolution present a
major challenge for cancer therapy [1]. Tumor cells
carry founder and subsequently acquired driver muta-
tions that cause transformation of the healthy cell into
an expanding population of malignant cells. Continuous
acquisition of mutations creates populations of tumor
cells with divergent mutational profiles. Diverging cells
with acquired driver mutations result in preferential
clonal expansion leading to intraclonal diversity. Given
that distinct genotypes induce key phenotypic differences
between the clones [2], gene expression variation between
the clones is expected. Measuring the phenotypes of
tumor clones, however, is challenged by the difficulties
in resolving the clonal genotype-to-phenotype maps in
tumors [3].
Follicular lymphoma (FL) is a common type of malig-

nant B cell lymphoma with characteristics of normal
germinal center (GC) B cells. FL cells maintain the
typical follicle-like structure of normal GC reactions
in response to pathogens. FL pathogenesis is founded
by the paradigmatic translocation (14;18)(q32;q21) that
places BCL-2 under transcriptional control of the IGH@
locus enhancer. Secondary drivers affect genetic modi-
fiers that enhance germinal center (GC) formation, reduce
B cell differentiation, and freeze FL cells in the GC
stage [4, 5]. Despite commonly observed pathogenic
genomic events, clinical behavior of FL is unpredictable
and ranges from spontaneous remission over long-term
stable disease to transformation to aggressive B cell
lymphoma.
In addition, FL cells are continuously exposed to a phys-

iological mutator mechanism, i.e., expression and action
of activation induced cytidine deamidase (AID) [6]. AID
focuses on B cell receptor (BCR) loci and results in highly
mutated BCR heavy and light chain genes in FL [7].
Whereas BCRmutations intrinsically may lead to a prolif-
erative signal by acquisition of N-linked glycosylation [8],
preferential expansion of clones with identical BCR can
also be explained by co-acquisition of underlying driver
mutations that enhance their proliferation. In addition
to grouping of individual cells into evolutionary clones
by exome-wide mutations and structural variants, single
FL cells can also be clustered based on the expression
of identical BCR sequences. BCR mutations can there-
fore be considered events in clonal evolution in FL and
present suitable markers that may allow a more accurate
reconstruction of clonal evolution than based on exome
mutations only.
Elucidation of tumor evolution and reconstruction of

the tumor clonal architecture are possible from bulk
DNA sequencing [9–12] and from single-cell (sc) DNA
sequencing data [13–16]. The outcome of such evolu-
tionary analysis is a set of tumor clones, defined by

their genotypes and frequencies. The genotype indicates
which mutations are present in each clone, and the fre-
quency indicates the fraction of cells from that clone in
the entire tumor cell population. The task of identifying
the tumor clones and their genotypes is computationally
very difficult [12], and thus, the tumor clone genotypes
inferred from DNA sequencing alone are likely to be
imperfect.
Recent efforts into the direction of mapping geno-

types to phenotypes in tumors include characterizing gene
expression profiles of tumor clones based onmatching the
single-cell RNA sequencing (scRNA-seq) readouts to copy
number variants in the clones [17–19]. Poirion et al. [20]
proposed a linear model detecting association of single
nucleotide variants from scRNA-seq with gene expres-
sion. This approach, however, ignores the evolutionary
history of the tumor, which can be resolved to deter-
mine the genotypes of the tumor clones. Such obtained
genotypes can then be matched to mutations observ-
able in scRNA-seq. Recently introduced cardelino [21]
is the first approach to successfully utilize the mutation
mapping between the clone genotypes and the variants
in scRNA-seq data. The performance of this approach,
however, can be hampered by the fact that single-cell
transcripts contain only information on 5′ part of the
RNA and that the data are sparse. With such limited
data, the confidence of assigning single cells to clones,
and thus also of clonal genotype to gene expression phe-
notype mapping, is also limited. Here, we define the
confidence as the concentration of the probability distri-
bution of the cell-to-clone assignment, with high confi-
dence corresponding to a high probability of assignment
to one clone and low confidence corresponding to a uni-
form probability over clones. To increase the confidence,
additional available evidence should be integrated into
the inference. One such evidence is a given clustering
of cells, such as the grouping of cells by their similar
BCR sequences in FL evolution. Combining multiple data
sources has the potential to increase the resolution of
tumor heterogeneity analysis [22], but is computation-
ally challenging [23] and calls for a dedicated probabilistic
model.
Here, we propose a probabilistic graphical model for

integrating Clonal Architecture with genomic Clustering
and Transcriptome profiling of single tUmor cellS (CAC-
TUS). The model extends cardelino [21] and maps single
cells to their clones based on comparing the allele-specific
transcript counts on mutated positions to given clonal
genotypes, leveraging additional information about evo-
lutionary cell clusters. As part of the model inference,
CACTUS corrects the input clone genotypes and adjusts
the input cell clustering using all available data. The input
clusters should be defined based on additional evolution-
ary information, in such a way that the model can assume
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that cells in the same cluster tend also to belong to the
same tumor clone.
We apply CACTUS to newly generated whole-exome

sequencing (WES), scRNA-seq, and single-cell BCR
sequencing data of FL tumor samples from excised malig-
nant lymph nodes of two subjects. As a result, the single
cells are assigned to their clones of origin, accounting
for the similarities of their BCR sequences (Fig. 1). We
demonstrate that guided by the BCR sequence informa-
tion, CACTUS assigns single cells to tumor clones in
agreement with independent gene expression clustering.
For both subjects, CACTUS maps cells and BCR clus-
ters with substantially higher confidence than cardelino.
These results indicate that the important challenge of
tumor genotype-to-phenotype mapping can successfully
be approached by probabilistic integration of multiple
measurements.

Methods
Follicular Lymphoma sample preparation
Samples with histologically confirmed infiltration of fol-
licular lymphoma were collected with approval by the

institutional review board of Leiden University Medi-
cal Center according to the Declaration of Helsinki and
with written informed consent. Single-cell suspensions
were obtained by gentle mechanical disruption and mesh
filtration and were cryopreserved using 10% DMSO as
cryoprotectant. The remaining tissue was cultured in
low-glucose DMEM to obtain stromal cell cultures for
isolation of DNA of non-malignant cells. Thawed single
FL cells were purified by flow cytometry using fluores-
cently labeled antibodies specific for CD19 and CD10
and rested overnight followed by removal of dead cells
using the MACS dead cell removal kit. Cells of differ-
ent patients were pooled and loaded on a 10X Genomics
chip to obtain single-cell cDNA libraries for an expected
1500 cells per patient. Following single-cell cDNA library
generation and amplification, one fraction was directly
sequenced for 5′ gene expression profiling. The second
fraction was enriched for BCR transcripts by seminested
amplification using 3′ constant domain primers for all
BCR genes, partially digested and sequenced. Both sin-
gle cell libraries were sequenced in paired-end mode on
Illumina (2 × 150 bp).

Fig. 1 Overview of the patient data analysis and the CACTUS model. Whole-exome sequencing and single-cell sequencing of all transcripts, as well
as single-cell sequencing of BCR, were performed on samples from two FL patients. Using WES, imperfect clonal evolution could be inferred and
given as a prior to the model (C1, C2, . . . ). From scRNA-seq, allele-specific transcript counts (mutated/total) were extracted at mutated positions
(M1,M2, . . .). Input BCR clusters were defined as clusters of cells with identical BCR heavy chain sequences. The data of input tumor clones, mutation
transcript counts, and given single-cell clusters (here, the BCR clusters) are combined in the CACTUS model for inference of the clonal assignment of
the clusters. Both the input clone genotypes and clustering are considered potentially imperfect and are corrected during the inference using all
available data. Image created with Biorender.com
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WES sequencing andmutation calling
FL single cells were purified by flow cytometry as
described above to obtain bulk purified FL cells for
immediate isolation of DNA. Whole-exome sequenc-
ing (WES) was performed on paired FL and normal
DNA at 200× and 50× coverage, respectively. Genomic
DNA was isolated using the QIAamp DNA Mini kit
(Qiagen). Samples were sequenced (HiSeq 4000 instru-
ment, Illumina Inc.) in paired-end mode on Illumina
(2 × 101 bp) using TrueSeq DNA exome kit (v.6) (Illu-
mina Inc.). Paired-end reads were aligned to the human
reference genome sequence GRCh38 using BWA–MEM
(V0.715-r1140) [24]. Deduplication and alignment met-
rics were performed using Picard tools (v2.12.1). Local
realignment was performed around indels to improve
SNP calling in these conflicting areas with the Indel-
Realigner tool. Recalibration to avoid biases was per-
formed following the Genome Analysis Toolkit (GATK)
Best Practices [25]. Single mpileup files were generated
from paired bam normal/tumor using samtools mpileup
(v1.6). Mutation calling and computation of somatic p
values (SPV) was performed on mpileup output files
using Varscan (v2.3.9)[26] to WES data from tumor and
patient-matched normal samples with a minimum cover-
age of 10×. Quality control metrics were assessed using
FastQC (v0.11.2)[27] before and after the alignment work-
flow and reviewed to identify potential low-quality data
files.

Single-cell data processing
Sequencing data was processed with 10X Genomics Cell
Ranger v2.1.1 with respect to GRCh38-1.2.0 genome refer-
ence to obtain UMI-corrected transcript raw gene expres-
sion count tables, BAM files, and BCR all_contig.fasta
files.
To generate single-cell allelic transcript counts, we used

a custom-made script to identify reads intersecting with
WES-based mutated positions. For each read, to classify
the allele, we identified the single nucleotide overlapping
themutated base. To obtain transcript counts, we used the
unique molecular identifiers (UMIs) associated with the
reads.
We used the vireo function from cardelino pack-

age v0.4.2 to construct clusters of cells sharing the
same germline genotype. As input, we provided allelic
counts for the positions likely to differ between the
subjects and not mutated between FL and stromal
cells. For further processing, we selected cells assigned
to a single subject at minimum probability thresh-
old of 0.75. Once the clusters of cells sharing the
same germline genotype were identified, we assigned
them to patients by comparing the cluster consensus
genotype with the patient-labeled genotypes obtained
fromWES.

IMGT/HighV-Quest [28] was used for high-throughput
BCR analysis and annotation of the BCR all_contig.fasta
file [28]. IMGT/HighV-Quest output data was filtered for
productive and rearranged sequences, and FL cells with
identical BCR heavy chains were considered unique BCR
clusters within the malignant cell population and were
annotated with unique identifiers. R-package “vegan” was
used to calculate Pielou’s index of evenness for BCR clus-
ter size distribution.

Phylogenetic analysis
For each subject, we first identified common mutations
that can be found in both WES data and scRNA-seq
data. Next, we used FALCON-X with default parame-
ters for estimation of allele-specific copy numbers from
WES data. As a verification, we compared the results of
FALCON-X with those of GATK CNV analysis pipeline,
and confirmed that the two approaches gave similar
results. Finally, we run Canopy [9], providing the esti-
mated major and minor copy number, as well as the
allele-specific read counts in the tumor and matched nor-
mal WES data as input. Taking advantage of a Bayesian
framework, Canopy estimates the clonal structure of the
tumor for a pre-specified number of clones. Choosing
between trees with the number of clones from 2 to 4, for
both subjects, the BIC criterion used by Canopy suggested
trees with 4 clones as the best solution. For further analy-
sis, for each subject, we selected the top tree returned by
Canopy (see Additional file 1 for the posterior likelihood
and BIC plots of Canopy for subjects S144 and S12118,
respectively).

Mapping BCR clusters to tumor clones using CACTUS
Below, we introduce a probabilistic model, CACTUS,
for mapping a given set of cell clusters to tumor clones
based on the mutation matching between the cells in
clusters and the clone genotypes (Fig. 2). In this anal-
ysis, the input clusters corresponded to sets of cells
with identical BCR sequences. The input clustering and
input clone genotypes were corrected during the infer-
ence process, taking into account all available data. Both
CACTUS and cardelino are inferred using Gibbs sam-
pling. For each subject, CACTUS was run for the top
Canopy tree for a maximum of 20,000 iterations of the
Gibbs sampler, with 10 different starting points. For the
sake of comparison, cardelino was applied with the same
setup.
CACTUS is a direct extension of cardelino [21],

accounting for cell clustering, with the assumption that
cells in the same cluster belong to the same clone. Let
i ∈ {1, . . . ,N} index mutation positions, which can be
identified both in bulk DNA sequencing and single-cell
RNA-seq data (see above). We assume we are given at
input a set of K tumor clones, indexed by k ∈ {1, . . . ,K}.
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Fig. 2 The graphical model representation of CACTUS. Circle nodes are labeled with random variables in the model. Arrows correspond to local
conditional probability distributions of the child variables given the parent variables. Observed variables are shown as grayed nodes. Double-circled
nodes are deterministically obtained from their parent variables. Small filled circles correspond to hyperparameters. Ci,k denotes the true (corrected)
genotype of clone k at variant position i. �i,k denotes the input clone genotypes, with �i,k = 1 if the mutation i is present in clone k and 0
otherwise. Gj,q denotes the distance of the cell j to cluster q, computed based on the input clustering of cells. Tj = q indicates that cell j is in cluster
q. pj,q is interpreted as the success probability for cell j to switch to cluster q. Ai,j denotes the observed count of unique transcripts with alternative
(mutated) nucleotide mapped to position i in cell j. Di,j denotes the total unique transcripts count mapped to that position in that cell. Iq = k
represents the assignment of cluster q to clone k. θi denotes the success probability of observing a transcript with the alternative nucleotide at a
position i in a cell that carries this mutation, and θ0 the success probability of observing a transcript with the alternative nucleotide in a position that
is not present in the cell. ξ is the error rate for the genotypes. {ν0, ν1, κ} constitutes the set of hyperparameters in the model

Each tumor clone is represented by its genotype and
prevalence in the tumor population. The input clone
genotypes are represented by a binary matrix �i,k with
entries equal 1 if the mutation i is present in clone k and 0
otherwise.
We are also given an independent clustering of sin-

gle cells, where each cluster q ∈ {1, . . .Q} contains a
number of cells and the clusters are assumed not to
overlap. Let j ∈ {1, . . . ,M} index cells. We assume
that the input clustering is imperfect, and thus, we
define the true (corrected) clustering by a set of hid-
den categorical variables T = {T1, . . . ,TM}, with each
Tj taking values in {1, . . . ,Q} and Tj = q indicating
that cell j is in cluster q. We assume a categorical
distribution for Tj:

P(Tj = q|pj,1, . . . , pj,Q) = pj,q,

where
∑

q pj,q = 1. The parameters of the categorical
distribution pj,q are interpreted as the success probabi-
lities for cell j to switch to cluster q. We assume these
success probabilities are dependent on the input cluster-
ing of cells. Denote p the matrix with elements pj,q, p =
(pj,q)j=1,...,M,q=1,...,Q. LetGj,q denote the distance of the cell
j to cluster q, obtained from the input clustering. Based on
Gj,q, the probability pj,q is defined as:

pj,q = e−cGj,q

∑
q′ e−cGj,q′

,

where c is a constant determining the strength of the prior.
This parameter should be defined by the user. Here, we set
c = 2. In this application, the input clustering is defined as
sets of cells with identical BCR sequences. Therefore, each
input cluster is represented by the shared BCR sequence
of its cells. Based on such input clustering, for each cell j
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and cluster q, the distanceGj,q is computed as the number
of different mutations between BCR sequence of cell j and
the representative BCR sequence of cluster q. Thus, the
distance of q to its own cluster equals 0. For cells which did
not have its BCR sequenced, we set their distance to their
own cluster to 0, and their distance to all other clusters
as equal to the mean of all known distances of cells to
clusters.
We are interested in assignment of the cell clusters to

the clones. The clone assignment of each cluster q is
represented in the model by a hidden variable Iq with
values in {1, . . . ,K}. We assume a uniform prior for Iq
and set P(Iq = k) = 1

K . Alternatively, the prior could
depend on the prevalences derived from the evolution-
ary model. The probability of cluster-to-clone assign-
ment returned by CACTUS is computed from the Gibbs
sampling iterations, as the posterior probability distribu-
tion of Iq. The single cells are assigned to each clone
with the same probability as their cluster. Thus, for each
cluster q and each cell j in q, the assignment probabil-
ity of j to clone k equals the probability of assignment
of q to k.
We assume that the input clone genotypes can con-

tain errors with error rate ξ . The prior distribu-
tion for the error rate is parametrized by κ =
(κ0, κ1) and is set to P(ξ |κ) = Beta(ξ ; κ0, κ1). We
define a hidden random variable Ci,k denoting the true
(corrected) genotype of clone k at variant position
i, with:

P(Ci,k = 1|�i,k , ξ) = ξ1−�i,k × (1 − ξ)�i,k .

Let matrix A with elements Ai,j denote the observed
count of unique transcripts with the alternative (mutated)
nucleotide mapped to position i in cell j, and matrix D
with elements Di,j denote the total unique transcripts
count mapped to that position in that cell. Let θi denote
the success probability of observing a transcript with the
alternative nucleotide at a position i in a cell that carries
this mutation, and θ0 the success probability of observ-
ing a transcript with the alternative nucleotide in a cell
that does not carry this mutation genotype of the cell. The
distribution of the observed read counts then becomes:

P(Ai,j|Di,j, Iq,Ci,Iq , θ ,Tj = q) =
{
Binom(Ai,j|Di,j, θ0) if Ci,Iq = 0
Binom(Ai,j|Di,j, θi) if Ci,Iq = 1.

We assume beta priors on the θ parameters:

P(θi|v1) = Beta(θi|α1,β1)

P(θ0|v0) = Beta(θ0|α0,β0),

where v1 = (α1,β1) and v0 = (α0,β0). We denote v =
(v0, v1).
Let Aq be the matrix of alternative allele counts for

cells contained in cluster q, at mutated positions, i.e.,
Aq = (Ai,j)j∈q,i=1,...,N , and let Dq = (Di,j)j∈q,i=1,...,N .
Since we assume the observed read counts at the dif-
ferent positions and different cells are independent,
we have:

P(Aq|Dq, Iq,C, θ ,T) =
∏

j∈q

N∏

i=1
P(Ai,j|Di,j, Iq,Ci,Iq , θ ,Tj=q).

CACTUSmodel inference
We use Gibbs sampler, a Markov chain Monte Carlo
(MCMC) algorithm for generating samples from the
posterior distribution. We iteratively sample each hid-
den variable which is conditionally independent given
the rest of the hidden variables in the model. The hid-
den variables in CACTUS include the cluster assign-
ment matrix I, the success probabilities of observing a
transcript θ = (θ0, θ1, . . . , θN ), the corrected cluster-
ing matrix T, the corrected genotype matrix C, and its
error rate ξ . We describe the sampling steps for the
full joint distribution of these hidden variables in the
following.

Sampling clone assignment of clusters Iq
We sample cluster-to-clone assignment variable Iq, given
the Markov blanket of Iq in the graphical model (Fig. 2):

P(Iq = k|A,D,C,T, θ) ∝ P(Iq = k)P(Aq|Dq, Iq = k,C, θ ,T)

∝
∏

j∈q

N∏

i=1

{
Binom(Ai,j|Di,j, θi)Ci,k × Binom(Ai,j|Di,j, θ0)(1−Ci,k )

}
.

(1)

Sampling success probabilities of observing a transcript θ
Similarly, we sample θ from the posterior probability:

P(θ |A,D,C, I,T, v) ∝ P(θ |v)
Q∏

q=1

∏

j∈q

N∏

i=1
P(Ai,j|Di,j, Iq,Ci,Iq , θ ,Tj = q)

∝ Beta(θ0|α0,β0)
N∏

i=1
Beta(θi|α1,β1)
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×
Q∏

q=1

∏

j∈q

N∏

i=1

{
Binom

(
Ai,j|Di,j, θi

)Ci,Iq Binom
(
Ai,j|Di,j, θ0

)1−Ci,Iq
}

=
⎧
⎨

⎩
Beta (θ0|α0,β0)

Q∏

q=1

∏

j∈q

N∏

i=1
Binom

(
Ai,j|Di,j, θ0

)
(
1−Ci,Iq

)
⎫
⎬

⎭

×
⎧
⎨

⎩

N∏

i=1
Beta (θi|α1,β1)

Q∏

q=1

∏

j∈q
Binom

(
Ai,j|Di,j, θi

)Ci,Iq

⎫
⎬

⎭
.

(2)

Using the beta-binomial conjugacy, θ0 and θi, for 0 <

i < N are sampled from the beta distribution:

θ0|A,C, I,T ∼ Beta(α0 + u0,β0 + v0),
θi|A,C,D, I,T ∼ Beta(α1 + ui,β1 + vi), (3)

where

u0=
Q∑

q=1

∑

j∈q

N∑

i=1
Ai,j(1−Ci,Iq ), v0 =

Q∑

q=1

∑

j∈q

N∑

i=1
(Di,j−Ai,j)(1 − Ci,Iq ),

ui =
Q∑

q=1

∑

j∈q
Ai,jCi,Iq , vi =

Q∑

q=1

∑

j∈q
(Di,j − Ai,j)Ci,Iq .

Sampling the corrected clusteringmatrix T
The corrected sampling matrix T is sampled based on the
Markov blanket of T in the graphical model (Fig. 2):

P(Tj = q|p,A,C,D, I, θ)

= P
(
Tj = q|pj,1, . . . , pj,Q

) ∏N
i=1 P

(
Ai,j|Di,j, Iq,Ci,Iq , θ ,Tj = q

)

∑Q
q′=1P

(
Tj=q′|pj,1, . . ., pj,Q

)∏N
i=1P

(
Ai,j|Di,j, Iq,Ci,Iq′ , θ ,Tj=q′

) ,

where we assume the categorical prior over T :

P(Tj =q|p,A,D,C, I, θ)

= pj,q
∏N

i=1 P
(
Ai,j|Di,j, Iq,Ci,Iq , θ ,Tj = q

)

∑Q
q′=1 pj,q′

∏N
i=1 P

(
Ai,j|Di,j, Iq,Ci,Iq′ , θ ,Tj = q′

) .

(4)

Sampling the corrected genotypematrix C
Similarly, the corrected genotype matrix C is sampled
using the Markov blanket of C in the graphical model:

where

|�i,k − ξ |
Q∏

q=1

∏

j∈q
Binom(Ai,j|Di,j, θi)1(Iq=k)

=P(Ci,k = 1|�i,k , ξ)

Q∏

q=1

∏

j∈q
P(Ai,j|Di,j, Iq,Ci,Iq = 1, θ ,Tj = q)

and

(1 − |�i,k − ξ |)
Q∏

q=1

∏

j∈q
Binom(Ai,j|Di,j, θ0)1(Iq=k)

=P(Ci,k = 0|�i,k , ξ)

Q∏

q=1

∏

j∈q
P(Ai,j|Di,j, Iq,Ci,Iq = 0, θ ,Tj = q).

Here, we assume Bernoulli distribution over Ci,k :

P(Ci,k = 1|�i,k , ξ) = ξ1−�i,k × (1 − ξ)�i,k

Indeed, we have P(Ci,k = 1|�i,k = 1, ξ) = 1 − ξ and
P(Ci,k = 1|�i,k = 0, ξ) = ξ . Thus, we can shortly write
P(Ci,k = 1|�i,k , ξ) = |�i,k − ξ |. Similarly, for Ci,k = 0, we
can write P(Ci,k = 0|�i,k , ξ) = 1 − |�i,k − ξ |.
Sampling the error rate ξ

We can compute the distribution of the error rate ξ having
the corrected genotypematrixC, as well as the input clone
genotype matrix � and hyperparameters κ as follows:

P(ξ |C,�, κ) = P(ξ |κ)

N∏

i

K∏

k
P(Ci,k = 1|�i,k , ξ)

= Beta(ξ ; κ0, κ1) × ξ1−�i,k (1 − ξ)�i,k .

From the beta-Bernoulli conjugacy we obtain:

P(ξ |C,�, κ)=Beta

⎛

⎝κ0+
∑

i,k
1(�i,k �= Ci,k), κ1+

∑

i,k
1(�i,k =Ci,k)

⎞

⎠ .

(6)

Finally, the Gibbs sampling algorithm for CACTUS was
derived as a straightforward modification of the algorithm
used for cardelino [21]. In the algorithm, Iq is iteratively
sampled using Eq. (1) for q = 1, . . .Q, θi for i = 1, . . . ,N is
sampled using Eq. (3), Tj is sampled for j = 1, . . . ,M using
Eq. (4), Ci,k for i = 1, . . . ,N and k = 1, . . .K is sampled
using Eq. (5), and ξ is sampled using Eq. (6).

P(Ci,k = 1|C−(i,k),A,D, θ , I, ξ ,�i,k ,T) =

|�i,k − ξ |
Q∏

q=1

∏

j∈q
Binom(Ai,j|Di,j, θi)1(Iq=k)

|�i,k−ξ |
Q∏

q=1

∏

j∈q
Binom(Ai,j|Di,j, θi)1(Iq=k) +(1−|�i,k −ξ |)

Q∏

q=1

∏

j∈q
Binom(Ai,j|Di,j, θ0)1(Iq=k)

, (5)
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Results
Single cell andWES profiling of two FL patients
The analyzed tumor cell populations were collected from
lymph nodes of two FL patients: a male patient (S144) at
the age of 37, who was diagnosed with an IgM express-
ing FL stage IV and a female patient (S12118) at the age
of 51, who was diagnosed with an IgG expressing FL
stage IV. To detect (sub-)clonal mutations, we performed
WES at 200× coverage and called mutations between
FL cells and paired stromal non-hematopoietic cells. We
detected 398 somatic mutations for patient S144 and 1034
somaticmutations for patient S12118 with somatic p value
(SPV) < 0.1.
Next, for pooled samples of both subjects, we per-

formed single-cell sequencing of purified FL cells for
full transcriptomes and BCR enriched libraries. We used
the Vireo method [29] to group single cells back to the
patients based on matching of alleles expressed in the
single cells with germline mutations detected by bulk
WES. Deconvolution of the whole transcriptome data
yielded 1524 cells of subject S144 and 874 cells of subject
S12118, respectively. BCR sequencing yielded BCR heavy
chain sequences for approx. 70% of cells in both patients.
Both samples were dominated by a limited number of
larger BCR clusters (further referred to as multiplet BCR
clusters), with many BCR clusters containing only one
element (singleton BCR clusters). The “Pielou evenness
index” was 0.59 for S144 and 0.53 for S12118, indicating
moderate intraclonal diversification [30]. For generality,
cells without BCR heavy chain sequences were considered
to form a separate singleton cluster (see Additional file 1
for BCR cluster size distribution).

A probabilistic model for assigning cell clusters to
evolutionary tumor clones.
CACTUS is a Bayesian method that integrates three dif-
ferent sources of prior knowledge: (1) a set of tumor clones
with their genotypes, (2) independently obtained non-
overlapping cell clusters, and (3) scRNA-seq transcripts at
mutated sites, to map each cell cluster to its correspond-
ing tumor clone (the “Methods” section). Cells of the same
cluster are assumed to come from the same tumor clone.
Since the clusters are non-overlapping sets of cells, the
cluster assignment to clones defines also the cell assign-
ment (each cell in a given cluster is assigned to the same
clone as its cluster).
Here, the input cell clustering was defined by the

BCR sequences. Cells with the same BCR sequence are
expected to be more likely to come from the same
tumor clone. Thus, here CACTUS takes advantage of the
extra information of BCR sequences to gain power and
confidence of the assignment. During model inference,
both the input clone genotypes and the input cell cluster-
ing are corrected, taking into account all available data.

Thus, although the input clusters are defined as sets of
cells with identical BCR sequences, during model infer-
ence, the cells may swap between clusters, based not only
on BCR sequence similarity but also based on shared sets
of mutations.
CACTUS yields the posterior probability estimate for

each given cell cluster to be mapped to each given clone.
This probability is defined using a beta-binomial model
for the allele-specific transcript counts for each muta-
tion and cell in this cluster. The model estimates the
error rate for the given imperfect genotypes of the clones
and outputs corrected genotypes. Similarly, the corrected
clustering of single cells is returned. The likelihood of
assigning a cluster to a given clone increases with the
similarity of the mutation signal observed in the cells of
the corrected cluster to the corrected genotype of that
clone. Overall, the three most important hidden vari-
ables in the model are the corrected clone genotypes,
the corrected clusters, and the assignment of corrected
clusters to the clones by matching to their corrected
genotypes. The final assignment of the clusters (and thus
also their contained single cells) is obtained by select-
ing the most probable tumor clone for each corrected
cluster (Fig. 1).
For both subjects, to define the input clonal structures,

we first identified a set of mutations that could be identi-
fied both in WES and scRNA-seq data. We consider the
mutation to be present in scRNA-seq if at least one vari-
ant read is observed. From the identified 398 mutations
with SPV < 0.1 for subject S144 and 1034 mutations
for subject S12118, for further analysis, we selected only
these mutations, for which any transcript expression was
observed in scRNA-seq. Despite the relaxed significance
level of 0.1 for the somatic p values, we consider the
common mutations as reliable, since they have evidence
in both data sources. Only 5 out of 95 total resulting
common mutations for subject S144, and 5 out of 133
common mutations for subject S12118, had somatic p
value in the (0.05, 0.1) interval (Additional file 1). Num-
bers of the common mutations vary in different cells
(Additional file 1). For further analysis, we considered only
cells which contain at least one of the commonmutations.
This included 1262 out of 1524 cells in subject S144 and
799 out of 874 cells in subject S12118.
We next applied Canopy to the WES data for the com-

mon mutations and extracted the top tree and its cor-
responding clones, with their genotypes. To obtain the
cell-to-clone assignment, CACTUS was applied to the
obtained clonal structure, with a clustering of single cells
defined by identical BCR sequences and scRNA-seq tran-
script counts as input. To demonstrate how the addition of
the BCR clustering information improves the assignment
of cells to clones, we applied cardelino [21] to the same
Canopy trees and the scRNA-seq transcript counts. From
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these data, cardelino derived cell assignment to tumor
clones. The twomodels (CACTUS and cardelino) are sim-
ilar, but CACTUS can exploit the data more fully as it
additionally takes into account the cell clustering (here,
by BCR sequence) information into account. In fact, for
the specific case of such uninformative clusters that con-
tain exactly one cell, CACTUS reduces to cardelino. Thus,
naturally, the advantage of CACTUS should be visible
for such cells that are contained in clusters of more than
one cell. It is important to note that both CACTUS and
cardelino correct the input clone genotypes in their own
way. Thus, the final genotypes of the clones might be
similar, but obtained by correcting different initial clone
genotypes. Therefore, keeping original labels of the clones
would introduce artificial differences between the outputs
of the two methods. To make a comparison of CAC-
TUS to cardelino feasible, we first adjust the clone labels
in such a way that clones with most similar corrected
genotypes between the two methods share the same label
(Additional file 1).

CACTUS solution verified by an independent gene
expression analysis
To validate the returned cluster-to-clone assignment and
the induced cell assignment, we performed independent
analysis of transcript expression levels obtained from
scRNA-seq of the same cells. Note that here, we describe
gene expression as independent data since the transcript
counts across all sites in the gene sequences are not
used by CACTUS during inference. In contrast, CAC-
TUS uses specific counts of those reads that map to the
variant sites. Gene expression information is thus not
used for model inference, only the signal for existence
of mutations. We investigated whether the grouping of
cells into the inferred clones tends to coincide with sim-
ilarity of their expression profiles visually (Figs. 3 and 4).
To this end, we reduced the dimensionality of expres-
sion data using UMAP [31] provided in the Seurat pack-
age [32] and colored each cell with its corresponding
clone inferred using CACTUS, and for a comparison,
cardelino [21].

Fig. 3 Validation of cell-to-clone assignment with gene expression for subject S144. a, b, c, d Transcript expression of the cells reduced to two
dimensions using UMAP, shown separately for the cells in multiplet BCR clusters (a, b) and for cells belonging to singleton BCR clusters (c,d). Each
point corresponding to a cell is colored by its clone assigned by CACTUS (a, c) and by cardelino [21] (b, d). The advantage of CACTUS in terms of
agreement with gene expression is more pronounced for cells in multiplet BCR clusters
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Fig. 4 Validation of cell-to-clone assignment with gene expression for subject S12118. Figure panels as for subject S144 in Fig. 3. Also for subject
S12118, assignment to clones for cells in multiplet BCR clusters using CACTUS (a) improves agreement with gene expression data compared to
assignment of cells in singleton BCR clusters (d) and assignment using cardelino [21] (b), as quantified using connectivity measure (c). For singleton
BCR clusters, CACTUS performs comparably well as cardelino

As expected, CACTUS leverages information obtained
from the multiplet BCR clusters. For cells in such BCR
clusters, the results of CACTUS are more consistent with
gene expression (visualized for UMAP in Figs. 3a and 4a)
than the results of cardelino (Figs. 3b and 4b). For subject
S144 and cells contained in the multiplet BCR clusters,
CACTUS identifies clone C2 as a set of cells that is sepa-
rated in gene expression space from a large cluster of cells,
which is populatedmostly by clone C4 and in part by clone
C3. In contrast, cardelino finds clones which are mixed in
the reduced gene expression space (Fig. 3a,b). For subject
S12118, both methods associate clone C3 with one gene
expression cluster and clone C4 with another, with the two
gene expression clusters clearly separated in the reduced
space. For CACTUS, the identified clones are slightly less
intermixed with others than for cardelino (Fig. 4). For
CACTUS, the clone assignments of cells in the single-
ton BCR clusters show less agreement with expression
than assignments of cells in multiplet clusters (Figs. 3c
and 4c). The agreement for those cells is comparably low
for cardelino (Figs. 3d and 4d).

To quantify the agreement of the obtained assignment
of cells to the clones with gene expression, we used sev-
eral quality measures [33]. To this end, for each cell
and each subject, we first reduced the dimension of the
normalised expression measurement to 25 using PCA.
Next, we computed the root mean square standard devi-
ation (RMSSTD), connectivity, Dunn index, and Calinski-
Harabasz (CH) index for the reduced gene expression
vectors, grouped according to the assignment of cells to
the clones [34–38] (Table 1). In this way, we measured to
what extent the gene expression of the cells inside each
clone is homogeneous and differs between the clones. A
RMSSTD is a measure of compactness—a low value of
RMSSTD indicates low variance of gene expression in
each set of cells assigned to the same clone. The connec-
tivity measure takes values between 0 and infinity and
uses the k-nearest neighbors to indicate the degree of
connectedness of the clusters. We used k = 10 for the
computation, but we noted that other values of k gave
similar results. If the cells assigned to the same clone
would also be close in terms of Euclidean distance in
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Table 1 Quantification of the agreement of the cell-to-clone assignment with gene expression profiles of the cells

Subject Type Method Dunn index RMSSTD CH Connectivity

S144 Multiplet CACTUS 0.066 57.0 15.6 898.9

cardelino 0.057 77.1 3.2 1250.9

Singleton CACTUS 0.054 110.9 3.2 839.5

cardelino 0.052 109.5 1.9 711.9

S12118 Multiplet CACTUS 0.098 79.2 11.9 169.6

cardelino 0.084 96.2 10.0 495.0

Singleton CACTUS 0.085 105.4 4.1 285.4

cardelino 0.092 99.4 3.9 396.5

Bolded values indicate which method (CACTUS or cardelino) obtained better agreement for the given subject and type of cluster that the cells assigned to the clones come
from. High values of the Dunn index and the Calinski-Harabasz (CH) index, as well as low values of the root mean square standard deviation (RMSSTD) and connectivity
quantify to what extent the gene expression of the cells is homogeneous inside each clone and differs between the clones

the reduced 25-dimensional expression space, the con-
nectivity would be minimized. High Dunn index values
imply increased compactness of each clone and better sep-
aration between the clones, computed for the reduced
expression profiles of cells assigned to the clones. The
CH index is another measure for evaluating both com-
pactness and separation simultaneously, using average
between and within clone sum of squares. The higher
CH score indicates more agreement of the assignment of
cells into clones with their gene expression values. For
cells in the multiplet BCR clusters, these quality measures
clearly indicate that CACTUS obtains better agreement
between cell-to-clone assignment and gene expression
than cardelino (Table 1). In contrast, for cells in single-
ton clusters, CACTUS obtains similar quality measures as
cardelino.
We performed independent clustering of cells by their

normalised expression using Seurat [32]. Then, we com-
pared the resulting clustering of cells by expression to
the grouping of cells to clones inferred by CACTUS
and by cardelino using the adjusted Rand index (ARI;
[39]). The index, with values in the [− 1,1] interval, is
a corrected-for-chance version of the Rand index, mea-
suring similarity between two given clusterings. ARI is
negative when the agreement is lower than expected by
chance and is maximized when the compared cluster-
ings are identical. For subject S144 and the cells that are
in the singleton BCR clusters, both clones inferred by
CACTUS and by cardelino show very low similarity to
expression clusters (with ARI 0.03 and 0.02, respectively).
Compared to cardelino (ARI 0.01), CACTUS achieves a
higher agreement with the gene expression clustering for
cells contained in the multiplet BCR clusters (ARI 0.13).
For subject S12118, the CACTUS clones have the same
similarity to expression clusters as cardelino. For cells that
are in the singleton BCR clusters, both CACTUS and
cardelino yield ARI of 0.12. Finally, for the cells in the

multiplet BCR clusters, the ARI for both CACTUS and
cardelino is 0.21.
Overall, these results indicate that by accounting for

the BCR sequence similarity, CACTUS improves the
genotype-to-gene expression phenotype mapping.

CACTUS enhances the confidence of cell-to-clone
assignment
[For both subjects, the top identified evolutionary trees
consisted of four clones (Fig. 5a, b). The number of muta-
tions acquired along the branches of the trees ranges from
0 to 57. The genotype of each input clone is defined as
the set of the mutations acquired on the path from the
root of the tree to the leaf corresponding to the clone
(Additional file 2). Notably, the clone genotypes and fre-
quencies derived by Canopy (Fig. 5a, b) were corrected
both by CACTUS (Fig. 5c, g, e, i) and cardelino (Fig. 5d, h,
f, j). CACTUS, in addition, corrected the input BCR clus-
tering. All results discussed below are for the corrected
genotypes and corrected clusters.
We investigated the confidence of assignment of cells to

the tumor clones for both subjects (Fig. 5). The assign-
ment of cells to the clones was directly derived from the
assignment of their BCR clusters. In general, thanks to the
additional information from the BCR clusters, CACTUS
assigns cells to clones with a clearly higher confidence
than cardelino [21]. From bothmethods, the probability of
assigning each cell to each clone can be derived as output.
For subject S144 and a majority of cells, the probability
of assignment by cardelino is almost uniform across the
clones (Fig. 5d, h). In contrast, for the subset of cells in the
multiplet BCR clusters, the probability of assignment by
CACTUS makes confident assignments (Fig. 5c). For the
cells in the singleton BCR clusters, CACTUS assigns cells
with similar confidence to cardelino (Fig. 5g).
Compared to S144, for subject S12118 the confidence

of assignment is larger for both methods (Fig. 5). Again,
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Fig. 5 Confidence of cell assignment to the tumor clones. a, b Evolutionary trees inferred by Canopy [9] for subject S144 (a) and S12118 (b). Leaf
labels: clone prevalences. Branch labels: numbers of acquired mutations. Canopy considers also CNVs, but they are not used for cell-to-clone
mapping and hence not visualized here. Thus, the branch labels can be zero when the alterations acquired along that branch are copy number
changes. Clone 1 corresponds to the base, normal clone. In tree a, clone 4 (C4) differs from clone 3 (C3) by the 12 SNVs acquired on the branch
leading to the leaf C3. c–j Shades of brown indicate the probability of assignment of cells (y axis) to the clones (x axis; labeled with corrected
prevalences, computed as the fraction of single cells assigned to the clones) by CACTUS (c, g, e, i) and cardelino [21] (d, h, f, j). For cells in multiplet
BCR clusters (second row), CACTUS yields higher confidence of cell-to-clone assignment (c, e) than cardelino (d, f). For cells in singleton BCR
clusters (third row) for subject S144, the confidence of cell-to-clone assignment by CACTUS (g) is similarly weak as by cardelino (h), while for S12118
and for CACTUS (i), the confidence is higher than for cardelino (j)
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CACTUS has an advantage over cardelino, especially for
cells in the multiplet BCR clusters , assigning majority of
those cells to one clone with high probability (Fig. 5e, i).
In contrast, for a majority of cells, cardelino yields similar
probabilities of assignment to clones C2 and C4 (Fig. 5f, j).
Overall, the confidence of the assignment is clearly

higher for CACTUS than for cardelino, for both subjects
(Table 2). Here, we quantified confidence as the con-
centration of the assignment probability distribution over
the clones, averaged over the cells, using the measures
of entropy and the Gini index [40, 41]. Both entropy and
Gini index should be lower for larger concentration of the
probability distribution (equivalently, smaller dispersion).

Assignment of BCR clusters to tumor clones
Finally, we inspected the assignment of BCR clusters to
clones by CACTUS. For a comparison, for each clone,
we computed the proportion of each multiplet BCR clus-
ter (the fraction of cells in that BCR cluster) that were
assigned to this clone using cardelino (Fig. 6). In the
case of ties in the highest proportions across clones, we
assumed the BCR cluster was assigned to the same clone
as by CACTUS.
As expected by construction of the underlying proba-

bilistic model, for both subjects, CACTUS assigns entire
BCR clusters to single clones (Fig. 6a, c). For cardelino, the
proportions of BCR clusters are more distributed across
the clones (Fig. 6b, d). Given the uncertainty of assignment
of cells to clones by cardelino for subject S144 (Fig. 5), it
is not surprising that for some of the BCR clusters, the
clone assigned by CACTUS does not agree with the clone
with the highest proportion of cells assigned by cardelino.
CACTUS did not assign any BCR cluster to clone C1,
while cardelino assigned cluster U to that clone. All of
11 BCR clusters assigned to clone C2 by CACTUS were

Table 2 Quantification of the confidence of cell-to-clone
assignment

Subject Type Method Entropy Gini index

S144 Multiplet CACTUS 0.42 0.46

cardelino 0.85 0.90

Singleton CACTUS 0.79 0.84

cardelino 0.87 0.90

S12118 Multiplet CACTUS 0.04 0.04

cardelino 0.39 0.45

Singleton CACTUS 0.36 0.38

cardelino 0.47 0.54

Confidence is measured as the concentration of the probability distribution of
assigning a cell to clones, averaged across cells. Bolded values indicate which
method (CACTUS or cardelino) obtained higher confidence. Both normalized
entropy (entropy divided by the maximum possible value) and the Gini index are
supposed to have lower values for more concentrated distributions, and larger
values for more dispersed ones

assigned to the same clone by cardelino. Out of 15 BCR
clusters assigned to clone C3 by CACTUS, however, none
was assigned to clone C3 also by cardelino. This large
disagreement comes mainly from the fact that cardelino
assigned the highest proportion of cells contained in 13
of these 15 clusters again to clone C2. Finally, out of 11
BCR clusters assigned to clone C4 by CACTUS, 4 were
assigned in the highest proportion to the same clone also
by cardelino.
For subject S12118, the assignment of cluster agrees

between the twomethods, with the only exception of clus-
ter O. This is in accordance with the increased confidence
of assignment of cells to clones by both methods for that
subject (compare Fig. 5).
In summary, the agreement of both cell-to-clone and

BCR cluster-to-clone mapping between the CACTUS and
cardelino increases with the confidence of assignment. For
subject S144, for which cardelino yielded low-confidence
assignments, 736 out of 1262 cells in total (58%) and 22 out
of 37 multiplet BCR clusters (59%) were assigned to differ-
ent clones by the twomethods. Here, we assume cardelino
assigns a BCR cluster to the clone to which it assigned
the highest proportion of cells. For subject S12118, where
both methods increased confidence of assignment, only
123 cells out of 799 (15%) and only one BCR cluster out of
26 multiplet BCR clusters (4%) was assigned differently.

Discussion
Here, we propose a probabilistic model for accurate and
confident mapping of single tumor cells to their evo-
lutionary clones of origin. In this way, it allows clone-
specific gene expression profiling, opening the possibility
to reconstruct genotype-to-phenotype maps. The task of
cell-to-clone mapping is challenged by multiple technical
obstacles. First, although multiple methods exist for the
inference of tumor evolution, resolving tumor clones and
their genotypes is in itself a difficult computational prob-
lem and errors are expected [12]. Thus, CACTUS uses
the additional signal both in the scRNA-seq and in clus-
tering data to correct the given genotypes of the clones.
Second, the information in scRNA-seq data is only sparse,
prone to errors such as dropout and uneven coverage,
and biased to mutations observable in typically sequenced
first 150 nt of transcripts. It is thus important to real-
ize that the analysed tumor history is limited only to the
mutations measurable in single cells and is potentially
more coarse-grained than the true clonal structure of the
tumor. These limitations are purely technical, and in this
respect analysis using CACTUS would benefit from full-
length transcript sequencing with high depth, as well as
further developments increasing the quality of scRNA-seq
technology.
The key aspect of our model is the ability to borrow

information across different measurements (both of DNA
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Fig. 6 BCR cluster assignment to tumor clones, for both subjects. S144 (a, b) and S12118 (c, d), using CACTUS (a, c) and cardelino [21] (b, d).
Heatmaps with shades of green indicate the proportion of cells in multiplet cluster (y axis) assigned to clones (x axis). Each number in a green entry
indicates the non-zero number of cells of the corresponding BCR clusters assigned to the corresponding clone. Only BCR clusters of at least two
cells are featured. As expected, for both subjects, CACTUS assigns entire BCR clusters to single clones (a, c). For cardelino, the proportions of BCR
clusters are more distributed across the clones (b, d)

and RNA) of the cells in the sample. In particular, in
addition to clone genotypes derived fromWES, and allele-
specific transcript counts measured using scRNA-seq,
the model leverages information given by independent
clustering of single cells. Our results show that this addi-
tional evidence is crucial to overcome the challenges of the
cell-to-clone assignment problem. Not any given cell clus-
tering, however, can empower CACTUS to deliver more
confident results. The assumption that cells contained in
the same cluster tend to belong to the same clone is critical
for model performance. In particular, such cell cluster-
ing, where the cells in the same cluster are not expected

to belong to the same clone, can misguide model infer-
ence. Apart from clustering by genomic features, which
is expected to agree with the clonal structure of the
tumor cell population, for example, clustering by loca-
tion in the tissue could be provided as input to CACTUS.
Here, we used single-cell BCR heavy chain sequences
to define the input clustering. As would other relevant
genomic features, mutations in BCR loci bring evolution-
ary information. On a general level, they indicate whether
a subpopulation of tumor cells sharing a BCR sequence
with a low number of BCR mutations evolved relatively
early, or if it hasmore recently evolved and carries a higher
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number of mutations. Similar BCR sequences indicate
common evolutionary origin, as otherwise they would be
disrupted by acquisition of additional mutations. Impor-
tantly, although the input clustering is defined by identical
BCR sequences, cells are shifted between clusters during
the model inference process, both re-distributing cells
among multiplet clusters and joining singleton clusters to
multiplets. This process is influenced by all available data,
i.e., not only the similarity of BCR sequences, but also the
variants found in scRNA-seq and in the genotypes derived
from WES. Here, the quality of additional information
brought in by the BCR clusters is assured by the complete
and deep sequencing coverage of BCR loci in the applied
scRNA-seq strategy. Errors in sequencing, however, may
still occur, which further supports the need for updating
the input cell clusters.
CACTUS could be extended in the future to further

broaden its functionality and to account for even more
additional measurements. The input clone genotypes and
the number of clones are corrected, but need to be
inferred a priori to applying the model, and the evolu-
tionary tree structure is not utilized by the model. The
possible errors in the prior tree inference, or a wrong
assumption about the number of clones, can potentially
hamper the model performance. To some extent, this
problem is avoided by the fact that CACTUS corrects the
input clone genotypes during inference. Instead, CAC-
TUS could be extended to simultaneously infer the evo-
lutionary tree, yielding the clones and their genotypes,
together with the cell assignment to the clones. Finally,
other measurements could be incorporated to statistically
strengthen model inference. For example, gene expression
similarities between cells, here used for model validation,
could be used as input, as cells with similar expression
profiles are expected to come from the same clone.
Themodel is applied to newly generated FL patient data,

for the first time shedding light on how clonal evolution
in this cancer type induces clone-specific gene expression
and agrees with BCR clusters. Accurate mapping of clonal
structures with gene expression patterns allows detection
of potential therapy-resistant clones, which is essential for
effective personalized treatment. Our results demonstrate
applicability of CACTUS to the complex cancer samples.
The model, however, is more generally applicable and can
describe somatic evolution also in other diseases or in the
healthy tissue.

Conclusions
Here, we deal with the task of gene expression profiling
of tumor clones by matching the genotypes of the clones
to the mutations found by RNA sequencing in the sin-
gle cells. As applied here, CACTUS benefits from the
additional information contained in clusters of single cells
sharing similar BCR sequences to assign cells to clones,

to successfully deal with errors and dropouts in single-cell
RNA sequencing, and the difficulty of inferring the correct
clonal structure. In summary, this contribution is a step
forward in establishing computational tools for resolv-
ing the tumor heterogeneity and, by combining genotype
with gene expression profiles, its impact on functional
diversification of the tumor cell subpopulations.
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