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Original article

Longitudinal changes in cerebral white matter
microstructure in newly diagnosed systemic lupus
erythematosus patients

Ettore Silvagni 1,*, Francesca Inglese2,*, Alessandra Bortoluzzi1,
Massimo Borrelli3, Jelle J. Goeman4, Alfredo Revenaz3, Elisabetta Groppo5,
Gerda M. Steup-Beekman6, Tom W. J. Huizinga6, Itamar Ronen2,
Jeroen de Bresser2, Enrico Fainardi7, Marcello Govoni1 and Ece Ercan 2

Abstract

Objectives. To evaluate longitudinal variations in diffusion tensor imaging (DTI) metrics of different white matter

(WM) tracts of newly diagnosed SLE patients, and to assess whether DTI changes relate to changes in clinical

characteristics over time.

Methods. A total of 17 newly diagnosed SLE patients (19–55 years) were assessed within 24 months from diagno-

sis with brain MRI (1.5 T Philips Achieva) at baseline, and after at least 12 months. Fractional anisotropy, mean dif-

fusivity (MD), radial diffusivity (RD) and axial diffusivity values were calculated in several normal-appearing WM

tracts. Longitudinal variations in DTI metrics were analysed by repeated measures analysis of variance. DTI

changes were separately assessed for 21 WM tracts. Associations between longitudinal alterations of DTI metrics

and clinical variables (SLEDAI-2K, complement levels, glucocorticoid dosage) were evaluated using adjusted

Spearman correlation analysis.

Results. Mean MD and RD values from the normal-appearing WM significantly increased over time (P ¼ 0.019

and P ¼ 0.021, respectively). A significant increase in RD (P ¼ 0.005) and MD (P ¼ 0.012) was found in the left

posterior limb of the internal capsule; RD significantly increased in the left retro-lenticular part of the internal

capsule (P ¼ 0.013), and fractional anisotropy significantly decreased in the left corticospinal tract (P ¼ 0.029).

No significant correlation was found between the longitudinal change in DTI metrics and the change in clinical

measures.

Conclusion. Increase in diffusivity, reflecting a compromised WM tissue microstructure, starts in initial phases of

the SLE disease course, even in the absence of overt neuropsychiatric (NP) symptoms. These results indicate the

importance of monitoring NP involvement in SLE, even shortly after diagnosis.
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Introduction

SLE is an autoimmune disease characterized by multi-

organ involvement and a broad spectrum of clinical

manifestations, including neuropsychiatric (NP) syn-

dromes. NP syndromes affect both the central and the

peripheral nervous system and impact disease out-

comes, as well as patients’ quality of life [1–4]. Patients

at initial phases of the SLE course are highly at risk for

NP involvement [5, 6]. Currently, it is not possible to

identify SLE patients who will later develop NP syn-

dromes due the lack of specific biomarkers to predict

these complications, or due to being unable to attribute

them to SLE [7–9]. The absence of reliable outcome

measures further prevents effective monitoring of the

disease and evaluation of treatment efficacy [10].

Finding outcome measures that can relate to NP in-

volvement in SLE patients or allow the monitoring of dis-

ease progression is therefore among the most important

unmet needs in the field [11].

Conventional brain MRI is the method of choice for

the clinical evaluation of SLE patients experiencing NP

events [12]. Despite being easily recognizable, altera-

tions on conventional MRI have failed as potential tools

for NPSLE diagnosis or attribution, because they do not

correlate with NP symptoms or disease severity [13, 14].

Graphical Abstract Longitudinal microstructural changes in the normal-appearing white matter of recently diagnosed

SLE patients

Longitudinal changes in radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA) measures from

three normal-appearing white matter tracts that were found to exhibit statistically significant alteration between the

baseline (TP1) and follow-up (TP2) evaluations. (*P < 0.05, **P < 0.01) Measurement unit: mm2/ms.

Rheumatology key messages

. Longitudinal changes in diffusion tensor imaging metrics reflect a compromised integrity of white matter.

. Changes in cerebral white matter tissue microstructure start in early phases of SLE course.

. The observed variations occurred regardless of clinical improvement of systemic disease activity.
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Due to the lack of specificity of conventional MRI find-

ings, several studies have focused on quantitative MRI

techniques, to investigate microstructural alterations of

normal-appearing (NA) parenchyma [1, 11, 14]. Among

quantitative MRI techniques, diffusion tensor imaging

(DTI) probes the microscopic movement of water mole-

cules, and it is extensively used to provide information

on white matter (WM) tissue microstructure [15, 16].

Water molecules have a physiologically preferred diffu-

sion direction along axonal tracts, with movement limita-

tions in the perpendicular direction (anisotropy). In

pathologic conditions, this highly structured architecture

is disturbed, with loss of anisotropy and increase in dif-

fusivity. Fractional anisotropy (FA), mean diffusivity (MD),

radial (RD) and axial diffusivity (AD) are DTI metrics that

can reflect alterations in diffusivity, and thus highlight

disease-related changes in the microstructure of WM.

These metrics have been used to probe alterations in

tissue microstructure in many diseases, including

NPSLE and SLE. Axonal and neuronal damage [17, 18],

leading to loss of structural network integrity [19], is

considered to be the underlying mechanism for these

alterations.

Most of the previous DTI studies on SLE have been

cross-sectional. Only two studies [20, 21] have longitu-

dinally assessed DTI metrics in patients with established

SLE. To the best of our knowledge, no previous study

has longitudinally evaluated DTI measures in newly diag-

nosed SLE patients. As approximately half of clinical NP

manifestations occur around the time of SLE diagnosis

[5, 6], it is important to evaluate newly diagnosed

patients in order to establish whether WM microstruc-

ture alterations start in the early phases, and if they pre-

date the occurrence of new clinical NP manifestations

and/or more evident conventional MRI abnormalities.

The main aim of this study was to assess longitudinal

variations of DTI metrics (FA, MD, RD, AD) in normal-

appearing WM of newly diagnosed SLE patients,

through a prospective single-centre observational study.

Secondary objectives were: (i) to compare differences in

longitudinal variations of DTI metrics among different

WM tracts, in order to establish which WM tracts are

more likely to undergo changes in DTI parameters dur-

ing the time leading to follow-up; (ii) to evaluate the as-

sociation of DTI changes observed in follow-up with the

changes in clinical characteristics.

Materials and methods

Study design

This was a prospective single-centre pilot study, performed

in compliance with the Declaration of Helsinki. The Unique

Ethical Committee of Ferrara province, Italy, approved the

study protocol. The database population included newly

diagnosed SLE patients evaluated at the Lupus Clinic of

the Rheumatology Unit, Ferrara University, Italy.

Participants and variables

Newly diagnosed SLE patients were defined as patients

no longer than 24 months from SLE diagnosis. Patients

included in the study were followed at the Ferrara Lupus

Clinic between 1 May 2013 and 31 May 2018, met the

revised ACR [22] or SLICC [23] classification criteria for

SLE, were 18–55 years of age, and had no contraindica-

tions to gadolinium-enhanced MRI. All patients signed

the informed consent form and were imaged with brain

MRI at baseline [time point 1 (TP1)] and after at least

12 months (TP2). A detailed patient history was obtained

from all participants before MRI examination. Clinical

and serological information were collected at both time

points (Table 1, Supplementary Data S1, available at

Rheumatology online; one patient had partially missing

clinical data at TP2). Specific SLE-related clinical meas-

ures were analysed: in particular, SLEDAI-2K [24] (eval-

uated at diagnosis, TP1, TP2) and SLICC ACR Damage

index (SDI) [25] scores (evaluated at TP1 and TP2).

Brain MRI was performed as part of the clinical practice

in our institute (a regional tertiary referral centre for

NPSLE) in patients with newly diagnosed SLE, accord-

ing to a clinical evaluation program for patients with a

recent diagnosis of SLE at the Rheumatology Unit of

Ferrara University. NP events already present at baseline

and those occurring during follow-up were reported

according to the 1999 ACR nomenclature [26]. A com-

plete diagnostic work-up was performed according to

EULAR recommendations [12], and NP events were

attributed to SLE (NPSLE group) based on physician

judgement and according to the validated algorithm of

the Italian Study Group on NPSLE [8].

MRI data acquisition

Patients were scanned on a 1.5 Tesla Philips Achieva

scanner (Philips Medical Systems, Best, The

Netherlands), using the same scan protocol at both time

points. The scan protocol included T1-weighted, T2-

weighted, fluid attenuated inversion recovery images,

diffusion-weighted images (DWIs), perfusion-weighted

image – dynamic susceptibility contrast (PWI-DSC), DTI

and post-gadolinium T1-weighted images. The scan

parameters used for MRI data acquisition were the fol-

lowing: axial fluid attenuated inversion recovery: matrix

size: 288� 288�42, resolution: 3�0.8�0.8 mm3, TI/

TR/TE: 2800/11000/140 ms; 3D T1-weighted (3D-T1):

matrix size: 256�256�188, resolution: 1� 1� 1 mm3,

TR/TE: 7.1/3.2 ms; DTI: matrix size: 128� 128�40,

resolution: 1.75�1.75�3.6 mm3, TR/TE: 12617/49 ms,

one b¼ 0 s/mm2 volume and 15 diffusion-weighted vol-

umes with a b-value of 800 s/mm2.

Clinical evaluation of MR images

All conventional brain MRI images were evaluated by an

experienced neuroradiologist (M.B.). WM lesions were

scored according to the Fazekas’s scale [27]. Cerebral

atrophy was scored according to Pasquier’s scale [28].

Ettore Silvagni et al.
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TABLE 1 Clinical, demographic, serological, and instrumental characteristics of newly diagnosed SLE patients (N¼17) at

baseline evaluation (TP1)

Variable TP1

Demographic variables
Female, N (%) 14 (82)
Age, mean (S.D.) 38 (12)
Comorbidities
Hypertension, N (%) 5 (29)
Dyslipidaemia, N (%) 3 (18)

Coronary Heart Disease, N (%) 1 (6)
Neoplasms, N (%) 1 (6)
Renal Impairment, N (%) 0 (0)

Obesity, N (%) 1 (6)
BMI, mean (S.D.) 24 (4)

Diabetes, N (%) 0 (0)
Sovra-aortic atherosclerosis, N (%) 3 (21)
Smoking, N (%) 5 (29)

Familial cardiovascular events, N (%) 1 (6)
SLE manifestations
acLE or scLE, N (%) 6 (35)
Chronic cutaneous lupus, N (%) 0 (0)
Mucosal ulcers, N (%) 1 (6)

Alopecia, N (%) 1 (6)
Joint disease, N (%) 13 (76)

Serositis, N (%) 3 (18)
Renal involvement, N (%) 2 (12)
Haemolytic autoimmune anaemia, N (%) 0 (0)

Leukopenia, N (%) 6 (35)
Thrombocytopenia, N (%) 1 (6)
Neurologic symptoms (any), N (%) 7 (41)

Attributed neurologic symptoms, N (%) 2 (12)
Serology
ANA, N (%) 17 (100)
Anti-dsDNA, N (%) 14 (82)
Anti-Sm, N (%) 4 (24)

aPL, N (%) 8 (47)
APS, N (%) 1 (6)

C3 (mg/dl), mean (S.D.) 80.65 (21)
C4 (mg/dl), mean (S.D.) 14.12 (8)
Low complement, N (%) 12 (71)

Coombs test positivity, N (%) 1 (6)
Disease activity and damage
Diagnosis SLEDAI-2K, mean (S.D.) 8.82 (3.76)
Baseline SLEDAI-2K, mean (S.D.) 6.53 (1.23)
Baseline SDI, mean (S.D.) 0.47 (0.87)

Treatment
Glucocorticoid, N (%) 13 (76)
Cumulative glucocorticoid dosage (mg), mean (S.D.) 2164.5 (2421.6)

HCQ, N (%) 14 (82)
Immunosuppressants, N (%) 7 (41)

Anti-platelets therapy, N (%) 8 (47)
Anti-coagulant therapy, N (%) 1 (6)
Vasodilators, N (%) 0 (0)

Baseline MRI evaluation
Fazekas scale ¼ 1, N (%) 10 (59)

Fazekas scale, mean (S.D.) 0.59 (0.51)
Pasquier scale ¼ 1, N (%) 5 (29)
Pasquier scale, mean (S.D.) 0.29 (0.47)

anti-Sm: anti-Smith antibodies; SDI: Systemic Lupus International collaborating clinics ACR Damage index; TP1: first time

point.

Longitudinal DTI changes in newly diagnosed SLE
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Image processing and analysis

The image analysis included segmentation of WM

lesions (Fig. 1) in order to assess normal-appearing

white matter (NAWM), calculation of FA, MD, RD and

MD metrics from the DTI data, and the assessment of

these metrics from different WM tracts within the NAWM

(Fig. 2). The details of image processing and analysis

steps are explained in the Supplementary Data S1,

available at Rheumatology online.

Statistical analysis

For the analysis, we chose 21 WM tracts that had previ-

ously been reported to have significantly different DTI

metrics in SLE subjects compared with healthy controls,

based on a recent systematic literature review [17] and

an updated literature search until 18 April 2019 [18, 20,

21, 29]. The WM tracts that were analysed were: the

genu, body, and splenium of the corpus callosum, su-

perior longitudinal fasciculus (right and left), anterior cor-

ona radiata (right and left), posterior thalamic radiation

(right and left), anterior limb of internal capsule (right

and left), posterior limb of internal capsule (right and

left), retro-lenticular part of internal capsule (right and

left), sagittal stratum (right and left), corticospinal tract

(right and left), and cingulum (right and left).

Each variable was tested for normality using a

Shapiro–Wilk test. All variables were found to be normal-

ly distributed, except the differences over time for all the

four DTI metrics (DFA, DMD, DRD and DAD). For the

primary aim of the study, FA, MD, RD and AD values

from 21 selected WM tracts were averaged to obtain

mean FA, MD, RD and AD for each time point separate-

ly. Longitudinal variations in these DTI metrics were ana-

lysed using a repeated measures analysis of variance

test, corrected for age and gender. Sensitivity analyses

were performed excluding patients with NPSLE.

Longitudinal changes in clinical and laboratory variables

(SLEDAI-2K, complement fractions C3 and C4, SDI)

were assessed through paired t tests.

For the secondary aims of the study, longitudinal

variations in all four DTI metrics from 21 WM tracts

were analysed individually by paired t test. The

resulting 84 tests were corrected for multiple com-

parison using the permutation-based multiple-com-

parison method of Westfall and Young [30] using

65 536 permutations. In addition, Spearman’s correl-

ation was applied to study the association between

longitudinal changes in the clinical variables

(SLEDAI-2K, C3, C4, glucocorticoids cumulative dos-

age) and longitudinal changes in the mean DTI met-

rics. Analyses were performed using IBM SPSS

Statistics for Windows version 25.0 (IBM Corp.

Released 2017, Armonk, NY, USA), except for the

multiple-comparison corrected paired t test, which

was performed in R (https://www.R-project.org). A

P-value of <0.05 was considered statistically

significant.

FIG. 1 Lesion segmentation

Fluid attenuated inversion recovery (FLAIR) images were registered to 3D T1-weighted (3D-T1) images using the

FMRIB Software Library (FSL) FLIRT tool (FMRIB’s Linear Image Registration Tool). Automatic lesion segmentation

was performed on registered FLAIR images using the Lesion Prediction Algorithm (LPA) tool. The FLAIR images and

white matter hyperintensities maps were registered to a standard brain template, Montreal Neurological Institute

standard template (MNI152). rFLAIR: FLAIR image that is registered to 3D-T1 image; LST: Lesion Segmentation Tool;

FNIRT: FMRIB’s non-linear image registration tool; WMH: white matter hyperintensities; WMH_MNI: white matter

hyperintensities in Montreal Neurological Institute standard template.
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Results

Descriptive analysis

During the study period, 45 newly diagnosed SLE patients

were evaluated. Of the 45, 31 patients met the inclusion cri-

teria and were included in the study at baseline. A total of

25 of these patients had a follow-up MRI evaluation after at

least 12 months. After excluding patients with low-quality or

incomplete DTI data, and one patient with a large cerebral

infarct, 17 patients were finally included for analysis [mean

(S.D.) age: 38 (12) years].

Descriptive analyses are shown in Table 1. The mean

(S.D.) timespan between first symptoms onset and SLE

diagnosis was 290 (317) days, while the mean time

interval between diagnosis and baseline MRI was 200

(183) days. The second MRI was performed after a

mean (S.D.) period of 451 (86) days from TP1, 651 (194)

days after SLE diagnosis. Two NP syndromes (12%)

were attributed to SLE, one involving the CNS (a seizure

disorder) and one involving the peripheral nervous sys-

tem (a mononeuritis multiplex). The mean (S.D.) SLEDAI-

2K value at diagnosis was 8.82 (3.76), while at the time

of the first MRI it was 6.53 (1.23).

Baseline and follow-up conventional brain MRI data
analysis

Baseline MRI showed a certain degree of non-specific

alterations (Table 1), with WM lesions recorded in 10 out

of 17 newly diagnosed SLE (59%) [the highest Fazekas

score was 1, mean (S.D.) 0.59 (0.51)], and cerebral atro-

phy in 5 (29%), with a mean (S.D.) Pasquier scale score

of 0.29 (0.47). Alterations seen on conventional MRI ana-

lysis remained stable during the TP2 evaluation.

Disease activity patterns and clinical variables along
the follow-up

A statistically significant decrease was found in SLEDAI-

2K values at TP2 (mean 2.44, S.D. 3.41) compared with

the first MRI at TP1 (mean 6.53, S.D. 1.23) (P ¼ 0.014)

(Supplementary Table S1 and Supplementary Fig. S1,

available at Rheumatology online). Both C3 and C4

complement fractions significantly increased [C3, P ¼
0.001; C4, P ¼ 0.0002 (Supplementary Fig. S1, available

at Rheumatology online]. Globally, the mean (S.D.) SDI

score remained stable across the follow-up [mean 0.47

(S.D. 0.87)], and the treatment choice did not change be-

tween TP1 and TP2 evaluations (Supplementary Table

S1, available at Rheumatology online).

Longitudinal DTI data analysis in NAWM tracts

The mean DTI metrics from 21 WM tracts were

expressed as mean (S.D.) (Table 2). We found a signifi-

cant increase in MD (P ¼ 0.019) and RD (P ¼ 0.021) val-

ues in selected WM tracts between TP1 and TP2

(Table 2). The mean FA and AD values did not signifi-

cantly change across the follow-up. Sensitivity analyses

FIG. 2 DTI data analysis

Diffusion Tensor Imaging (DTI) images were first corrected for subject motion and eddy currents using Explore DTI.

Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) maps were calculated. These

maps were then registered to a standard brain template, the Montreal Neurological Institute (MNI) standard template

(MNI152). White matter tracts were extracted using the Johns Hopkins University White Matter Parcellation Maps atlas.
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demonstrated that these results were not significantly

affected by the presence of NPSLE subjects

(Supplementary Table S2, available at Rheumatology on-

line). Individual changes in MD and RD are shown for

each patient in Supplementary Fig. S2, available at

Rheumatology online.

The secondary analysis of the 21 WM tracts for the

four DTI metrics revealed a significant increase in RD

values in the left posterior limb of the internal capsule (P

¼ 0.005) and in the left retro-lenticular part of the intern-

al capsule (P ¼ 0.013), a significant increase in MD in

the left posterior limb of the internal capsule (P ¼
0.012), and a significant decrease in FA in the left corti-

cospinal tract (P ¼ 0.029) over time (Graphical abstract).

Multiple-comparison corrected t test results from specif-

ic WM tracts are reported in Supplementary Table S3,

available at Rheumatology online.

No significant association was found between the in-

crease in mean MD and RD values in selected NAWM

tracts and the decrease of SLEDAI-2K, the increase of

complement fractions C3 and C4, or the variation in

glucocorticoid cumulative dosage (Table 3).

Discussion

To the best of our knowledge, this is the first study

reporting cerebral WM microstructural changes in newly

diagnosed SLE patients using DTI. Furthermore, we

identified individual WM tracts that are prone to undergo

longitudinal microstructural changes. Correlation with

clinical characteristics showed that longitudinal changes

in DTI metrics were not associated with the systemic

disease activity (SLEDAI-2K and complement levels).

Given the knowledge gap for the initial stages of the

disease, the primary aim of our study was to investigate

WM microstructural changes in newly diagnosed SLE

patients, even in the absence of clinically manifested NP

syndromes. SLE subjects are specifically at risk of

developing NP manifestations across the initial course

of the disease, as up to 50% of events occur in the

early phases [5, 6]. Functional MRI studies have investi-

gated subclinical cerebral involvement in non-NP early

SLE subjects, reporting higher cortical activation in cer-

tain regions following cognitive tasks, a behaviour

thought to be related to a compensation mechanism for

reduced cerebral activation of other areas during the

exercising of planning skills or other cognitive assign-

ments [31]. Moreover, alterations on conventional MRI

are quite common in newly diagnosed SLE subjects [32,

33], with different degrees of atrophy and non-specific

WM lesions. The real significance of such alterations in

longitudinal assessments has not been fully elucidated

[33]. Our results provide new insights into these ‘visible’

alterations, and point to pathological changes in the

NAWM tissue microstructure, even in the initial stages of

the disease.

Longitudinal changes in DTI are not well studied in

SLE patients. One study reported a decrease in FA and

an increase in MD values for the WM of 13 established

non-NP SLE patients, with a mean disease duration of

10.1 years [20]. These changes occurred in the absence

of variations in medications, clinical activity or cognitive

function. Another study from a similar patient population

(mean disease duration 13.8 years) showed no longitu-

dinal change in FA values [21]. In our study, we have

focused on changes in the four main DTI metrics (MD,

RD, AD and FA) within 21 WM tracts. Our results extend

on what has been found in these studies, confirming an

increase in MD between two time points in regions of

the cerebral WM [20]. In line with Mackay et al. [21], our

analysis from 21 tracts showed no global changes in

FA. Additionally, we showed alterations in RD in newly

diagnosed SLE patients. Our findings emphasize the util-

ity of DTI measures, especially MD and RD, for monitor-

ing WM alterations in SLE.

MD represents the average motion of water molecules

within the tissue, being sensitive to cellularity, oedema

and necrosis [16]. A progressive increase in the

TABLE 2 Mean Diffusion Tensor Imaging metrics varia-

tions from two time points

TP1 TP2 P-value

FA 0.510 ( 0.018) 0.507 ( 0.017) 0.165

MD (mm2/ms) 0.799 ( 0.022) 0.806 ( 0.018) 0.019*
RD (mm2/ms) 0.550 ( 0.023) 0.556 ( 0.019) 0.021*
AD (mm2/ms) 1.297 ( 0.027) 1.306 ( 0.028) 0.050

Mean Fractional Anisotropy (FA), Mean Diffusivity (MD),

Radial Diffusivity (RD), and Axial Diffusivity (AD) values
from 21 selected white matter tracts are assessed separ-

ately for the first time point (TP1) and the second time
point (TP2). Values are expressed as mean (S.D.) in
selected normal appearing white matter tracts. Repeated

measures analysis of variance (corrected for gender and
age at baseline) results are shown with the P-values.

TABLE 3 Association between the longitudinal changes in

DTI metrics and the longitudinal changes in clinical data

DSLEDAI-2K DC3 DC4 DGCs cumulative
dosage

DMD 0.217 0.122 0.079 0.225
DRD 0.107 0.610 0.249 0.180

DMD: longitudinal changes in mean diffusivity; DRD: longi-
tudinal changes in radial diffusivity; DSLEDAI-2K: changes

in SLEDAI-2K between the first time point and the second
time point; Diffusion Tensor Imaging: DTI; DC3: changes in

the complement protein C3 between TP1 and TP2; DC4:
changes in the complement protein C4 between TP1 and
TP2; DGCs cumulative dosage: variation in glucocorticoids

(GCs) cumulative dosage, calculated as the average in mg
per day of prednisone equivalent that each patient took
between TP1 and TP2.
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microscopic movement of water molecules inside WM is

associated with axonal degeneration, disruption or loss,

demyelination, or vasogenic oedema. RD represents the

rate of diffusion perpendicular to the primary diffusivity

direction, and it can reflect changes in axonal diameter

and density due to demyelination as well as other

changes that may affect the interstitial space. NPSLE

post-mortem studies have underlined that focal and dif-

fuse brain ischaemia, microvasculopathy, cytotoxic oe-

dema, and glial hyperplasia are the main pathological

features [34, 35], with demyelination accounting for only

a minority of the conditions [1, 36]. The increase in MD

and RD values found in our study may therefore be

stemming from a mild change in the interstitial space

(e.g. due to oedema or glial reactivity), rather than de-

myelination [36]. It should be mentioned that post-

mortem studies were mainly performed in patients with

long-standing disease, and histological data in initial or

subclinical NP involvement are thus lacking. On the

other hand, mouse models and perfusion studies

revealed the role of microglial cells [37] and blood–brain

barrier permeability alterations [38] in the pathogenesis

of NPSLE. In view of these findings, vasogenic oedema

and glial cells reactivity could be considered among the

main pathogenic processes responsible for the altera-

tions we found in NAWM.

Apart from whole WM results, we have demonstrated

that DTI metrics changed, particularly in some ROIs,

such as the left posterior limb of the internal capsule,

left retro-lenticular part of the internal capsule and the

left corticospinal tract. One common feature of these

WM tracts is that they all relate to motor function. We

did not observe evident motor function complaints in

our patients during the follow-up. However, we did not

perform a standardized evaluation of muscular strength

and function, or specific electrophysiological tests,

which would have potentially intercepted subclinical de-

terioration of corticospinal system function. Nonetheless,

our DTI findings provide evidence of disease-related

changes in the corticospinal tract shortly after the SLE

diagnosis. Combining perfusion data with DTI can help

to elucidate whether the alterations we observed are

related to perfusion defects, or to blood–brain barrier

dysfunctions, as demonstrated by other authors using

dynamic contrast-enhanced techniques in a small group

of non-NP SLE subjects [38].

The changes in DTI metrics over time did not correlate

with changes in the SLE general clinical status. Since

our SLE patients improved in clinical and serological ac-

tivity following a treatment focused on systemic disease,

and not specifically tailored to address NP complaints,

the deterioration in DTI metrics observed in our popula-

tion seemed to be independent of the treatment of

systemic disease. This finding confirmed results of

cross-sectional studies of DTI in SLE [14, 17]. The vari-

ation in diffusivity values was shown to be highly related

to disease duration [18, 39], while associations with dis-

ease activity were less consistent [14, 19]. Furthermore,

our findings suggest that the WM damage occurs also

in absence of overt NP syndromes and relatively close

to the diagnosis of the disease. This finding calls for a

better monitoring of WM tissue, commencing in the ini-

tial phases of the course of the disease. This may lead

to a reconsideration of the treatment strategy in newly

diagnosed SLE to prevent further progression of WM

deterioration. Interestingly, the differences we found in

DTI metrics were highlighted in patients without attrib-

uted CNS syndromes (except for one patient with seiz-

ures). It would be compelling to follow up this study with

longitudinal DTI evaluation of SLE patients with NP in-

volvement after proper treatment of specific NP fea-

tures, in line with what was reported using other

quantitative MRI techniques, such as magnetization

transfer imaging [40] or magnetic resonance spectros-

copy [41].

The limitations of this study include the low number of

patients involved. SLE is a low-prevalence disease and,

even though the number of patients included in this

study is comparable with the other longitudinal DTI stud-

ies in NPSLE, a larger sample size would have allowed

more advanced statistical approaches, including stratify-

ing patients based on clinical features. Furthermore,

neurocognitive information was not evaluated in our

study. Although the lack of cognitive data prevents us

from relating our DTI findings to the cognitive function-

ing of patients, the relatively short duration of the follow-

up is unlikely to capture a significant deterioration in

cognitive assessments [20]. We did not include a dis-

ease comparator group. It might be possible that DTI

metrics change longitudinally in other inflammatory dis-

eases, like RA; however, no data are available from this

patient group with a comparable follow-up duration [42].

As our focus was on SLE, a comparison in longitudinal

variations of DTI metrics across different newly diag-

nosed CTD patients (e.g. SLE, SS, APS) should be per-

formed as a separate study in the future. Despite these

limitations, the greatest advantages of this study were

the early SLE population investigated, the study design,

and the high quality control of using a well-defined pipe-

line with several checks and corrections (e.g. subject

motion, distortions). Furthermore, this is an ongoing pro-

spective study, which will eventually allow us to keep

track of the trend in DTI changes over a longer term.

In conclusion, we have shown longitudinal microstruc-

tural changes in the NAWM of recently diagnosed SLE

patients. Specifically, in this group of SLE patients, an

increase in MD and RD values was found in 21 selected

WM tracts, particularly in the left posterior limb of the in-

ternal capsule, in the left retro-lenticular part of the in-

ternal capsule, and in the left corticospinal tract. The

observed variations in WM microstructure occurred re-

gardless of clinical improvement in systemic disease ac-

tivity, calling for careful consideration of treatment

options in initial phases of the disease to prevent WM

deterioration. This study is an initial step towards under-

standing microstructural alterations in the brain of SLE

patients during the first stages of the disease, even in

the absence of overt CNS NP manifestations.
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