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The power of single-cell RNA sequencing (scRNA-seq) in detecting cell heterogeneity or

developmental process is becoming more and more evident every day. The granularity

of this knowledge is further propelled when combining two batches of scRNA-seq into a

single large dataset. This strategy is however hampered by technical differences between

these batches. Typically, these batch effects are resolved by matching similar cells across

the different batches. Current approaches, however, do not take into account that we

can constrain this matching further as cells can also be matched on their cell type identity.

We use an auto-encoder to embed two batches in the same space such that cells are

matched. To accomplish this, we use a loss function that preserves: (1) cell-cell distances

within each of the two batches, as well as (2) cell-cell distances between two batches

when the cells are of the same cell-type. The cell-type guidance is unsupervised, i.e., a

cell-type is defined as a cluster in the original batch. We evaluated the performance

of our cluster-guided batch alignment (CBA) using pancreas and mouse cell atlas

datasets, against six state-of-the-art single cell alignment methods: Seurat v3, BBKNN,

Scanorama, Harmony, LIGER, and BERMUDA. Compared to other approaches, CBA

preserves the cluster separation in the original datasets while still being able to align the

two datasets. We confirm that this separation is biologically meaningful by identifying

relevant differential expression of genes for these preserved clusters.

Keywords: batch correction, auto-encoder, single-cell RNA sequencing, clustering, data integration

1. INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) technologies are important to study the cellular
heterogeneity in biological tissues (Hie et al., 2018; Svensson et al., 2018; Lin et al., 2019).
Compared with bulk RNA sequencing, scRNA-seq aims at detecting cellular differences in
seemingly homogeneous populations (Butler et al., 2018; Büttner et al., 2019). By analyzing
cellular characteristics via their high-throughput gene expression profiles, scRNA-seq increases
the resolution of cell type differences tremendously. A plethora of platforms and techniques are
available, but they all suffer from technical biases (such as RNA capture and reverse transcription
efficiency) (Lopez et al., 2018; Schuyler et al., 2019; Wang et al., 2019). Consequently, these batch
effects challenge the integration of scRNA-seq datasets, which is often necessary to compare
biological conditions (Haghverdi et al., 2018; Li and Li, 2018).

Typically, the quantification of these batch effects is clouded by biological differences between
batches, such as additional cell types or cells in different states (Tran et al., 2020). When trying to
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correct for batch effects, these biological differences should be
preserved while differences caused by technical effects should
be removed. Existing integration techniques for scRNA-seq that
try to resolve these batch effects have been divided into three
categories (Chazarra-Gil et al., 2021), based on where the initial
alignment takes place: either (1) in the original high dimensional
space (Seurat v3, mnnCorrect, and Scanorama), (2) the final
projected space (Harmony and fastMNN), or (3) an in-between
space (BBKNN). For example, Seurat v3 (Stuart et al., 2019)
uses diagonalized canonical correlation analysis (CCA) to align
directions of variations guided by “anchors” in the reference
patch. “Anchors” are detected by mutual nearest neighbors
(MNN) pairs between the query batch and the reference batch
and they represent single cells in a shared biological state.
mnnCorrect (Haghverdi et al., 2018) also uses MNN to match
cell types and consequently learns biological corrections for all
pairs to merge the batches. Scanorama (Hie et al., 2019) detects
cell pairs using MNN after data compression by singular value
decomposition (SVD) and an approximate NN search to reduce
the nearest neighbor query time. Harmony (Korsunsky et al.,
2019) and fastMNN (Haghverdi et al., 2018) first generate a
low dimensional embedding of the original count matrices, and
then aligns the data in this space, whereas BBKNN (Polanski
et al., 2020) uses MNN to detect neighbors in a reduced PCA
space and outputs neighbor graphs finally. All these existing
techniques have in common that they are fully unsupervised,
i.e., the alignments are not guided by information on cell
types. These methods perform well; however, they do not take
into account the cellular heterogeneity as present in single cell
data sets. Some deep learning techniques tend to simulate this
heterogeneity when training the alignment networks. DESC (Li
et al., 2020) constructs non-linear mapping functions through
iterative self-learning and aligns cells using a deep neural
network, trying to move each single cell closer to its nearest
cluster. BERMUDA (Wang et al., 2019) uses an autoencoder to
align cells and identifies similar clusters across batches to retain
cluster similarity. A loss function based on maximum mean
discrepancy (MMD) is used to optimize the resulting alignment
and retain the cellular homogeneity and heterogeneity.

In this work, we propose a cluster-driven batch alignment
(CBA) framework for scRNA-seq datasets, to merge cells from
the same population across batches while retaining their unique
biological signals. CBA uses a deep learning model which
incorporates a pre-clustering step to preserve the structure of
each individual dataset. To retain these structures as well as
align the batches, we incorporate intra-batch and the inter-batch
similarities into the loss function used for training our deep
learning model. The intra-batch similarity loss aims to keep
cells from the same batch close to each other when they are
from the same clustered group. The inter-batch similarity loss
minimizes the distance between cells from two matched clusters
across batches. In addition, we exploit a cellular reconstruction
loss aimed to reconstruct the original cellular expression profiles
(the auto-encoder part) and a classification loss which predicts
whether two cells within one batch are from the same cluster. Our
results illustrate that CBA is not only able to integrate cells from
different batches, but also preserves the existing heterogeneous

TABLE 1 | Cell type information of the utilized scRNA-seq datasets.

Dataset Batch Cells Populations Filtered

genes

Highly variable

genes number

Pancreas
smartseq 2 2,317 8 16,999 2,923

celseq 2 2,158 8 16,999 2,923

Mouse
lung

MCA 809 5 8,264 1,821

TM 1,283 5 8,264 1,821

cellular biological signals within each batch. We show that
these batch-specific signals correspond to subtle but meaningful
diversities of cells within the same cluster.

2. MATERIALS AND METHODS

2.1. Datasets
We used two pairs of datasets to evaluate our method (Table 1).
First, we used human pancreatic islet datasets measured
by different technologies, and downloaded from the Seurat
package1. We extracted one smartseq2 dataset (E-MTAB-5061)
and one celseq2 dataset (GSE85241). Second, we used Mouse
Cell Atlas (MCA) datasets2 (Ha et al., 2018) which contains cells
from 37 organs and the fluorescence activated cell sorting (FACS)
datasets from Tabula Muris3 (Tabula, 2018). We selected the
mouse lung datasets from MCA and the Tabula Muris which
were measured using two different technologies, Microwell-seq
forMCA and SMART-Seq2 for the FACS-sorted cells fromTabula
Muris. In the remaining of the manuscript, we refer to the Mouse
Cell Atlas data as MCA and the Tabula Muris data as TM.

For all datasets, we used the same data preprocessing using the
Scanpy package in Python. Considering that clusters with too few
cells will influence the training process of the integration module,
we followed (Wang et al., 2019) and removed cells that belong
to some clusters that have <10 cells (here we used the cluster
annotation provided in the original publication). After that, genes
expressed in too few cells (50 cells for pancreas datasets and
100 cells for mouse lung datasets) were removed and highly
variable genes were selected (scanpy.pp.highly_variable_genes(),
default parameters). Table 1 gives an overview of the retained
data for each dataset. After the gene filtering, gene counts
are normalized by the total count of all genes within a cell
and log transformed [using scanpy.pp.normalize_per_cell() and
scanpy.pp.log1p(), where counts_per_cell_after is set as 104]:

G̃i,j = log((
Gi,j∑
i Gi,j

× 104) + 1), where G̃i,j is the normalized

expression level of gene i in cell j. Next, we retained the top-k
principal components for the downstream analysis in which k
was decided on the bending point of the variance explained per
component (evaluating k ∈ [10, 15, 20, 25, 30]).

1https://satijalab.org/seurat/pancreas_integration_label_transfer.html
2https://figshare.com/s/865e694ad06d5857db4b
3https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_

of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/

27733
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2.2. Cluster-Driven Batch Alignment (CBA)
The complete CBA workflow is shown in Figure 1. The main
idea is that we aim to retain the data structure in the separate
batches as much as possible. Hereto, we first cluster the data in
each batch to capture this structure. Then we match the clusters
between the two batches and use this matching as guidance
for the data integration, i.e., distances between cells in matched
clusters should be small at the expense of distances between cells
belonging to non-matched clusters. We then use an autoencoder
to embed the data of both batches into a lower dimensional
space to achieve the alignment between the batches with the
constraints that: (1) the reconstructed expression is similar to
the original expression (reconstruction loss), (2) the distances
between cells of the same batch that belong to the same cluster are
kept small (structure preserving loss), (3) the distances between
cells of matching clusters is kept small (cluster preserving loss),
and (4) focusing on features that are informative for determining
whether clusters are matching or not (cluster prediction loss).
The following discusses each of these steps in more detail.

First, we cluster the cells in each batch separately to
capture the cell identities. Hereto, we applied the Louvain
clustering algorithm (Levine et al., 2015). We use the Scanpy
implementation, and the resolution parameter (related to the

number of clusters, and selected based on UMAP visualizations)
is set to 0.5 for the mouse lung datasets, the default value for
the pancreas datasets, and to 0.25 for the pancreas datasets in
which we removed one of the cell types (alpha cells from batch
1). Next, we create a cluster matrix in which an element equals
one when two cells (p and q) from the same batch b belong
to the same cluster, Cb

pq = 1, and zero otherwise. To match
the resulting clusters between the two batches, we calculate the
pairwise distances between cells of cluster i in batch one with cells
of cluster j in batch two:

Ui,j = log10{
1

k1i ∗ k
2
j

k1i∑

p=1

k2j∑

q=1

dcos(c
1
p, c

2
q)} (1)

where k1i and k
2
j are the number of cells in clusters i and j of batch

one and two, respectively, and Ui,j has size K1 × K2, with K1

and K2 equaling the number of clusters in batch one and two,
respectively. The log10 is used to emphasize small distances. As
distance between cells, we used the cosine similarity, representing
the angular similarity between the two gene expression vectors:

dcos(c
1
p, c

2
q) = 1 −

∑
(c1p×c2q)

||c1p||×||c2q||
. Next, we match a cluster i of batch

FIGURE 1 | Schematic representation of the proposed cluster-driven batch alignment (CBA) method to align single cell RNA-seq measured in two different batches.

The unsupervised clustering for cells from both batches and the network architecture in CBA are shown and the explanation of various nodes are listed on the top left

corner. Cell A and cell C are from batch one, and cells B and D are from batch two. At its core, the alignment is done using an autoencoder where cells A&B are aligned

and embedded in a lower dimensional representation M and, simultaneously, cells C&D are aligned and embedded in N. M&N are subsequently used to represent the

aligned cells, e.g., to make a UMAP visualization. Details on the autoencoder as well as the classification layer can be found in the section that describes CBA.
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one with the most similar cluster in batch two, i.e., cluster j∗

which has the minimum Uij over all j. With that we create a
matrixM1, which indicates for every pair of cells (c1p and c

2
q), from

batch one and two, whether they are originating from matching
clusters (M1pq = || − Uij∗ )||) or not (M1pq = 0), where || · ||
represents a 0–1 normalization. We also create a similar matrix
M2, which indicates the Euclidean distance between cells. The
final matrix M, Mpq = M1pq × M2pq, indicates the distance
between cells in different batches when belonging to matched
clusters (Mpq > 0) or specifies that the cells belong to non-
matching clusters (Mpq = 0) indicating that distances between
these cells do not have to be preserved.

To integrate cells from two batches, we use an autoencoder.
The network architecture is shown in Figure 1. Inputs are the
cells of the different batches (expression vectors related to the
selected PCs), the clustering of the separate batches, as well as
their matching. At the core of the autoencoder is the embedding
of a cell to a lower dimensional representation in such a way
that the expression profile can be reconstructed as good as
possible, i.e., the reconstruction loss, Lr should be minimized.
In Figure 1 this can be seen by following cell A: the initial
representation A1 is embedded with stacked dense layers to
a lower presentation A3, which is then reconstructed to the
original dimensions A4. To accomplish an alignment between
the two batches, we perform this auto-encoding for two cells
from the two different batches simultaneously. Moreover, we
do that for two pairs of cells at the same time (for reasons
explained later) in different streams, i.e., pair A&B and pair
C&D in stream 1 and 2, respectively (Figure 1). Focusing on pair
A&B, their representation is concatenated and embedded in M
and reconstructed in A4 and B4. The reconstruction loss then
requires that E2 is similar to the concatenated representation of
A&C. For both pairs this becomes:

Lr =
1

2ǫr

∑
((A1||C1)− E2)2 +

1

2ǫr

∑
((B1||D1)− F2)2

(2)

where x||y represent the concatenation of x and y, and ǫr is the
number of features in A1/B1/C1/D1.

To enforce the preservation of the local structure of the data,
we require, in addition, that cells from the same cluster (in one
batch) should be kept close to each other after the embedding,
which we express by a structure preserving loss Ls. For this
reason, we make use of the two streams. Then, requirements on
cells from the same batch, in Figure 1A&C as well as B&D, can be
formulated. Focusing on A&C, we require that the reconstructed
versions A4&C4 are close to each other when they are from the
same cluster, and we do not put any requirement when they are
from different clusters. For both pairs this structure preserving
loss becomes:

Ls =
1

ǫs

∑
(A4− C4)2C1

A4,C4 +
1

ǫs

∑
(B4− D4)2C2

B4,D4 (3)

where Cb
pq = 1 when two cells belong to the same cluster

within batch b and zero otherwise. ǫs is the number of features
in A4/B4/C4/D4.

Similarly, we require that two cells from different batches
but matching clusters also should be close together. For this
cluster preserving loss, Lc, we thus put requirements on pairs
A&B and C&D in Figure 1. Focusing on A&B, we require that
their embedded representations A4&B4 are close to each other
when they are in matching clusters and there are no constraints
when they are not in matching clusters. For both pairs this
then becomes:

Lc =
1

ǫc

∑
(A4− B4)2MA4,B4+

1

ǫc

∑
(C4− D4)2MC4,D4 (4)

where Mpq > 0 when cell p from batch 1 and cell q from
batch 2 belong to matching clusters and zero otherwise. ǫc is the
number of features in A4/B4/C4/D4. Note that when cells belong
to matching clusters, the importance of putting them close to
each other is increasing with their original similarity, as defined
byMpq.

In addition to the reconstruction losses, we also direct
the embedding toward those features that are informative for
determining whether clusters are matching or not. Hence, when
presented with pairs of cells from different batches (A&C or
B&D), we build a classifier based on their reconstructed data
(A4&C4 and B4&D4) using a softmax classifier, such that the
classifier outputs the predicted cluster label, trying to fit the one-
hot cluster label. The performance of the classifier is recapitulated
into a cluster prediction loss, Lp:

Lp =
1

ǫp

∑
(softmax(A4)− �(A4))2

+
1

ǫp

∑
(softmax(B4)− �(B4))2

+
1

ǫp

∑
(softmax(C4)− �(C4))2

+
1

ǫp

∑
(softmax(D4)− �(D4))2

(5)

where �(x) represents the one-hot clustered label of x and ǫp is
the number of features in A4/B4/C4/D4. The final loss function
is then defined as the sum of the individual loss functions:

Lc = Lr + Ls + Lc + Lp (6)

The autoencoder is trained using the Adam optimizer with a
learning rate set to 5 × 10−4 and training is stopped when all
losses converge stably (their values do not decrease over a period
of time).

2.3. Experimental Settings
Experiments were conducted using Python 3.7.0 (Spyder) and
R 4.0.2 on a PC with Intel Core i7-6700 CPU and 8-GB RAM.
For CBA, the training time per epoch was ∼1 s. Less than 10,000
epochs are needed for training per experiment (early stopping is
used to prevent overfitting). The used memory vs. the training
time is shown in Supplementary Figure 1 (about 1.18 GB), the
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memory is queried using the psutilmodule in Python. In LIGER,
the parameter k in optimizeALS() is set to 20 for the pancreas
datasets and to 40 for the mouse lung datasets (as recommended
by the authors). For BERMUDA an important parameter is
the threshold which is advised to be chosen between 0.85 and
0.90, after visual exploration we set this value to 0.85. For the
other alignment methods, the preprocessing modules (including
normalization and log transformation) and codes are consistent
with their papers and GitHub homepages.

2.4. Evaluation Metrics
We used several metrics to quantitatively evaluate the alignment
of two datasets. kBET (Büttner et al., 2019) measures how well
the datasets are mixed by exploring the confusion matrix in
neighborhood of cells. The silhouette score (SC) was used to
assess how well the data can be clustered. The adjusted rand
index (ARI) was used to compare how well a clustering of
the aligned dataset agrees with the clusterings in each of the
dataset separately. The normalized mutual information (NMI)
also captures the similarity between the above clusterings by
the normalization of the mutual information score. Finally, we
use the Fowlkes-Mallows index (FMI) to quantify the clustering
consistency by the positive predictive rate (precision) and the true
positive rate (recall).

3. RESULTS

3.1. CBA Resolves Batch Effects Across
scRNA-seq Datasets
We started by aligning two scRNA-seq datasets of the
human pancreas, one measured using Smart-seq2 and the
other measured using Cel-Seq2 (Table 1). After selecting genes
measured in both batches, normalization and selection of highly
variable genes (Methods), we select the top 50 PCs to represent
each cell based on the scree plot (Supplementary Figure 2).
Panel batch of Figure 2 represents the unaligned cells of the two
batches, showing that there are two batches.

Next, we clustered the cells in each batch separately. The
results are shown in the panels smartseq2 and celseq2 of Figure 2.
Here, we can see that clusters are differently spread, i.e., the

clusters in the celseq2 data are more heterogeneous compared to
the smartseq2 data. When aligning the batches, we aim to align
these clusters, but at the same time also retain the distribution of
cells in the original batches as much as possible.

To guide the alignment by the clustering in the original
batches, we automatically matched the clusters between batches
(Methods). Supplementary Figure 3 shows which pairs of cells
across the two batches are in matching clusters as represented by
matrixM (Methods), whereMpq > 0 if cells p and q from the two
different batches are inmatching clusters andMpq = 0 otherwise.
When aligning the two batches, we aim to move pairs of cells
from different batches but in matching clusters close together.

Based on the PC representation of the cells, the clustering
of the different batches, and the information about the
matching clusters, we aligned the two pancreas datasets using
CBA (Methods). CBA is an autoencoder and therefore finds
an embedding space in which the two batches are aligned.
Figure 3a1 shows the aligned cells in the embedded space
colored according to their batch. The batch effect is removed by
CBA as cells from different batches are overlapping. Moreover,
from Figure 3a2 (cells in batch one colored according to their
clustering) and Figure 3a3 (cells in batch two colored according
to their clustering), we do observe that CBA preserves the original
clusters (they are not scattered around), and that clusters from
different batches with the same annotations end up close to
each other.

We compared the performance of CBA with six existing
alignment methods: Seurat v3 (Stuart et al., 2019), BBKNN
(Polanski et al., 2020), Scanorama (Hie et al., 2019), Harmony
(Korsunsky et al., 2019), LIGER (Welch et al., 2019), and
BERMUDA (Wang et al., 2019). Figure 3 shows the resulting
alignments. From Figure 3b1, it shows that Seurat nicely aligns
the batches, which is not the case for Scanorama (Figure 3d1).
For the latter one, you can see clusters of aligned data consisting
of cells of only one batch, often relating to an original cluster in
the separate batches (Figures 3d2,d3). BBKNN (Figure 3c1) also
can align both batches but seems to increase the internal variation
within the clusters, resulting in touching/overlapping clusters.
LIGER (Figure 3g1) also performs well; however, it merges some
acinar cells with ductal cells. Interestingly, BERMUDA, which

FIGURE 2 | UMAP visualization of the pancreas datasets when no alignment of the cells is performed: (1) colored according to batches, (2) colored according to the

clusters found in batch one, and (3) colored according to the clusters found in batch two. The provided cell types by the authors are listed on the right side.
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FIGURE 3 | UMAP visualization of different batch effect removal methods for the pancreas datasets. (A–G) Show the different alignment methods: (A) CBA, (B)

Seurat v3, (C) BBKNN, (D) Scanorama, (E) Harmony, (F) BERMUDA, and (G) LIGER. For each panel four color codings are shown again: 1) colored according to the

batches, 2) colored according to provided clusters in batch one, 3) colored according to provided clusters in batch two, and 4) colored according to Louvain clusters.

The provided cell types listed in Figure 2 are only used to evaluate the resulting alignments and not used in the whole aligning process (including the unsupervised

clustering in CBA). In *4), the colors of cells are not corresponding with other subfigures since they are obtained by unsupervised clustering, their colors only indicate

the distinction of Louvain clusters.

Frontiers in Genetics | www.frontiersin.org 6 April 2021 | Volume 12 | Article 644211

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yu et al. Cluster-Guided Batch Alignment

is also an auto-encoder based alignment network like ours, has
more problems in aligning the batches.

Although Seurat seems to align both batches better than the
other competing methods, zooming in on the initial clustering
of the cells (per batch) shows that Seurat loses some diversity
in the individual cell types. That is, all resulting clusters are
condensed, not showing any structure within each cluster. In
other words, Seurat seems to “over-align” cells, i.e., merging
dissimilar cells together and decreasing the cellular diversity, this
will be explained in section 3.2.

To quantify the batch alignment performances, we evaluated
the resulting alignments using several metrics (Methods) whose
results are shown in Table 2. CBA performs competitively across
all metrics except for the kBET score, which measures the mixing
of the two datasets. Here CBA gets a lower KBET score because
it tries to preserve the clustering in the individual datasets. In
contrast, Seurat v3 has a high kBET score, and thus mixing the
two datasets, but perhaps at the expense of aligning also different
clusters in the individual datasets. BBKNN performs best on
the metrics that compare the clustering of the aligned data to
the clustering in the original datasets, i.e., it best preserved the
original clusters, but at the expense of not really aligning the
dataset. Harmony does well on all metrics, especially on how well
the aligned dataset clusters (SC), but visually the aligned data is
not convincing in Figures 3b1,e1.

3.2. CBA Preserves Separation of Cells
To show that CBA better preserves the local structure of the
data, we chose two cell types (alpha and beta cells) and further
analyzed their alignment using CBA and Seurat, with respect to
their observed diversity in the original space (Figure 4).

For the alpha cells, CBA splits the cells in two groups, whereas
Seurat merges all alpha cells into one cluster. The cells of one of
the groups are marked (encircled, different color) and traced in
the other visualizations. We found these cells to be only present
in Batch 1, in which they also form a subcluster within alpha cells.
CBA is able to preserve this separation when aligning the cells.
Differential expression analysis between these cells and other
alpha cells in Batch 1 identified 1,992 deferentially expressed
genes (Figure 5A). Some of these top differentially expressed
genes have been previously linked to the pancreas or alhpa cells,
pinpointing their biological relevance. For example, PCSK1N

TABLE 2 | Quantitative evaluation of different batch effect removal methods for

the pancreas datasets, including kBETa, SCb, NMIc, ARId, and FMIe.

Metric CBA Seurat v3 BBKNN Scanorama Harmony LIGER BERMUDA

kBET 0.97 0.01 0.73 0.44 0.36 0.84 0.68

SC 0.65 0.61 0.60 0.65 0.69 0.62 0.57

NMI 0.80 0.83 0.91 0.78 0.89 0.69 0.81

ARI 0.65 0.69 0.95 0.58 0.85 0.43 0.60

FMI 0.74 0.77 0.96 0.69 0.89 0.57 0.70

ak-nearest Neighbor Batch Effect Test (Rejection Rate). bSilhouette coefficient.
cNormalized mutual information. dAdjusted Rand Index. eFowlkes-Mallows Index. Bold

values correspond to the best performance (the lowest for kBET and the highest ones

for others).

is known to be expressed in alpha cells and transgenic mice
overexpressing PCSK1N have an obese phenotype (Wei et al.,
2004). Mutations in CPB1 are associated with pancreatic cancer
(Tamura et al., 2018). The CTRB1-CTRB2 locus is identified
to modify the risk for alcoholic and non-alcoholic chronic
pancreatitis (Rosendahl et al., 2018). Animal studies also indicate
that GPX4 plays a major role in inhibiting ferroptosis under
multiple conditions (Dai et al., 2020). Although, Seurat merges
the cells in the same cluster, we do see that also Seurat picks up
these cells and locates them together at the border of the cluster,
but not separated as in the CBA result. Hence, CBA preserves the
biological information of the cells more prominently.

It is important to note that a separation in one of the
batches is not always preserved. For example, in the beta cell
cluster, CBA regarded that the separation in batch one not
strong enough to split cells in the alignment and, similar to
Seurat, decides to align all beta cells into one cluster. We used
scanpy.tl.rank_genes_groups() to select 30 differential genes that
separate the two beta groups and show the distribution of
their gene expression levels for both groups. The violin plot
(Figure 5B) shows that although these two groups are separated
in the raw space, their gene expressions show similar patterns,
indicating that these cells are not so different from each other.

3.3. CBA Is Not Sensitive to Missing Cell
Types
A major motivation behind CBA is the cluster guidance of the
alignment. This step depends on the cluster matching between
the two datasets. We therefore set out to test how sensitive CBA
is to this matching step. Hereto, we removed the alpha cells from
one the two pancreas datasets. As such, seen from the other
dataset, these cells are missing (i.e., there is no matching cluster).
Figure 6A shows the UMAP visualization before integration
and Figures 6B–E show the resulting CBA alignment. Although
alpha cells were removed from the smartseq2 dataset, both
datasets are well-aligned and the alpha cells in the celseq2 dataset
do not match with other clusters in the smartseq2 dataset (the
matching matrix M is shown in Supplementary Figure 4), so
missing alpha cells from smartseq2 will not results in wrongly
cluster matching. Moreover, the autoencoder structure and Lr

in our loss function can extract high-level cell features existing
in the latent embedding, that help to find matching cells for the
alpha cells in celseq2 in the smartseq2 dataset.

3.4. Performance Comparison for Mouse
Lung Datasets
To show that CBA generalizes to other datasets, we aligned
two lung datasets from MCA and TM (Table 1). Our results
(Figure 7A) show that the batch effects are removed by CBA.
Further, we compared the performance of CBA with the
other alignment methods (Figures 7B–G). Zooming in on the
endothelial cells highlights CBA’s ability to merge cells across
batches while retaining biological variability. Endothelial cells
seems to show high variability in batch2 (Figure 7a3) compared
to batch 1 (Figure 7a2). CBA is able to align endothelial cells
from batch 1 and batch 2 in the lower part of the integrated data
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FIGURE 4 | Two cell types, alpha and beta cells, tracked through different alignment spaces, i.e., UMAPs of: (1) the CBA alignment, (2) the Seurat v3 alignment, (3)

and (4) the two batches together but with unaligned cells, (5) only cells in batch one, and (6) only cells in batch two. Alpha or beta cells are colored the remaining cells

are gray colored cells. Encircled Alpha cells are colored with light green to track them in all plots. Separated beta cells in batch one are also circled and colored with

light green to track them in all plots. Notably, cells are colored according to provided cell types in all plots except (4), these cell types are corresponding with Figure 2

and they are not used when clustering in CBA. In (4), cells are colored according to how they are clustered in the original dataset (using the initial Louvain clustering).

(Figure 7b3), while preserving the diversity of batch 1. On the
other hand, Seurat, BBKNN,Harmony, and LIGERmerge all cells
in one group, while BERMUDA and Scanorama are not able to
merge cell from the two batches (i.e., they are still separable in the
integrated embeddings). The quantitative comparison between
the methods (Supplementary Table 1) shows a similar picture as
for the pancreas datasets: CBA has a competitive performance,
especially for the clustering measures, although it again has a
low kBET score because it preserves the cluster structure in the
original batches.

4. DISCUSSION

With the development of single cell RNA sequencing
technologies, an increasing number of cell datasets are sampled

by multiple platforms with different experimental settings.
While current methods can generally resolve batch differences
across scRNA-seq datasets, local batch-specific structures and
separations of cells are not fully preserved. We developed CBA, a
cluster-guided batch alignment for single cell RNA sequencing.
Besides matching similar cells across batches, CBA maintains the
local data structure in the separate batches as much as possible.
A carefully designed auto-encoder is used to embed cells from
two batches into the same space. To achieve our expectation, two
different cell-cell distances are preserved: (1) cell-cell distances
within the same cluster of cells in a single batch, and (2) cell-cell
distances within matched cell clusters across different batches.
The cluster guidance is fully unsupervised as the initial clusters
are detected from each batch using Louvain clustering. The
training of CBA is fast without requiring too much memory.
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FIGURE 5 | Two violin plots of (A) alpha cells and (B) beta cells in Batch 1 showing the expression of the top 30 differential expressed genes between two sub groups

within either the alpha cells and beta cells. Cells within the two sub groups are colored differently and shown on the left of plots.

FIGURE 6 | UMAP visualization of imbalanced CBA for the pancreas datasets. alpha cells are removed from smartseq2 and they are present in celseq2. (A) The

UMAP visualization of both batches when no alignment of the cells is performed and cells are colored according to batches. (B–E) Show the CBA performance: (B)

colored according to batches, (C) colored according to the clusters found in batch one, (D) colored according to the clusters found in batch two, (E) colored

according to the clusters found in both batches. The cluster colors are corresponding with Figure 2.

Our results show that CBA is able to integrate cells from two
batches across different datasets. Compared to other single cell
alignment methods (Seurat v3, BBKNN, Scanorama, Harmony,
LIGER, and BERMUDA), CBA avoids “over-aligning” batches,
i.e., preserving the separation of clusters in both original batches.

Compared with CBA, other cell alignment procedures tend to
merge these batch-specific clusters during the alignment. We
have shown that the preserved separation by CBA of dissimilar
cells in a single batch is indeed reflected by biologically-
relevant deferentially expressed genes between the preserved

Frontiers in Genetics | www.frontiersin.org 9 April 2021 | Volume 12 | Article 644211

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yu et al. Cluster-Guided Batch Alignment

FIGURE 7 | UMAP visualization of different batch effect removal methods for the mouse lung cell datasets. (A–G) Show the different alignment methods: (A) CBA, (B)

Seurat v3, (C) BBKNN, (D) Scanorama, (E) Harmony, (F) BERMUDA, and (G) LIGER. For each panel four color codings are shown again: 1) colored according to the

batches, 2) colored according to provided clusters in batch one, 3) colored according to provided clusters in batch two, and 4) colored according to Louvain clusters.
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batch-specific clusters. Moreover, CBA is not sensitive to missing
matching clusters. It is important to note that CBA aligns pairs of
datasets and recursive alignment is needed if more than one pair
of batches should be aligned. In addition, we have only shown
that CBA can be used to integrate data from the same species.

With our cluster-guided batch alignment (CBA) framework
we have shown the potential of a structure preserving alignment
procedure when matching two single cell RNAseq datasets.
Because of its versatility it is interesting to explore such an
alignment procedure for different data types, like for example
ATACseq data. Also, it is interesting to explore additional
structure preserving constraints during alignment. Formulating
the alignment into an autoencoder framework turned out to be
very flexible because additional constraints can easily be added as
additional loss functions.
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