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Abstract
The current differential diagnosis for a short child with low 
insulin-like growth factor I (IGF-I) and a normal growth hor-
mone (GH) peak in a GH stimulation test (GHST), after exclu-
sion of acquired causes, includes the following disorders: (1) 
a decreased spontaneous GH secretion in contrast to a nor-
mal stimulated GH peak (“GH neurosecretory dysfunction,” 
GHND) and (2) genetic conditions with a normal GH sensitiv-
ity (e.g., pathogenic variants of GH1 or GHSR) and (3) GH in-
sensitivity (GHI). We present a critical appraisal of the con-
cept of GHND and the role of 12- or 24-h GH profiles in the 
selection of children for GH treatment. The mean 24-h GH 
concentration in healthy children overlaps with that in those 
with GH deficiency, indicating that the previously proposed 
cutoff limit (3.0–3.2 μg/L) is too high. The main advantage of 
performing a GH profile is that it prevents about 20% of false-
positive test results of the GHST, while it also detects a low 
spontaneous GH secretion in children who would be consid-

ered GH sufficient based on a stimulation test. However, due 
to a considerable burden for patients and the health budget, 
GH profiles are only used in few centres. Regarding genetic 
causes, there is good evidence of the existence of Kowarski 
syndrome (due to GH1 variants) but less on the role of GHSR 
variants. Several genetic causes of (partial) GHI are known 
(GHR, STAT5B, STAT3, IGF1, IGFALS defects, and Noonan and 
3M syndromes), some responding positively to GH therapy. 
In the final section, we speculate on hypothetical causes.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Introduction

In the diagnostic approach of the short and/or slowly 
growing child, serum insulin-like growth factor I (IGF-I) 
is considered one of the essential components of the lab-
oratory screening procedure, as a first indication for 
growth hormone (GH) deficiency (GHD) or insensitivity 
(GHI) [1–5]. If serum IGF-I is low (or in the lower half of 
the reference range) for age, sex, and pubertal stage, the 
next step is usually to assess the endogenous GH reserve 
by a GH stimulation test (GHST). The results of 2 GHSTs, 
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performed separately or combined on the same day [6], 
serve as a proxy indicator of GH secretion. If the diagno-
sis of GHD is established, magnetic resonance imaging of 
the hypothalamic/pituitary region is indicated to search 
for the anatomical cause [7].

Unfortunately, there are important drawbacks with 
the use of both diagnostic tools (serum IGF-I and GHST). 
The assessment of the circulating IGF-I concentration is 
hampered by different assays and standards, and there is 
scarcity of reference data, particularly for pubertal stage 
[2, 4, 8, 9]. Also, GHSTs suffer from serious disadvan-
tages, as already highlighted more than 25 years ago [10], 
and we wish to highlight 6 examples.

First, different pharmacological agents generate differ-
ent mean GH peak sizes, with poor correlations among 
tests [11–16]. For example, the peak GH in response to 
pharmacological stimulation with clonidine is signifi-
cantly higher than the response to arginine, insulin [17], 
and glucagon [16]. Second, there is no published guid-
ance on differentiating the cutoff of the GH peak in a 
GHST between prepubertal and pubertal children, while 
GH peaks are considerably higher in puberty due to in-
creased sex hormone (mainly oestrogen) concentrations 
[18, 19]. Third, there is no consensus on the use and tim-
ing of sex steroid priming in prepubertal young teenagers 
[7], despite the recommendation in the recent US guide-
line [6]. Fourth, a high BMI (probably mainly due to high 
fat mass, leading to increased rate of degradation, re-
viewed in [20]) has a negative effect on the GH peak [21], 
but it is unknown how to adjust for this effect. Fifth, the 
cutoff for the GH peak is arbitrary, and the change in con-
version factor from the GH bioassay (mU/L) to mass 
units (µg/L) by increasing purity of the GH preparations 
has further complicated the situation. This is illustrated 
by the change of the cutoff for a “normal” GH peak over 
time, from 15 mU/L (then equivalent to 7.5 μg/L) via 20 
mU/L (10 μg/L) to 30 mU/L (equivalent to 10 μg/L when 
a more pure laboratory standard [1 mg = 3 IU] had been 
introduced) and back to approximately 20 mU/L (6.7–7 
μg/L) [7, 22]. Finally, the reproducibility of a GHST is low 
[14], probably caused partially by the effect of a variable 
interval between the pharmacological agent and the fore-
going spontaneous GH pulse (the refractory interval is 
estimated at 3 h [23, 24]). All these uncertainties have led 
to a large variation in clinical practice around the world 
with regard to GHSTs [25, 26].

If in a short child with a low serum IGF-I, a “classical” 
GHD is excluded by a normal stimulated GH peak, one 
should first try to assess whether the sensitivity to GH is 
normal or decreased. In the excellent review by Storr et 

al. [27], GHI was defined as “impairment of all or some 
of the mechanisms of physiological GH action.” Accord-
ing to this definition, all disorders of the GH-IGF axis 
except GHD belong to this diagnostic category, irrespec-
tive of the serum IGF-I concentration, also including 
some syndromes with dysmorphic features (e.g., Noonan 
and three M [3M] syndromes), IGF2 defects, and GH 
neutralizing antibodies in patients with a GH1 gene dele-
tion. We prefer to rather call this “decreased responsive-
ness” to GH and prefer to restrict the term GHI to disor-
ders with a low serum IGF-I concentration in spite of a 
normal GH secretion, so only including disorders of the 
GH receptor and post-receptor signalling and its main 
target hormones (IGF-I and acid-labile subunit [ALS]). 
We thus exclude disorders of the GH-IGF axis with a nor-
mal or increased serum IGF-I caused by genetic defects 
of IGF1R, IGF2, or PAPPA2 and genetic disorders affect-
ing post-receptor signalling of the IGF-I receptor [28], 
which still fall under the umbrella of GH unresponsive-
ness.

The logical diagnostic step to assess GH sensitivity is 
to measure the change in circulating IGF-I after a certain 
period of GH administration. Initially, this was used to 
identify children who would be expected to respond pos-
itively to GH injections [29–31]. Later, when recombi-
nant human IGF-I (rhIGF) became available, the test was 
named “IGF-I generation test” (IGFGT) and mainly used 
to estimate the likelihood of Laron syndrome [32]. That 
regimen consisted of a series of 4 daily GH injections of a 
single dosage (33 μg/kg · day). Later, more complex regi-
mens of the IGFGT were investigated, consisting of sev-
eral periods of escalating GH dosages [33, 34]. At present, 
multiple regimens are being used and the sensitivity and 
specificity to detect molecularly proven cases of GHI are 
reportedly high, although “the ability of the IGFGT to de-
tect less severe GHI is doubtful” [35].

Over the past 15 years, the IGFGT has been used in the 
Netherlands in a standardized format for children with 
severe short stature (height less than −2.5 standard devia-
tion score [SDS]), persistent low IGF-1 (less than −2 SDS) 
and a normal stimulated GH peak (>10 μg/L), using a 
schedule of 1, 2 or 3 escalating GH doses (0.7, 1.4 and 2.8 
mg/m2 · day) for 1 week each, with minimal intervals of 4 
weeks. If the child’s serum IGF-I SDS response is <1 SD, 
the response is assessed on a higher GH dose [26, 36]. This 
scheme results in 4 categories of GH sensitivity: normal 
(sufficient response to lowest GH dose), moderate insen-
sitivity (sufficient response to intermediate dose), modest 
insensitivity (sufficient response to highest dose), and 
(near-) complete insensitivity (no response to any dose).
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This minireview aims at discussing the differential di-
agnosis for a short child with low IGF-I and a normal GH 
peak in at least one GHST, in whom acquired causes of 
decreased serum IGF-I (e.g., malnutrition, hypothyroid-
ism, psychosocial dwarfism, and anorexia nervosa) have 
been ruled out. In Critical Appraisal of the Diagnostic 
Value of GH Profiles and of the Validity of the Concept 
of GH Neurosecretory Dysfunction, we present a critical 
appraisal of the role of 12- or 24-h GH profiles in the di-
agnosis of short stature and of the concept of growth hor-
mone neurosecretory dysfunction (GHND). In Genetic 
Conditions Associated with Normal GH Sensitivity, sev-
eral genetic conditions associated with a normal GH sen-
sitivity are discussed, in particular pathogenic GH1 and 
GHSR variants. Causes of GHI are reviewed in Condi-
tions with Decreased GH Sensitivity. In Hypothetical 
Causes of Short Stature Associated with a Low Serum 
IGF-I and Normal Stimulated GH Peak, we speculate on 
some hypothetical causes.

Critical Appraisal of the Diagnostic Value of GH 
Profiles and of the Validity of the Concept of GH 
Neurosecretory Dysfunction

In the early 1970s, the use of a small portable continu-
ous blood withdrawal system [37] enabled performing 
spontaneous 24-h GH profiles, either by the continuous 
withdrawal technique [37] or frequent sampling [38]. For 
a comparison of these methods, the reader is referred to 
[20]. The 24-h GH profiles show a circadian rhythm (re-
lated to the sleep-wake cycle) and an ultradian rhythm 
regulated by the central nervous system and are also in-
fluenced by exercise, stress, and the daily feeding cycle 
[39]. A pilot study in short children suggested that some 
short children with normal GHST results might have a 
decreased spontaneous GH secretion [40]. Furthermore, 
a disturbed secretory pattern with decreased GH secre-
tory spikes, both in frequency and amplitude, were ob-
served as a result of cranial irradiation, first in rhesus 
monkeys [41] and later in children recovered from acute 
lymphatic leukaemia or brain tumours [42–47]. A later 
study suggested that a significant number of patients de-
veloped hypothalamic radiation-induced damage to the 
GHRH-secreting neurons, and secondary to this a de-
creased responsiveness to GHRH in the pituitary gland 
[48].

Theoretically, a spontaneous 24-h GH profile would 
appear a better test to assess GH secretion. However, the 
taskforce of the Drug and Therapeutics, and Ethics Com-

mittees of the Pediatric Endocrine Society felt that “any 
potential benefit of overnight GH sampling did not war-
rant the burden to patients” [6]. Still, in a 2002 European 
audit, routine assessment of spontaneous GH secretion 
was reported by 40 respondents (17%) [25], and accord-
ing to a recent audit in 8 European countries, 12-h noc-
turnal GH profiles are still used in Germany and the UK 
[26]. In Sweden, clinicians currently have 2 options: a 
spontaneous 12-h GH night profile or a GHST (arginine-
insulin tolerance test, AITT) preceded by a 3-h GH pro-
file (to avoid false-positive test results) [24, 49, 50].

Characteristics of 24-h GH Profiles in Healthy 
Children
Looking back at the 3 decades in which most scientific 

work was done on GH profiles in children (1980–2010), 
the different interpretations of the diagnostic value of GH 
profiles seem to be essentially based on different percep-
tions of the reference range of GH secretion in healthy 
children, the influence of limited sample sizes, the repro-
ducibility, and the chosen outcome measure, including 
the role of the GH secretory pattern.

Determinants, Reference Range, and Sample Sizes
Essentially, spontaneous GH profiles can be used to 

assess the GH secretion pattern or the GH secretion rate. 
The major determinant of spontaneous GH secretion rate 
in healthy children is pubertal stage: GH secretion in-
creases with advancing puberty, with a peak at Tanner 
stage 4 [17, 20, 51–55]. Further, mean night-time GH lev-
els correlate inversely with BMI in both sexes [53, 55], in 
line with an inverse correlation between GH secretion 
rate per kg body mass and weight for height SDS in pu-
bertal children [56]. Spontaneous GH secretion is posi-
tively correlated with height SDS [56] and height velocity 
[57].

Two groups of clinical investigators (headed by Bercu 
and Zadik, respectively) concluded that healthy controls 
and short children with normal height velocity had a 24-h 
integrated concentration of GH (IC-GH) above 3.0 or 3.2 
μg/L, respectively [17, 58, 59]. However, this conclusion 
was based on very few control subjects. Spiliotis et al. [58] 
coined the term GHND, defined by the following criteria: 
height less than first percentile; height velocity ≤4 cm/
year; bone age ≥2 years behind chronological age; normal 
findings from GHST (peak >10 μg/L); low somatomedin-
C (IGF-I) level; and abnormal 24-h GH secretory pattern. 
However, the number of prepubertal control children 
with short stature was only 9. In the follow-up study [59], 
it was an unreported fraction of 31 controls (short and 
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normal stature) with a mean age of 13.2 years (range 5.0–
17.9 years) and a Tanner stage range of 1–5. In the study 
by Zadik et al. [17], 95% of IC-GH values in all 119 chil-
dren were above 3.2 μg/L, but no information was pro-
vided on the percentage in the 36 prepubertal children.

Two other groups concluded that 24-h GH secretion 
in prepubertal controls is quite variable and overlaps with 
observations in children with GHD: the group headed by 
Albertsson-Wikland in Gothenburg (Sweden) [52] and 
Rose et al. at NIH (Bethesda, USA) [53, 60]. In 62 prepu-
bertal children, mean 24-h GH concentration was close 
to 2 μg/L [53]. Besides these 4 groups, 24-h GH profiles 
were performed in several other centres such as London 
(Hindmarsh/Brook) and Tübingen (Bierich/Ranke).

Reproducibility
In 40 poorly growing children in whom a GH profile 

was performed twice within 4 weeks, the first and second 
IC-GH were highly correlated, but at the individual level, 
there were quite large differences [15]. In another study 
on 24-h GH profiles in 9 children with a mean time inter-
val of 1.5 years, the intra-individual reproducibility was 
rather poor: the difference in secretion ranged from −31% 
to +37%, with a mean intra-individual coefficient of vari-
ance of 12%. The changes in mean peak amplitudes be-
tween the repeated profiles showed a considerable inter-
individual variation between −54% and +38% (mean co-
efficient of variance 15%) [61]. Similar results were 
obtained in other longitudinal studies [62, 63]. Alberts-
son-Wikland and Rosberg [20] concluded “that the re-
producibility of repeated 24-h profiles is nearly as low as 
the reproducibility of the GH response to repeated phar-
macological tests for an individual child; if there are any 
differences, they are less pronounced for 24-h integrated 
concentrations than for the GH response to pharmaco-
logical tests” [15, 62, 64].

Choice of Outcome Measure
A 24-h GH profile can be based on integrated (con-

tinuous) versus discrete sampling (usually at 20-min in-
tervals), and software programs generate a number of 
output variables [20, 52, 65]. For example, the Pulsar 
analyses with setting for 24-h GH curves generate data on 
overall mean; the maximal and minimal value; the mean 
of the calculated baseline; the number of peaks; the mean 
interpeak interval; the mean peak height, length, ampli-
tude, and peak area; and the area under the curve above 
the zero level as well as above the calculated baseline [52]. 
The usual outcome measure is an indicator of the average 
GH concentration at all time points, such as the IC-GH, 

mean GH concentration, or area under the curve. How-
ever, in the construction of a prediction model for the 
growth response to recombinant human GH (rhGH) 
treatment, the highest GH peak (usually occurring at 
night) showed a slightly better correlation with the growth 
response than the area under the curve above baseline, 
estimated as roughly equivalent to the mean GH level [49, 
66].

Critical Appraisal of the Concept of GH 
Neurosecretory Dysfunction
Based on a pilot study on the IC-GH in short children 

[40] and the study on children with acute lymphatic leu-
kaemia who underwent preventive irradiation [42], Spili-
otis et al. [58] investigated 32 short children and 13 nor-
mal-stature controls. Of the short children, 16 were clas-
sified as GHD (GH peak <10 μg/L in a GHST, mean 24-h 
GH concentration <0.6–3.3 μg/L), 9 as controls (normal 
GH peaks after stimulation, mean 24-h GH concentra-
tion 3.1–12.2 μg/L), and 7 as GHND (normal GH peak in 
stimulation test, mean GH concentration ≤3 μg/L). When 
one takes a closer look at the 7 patients with GHND, all 
were in Tanner stage 1, while this was only expected for 3 
children aged 7.4, 11.6, and 12.5 years. The remaining 4 
males (aged 14.8, 15.0, 15.0, and 15.5 years) had an ex-
tremely delayed puberty and bone age. It is noteworthy 
that the highest nocturnal GH peak was ≥10 μg/L in 6 out 
of 16 in the GHD group and in all members of the GHND 
group (10–22 μg/L). Treatment of the GHND patients 
with pituitary hGH (3×/week) doubled height velocity, 
similar to the “GHD” patients.

In a follow-up study [59] on 73 patients (21 GHD, 21 
GHND, 18 short controls, and 13 normal-stature con-
trols), GHND was now formally defined as a mean serum 
24-h GH concentration below 3.0 μg/L, a normal re-
sponse (>10 μg/L) to provocative testing, a low plasma 
IGF-I, and clinical features consistent with GHD. Again, 
in all children labelled GHND, the highest nocturnal GH 
concentration was >10 μg/L, close to the peak GH in the 
stimulation test [59]. Similar results were reported in 18 
children with GHND [66]. GHND was also found in 3 out 
of 5 children with an empty sella [67].

In the meantime, Dr. Zadik had published similar data 
on IC-GH of 90 short children (19 GHD) compared with 
IC-GH from 46 children of normal stature. Mean IC-GH 
in children with GHD, short children with a normal GH 
peak in a GHST, and normal-stature controls was 1.6 ± 
0.6, 3.8 ± 2.3, and 6.6 ± 1.9 μg/L, respectively. Forty-five 
percent of children with normal stimulated GH respons-
es had an IC-GH within the range of values for the group 
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with GHD [68]. The incidence of GHND (IC-GH <3.2 
μg/L) among children with a height SDS less than −2.5 
without obvious underlying causes was estimated at 45% 
[69]. The authors also showed that differences in IC-GH 
between normally growing and poorly growing children 
are due to a lower amplitude of peaks during the daytime 
hours [70] and that rhGH administration did not sup-
press endogenous GH secretion in patients with GHND 
[71]. This was later confirmed by Lundberg et al. [72], 
who showed spontaneous GH peaks for 4 h following sc 
GH injections. The growth response of boys with GHND 
after 4 years of GH treatment was similar to that of chil-
dren with classical GHD [73], and GH treatment had a 
positive effect on adult height [74]. Interestingly, at re-
testing after 3–4 years, 3 children with GHND showed a 
subnormal GH response to stimulation, suggesting that 
in some patients, a regulatory defect in neurosecretion is 
noted first, while at a later stage, the response of the pitu-
itary to stimulation is lost [75].

We believe that there are several reasons to challenge 
the claims of these 2 groups on the existence of the hypo-
thetical GHND. First, the distribution of the mean GH 
concentration of healthy children is much wider than the 
authors’ estimations, probably associated with the limited 
number of prepubertal controls. The 3.0–3.2 μg/L cutoff 
for IC-GH is too high, according to observations in larg-
er groups of children [52, 53]. Second, the authors prob-
ably overestimated the reproducibility. Third, the authors 
have not given proper attention to an alternative outcome 
marker that may be at least as important, that is, the high-
est spontaneous GH peak [49], which was >10 μg/L in all 
cases [58, 59]. In addition, the growth response to hGH 
treatment in children labelled as GHND does not support 
the concept of a separate GHND condition either. Bercu 
and colleagues showed that the response to pituitary hGH 
administration (0.15–0.30 mg/kg · week, 3–7 injections/
week) was similar in short children regardless of pro-
voked and/or endogenous GH secretory dynamics [76–
78]. 

Does this mean that “GHND” does not exist? We be-
lieve there may be 2 examples of its existence in special 
pathological conditions. First, the robust data on children 
who received cranial irradiation indicate a decreased 
spontaneous GH secretion and disturbed GH secretion 
pattern, as mentioned above [42–47]. Second, there is a 
clinical syndrome in which spontaneous GH secretion 
and serum IGF-I are usually decreased, while GHST re-
sults are often normal: Prader-Willi syndrome [79, 80]. 
For example, in 23 non-obese children, the mean stimu-
lated GH peak was approximately 6 μg/L (implying that 

approximately 40% would have a peak of >7 μg/L), 4 
times lower than healthy controls [81], and mean 24-h 
GH concentration was 0.7 μg/L [82], suggesting that a 
GHST is not an appropriate test in such children. In a re-
cent Dutch study, mean serum IGF-I in childhood was 
−1.7 SDS, suggesting that IGF-I was less than −2 SDS in 
about 40% of cases. Interestingly, GH secretion appears 
to increase by age in this syndrome: both serum IGF-I and 
IGFBP-3 normalized in GH-treated young adults, and 
none of the patients met the criteria for adult GHD [83].

Besides these 2 examples, the use of 2 different tools 
for assessing GH secretion (a GH profile and a GHST) 
automatically leads to groups, which are labelled deficient 
with one tool and not with the other. This will be further 
discussed in the following sections.

Critical Appraisal of the Diagnostic Value of 
Spontaneous GH Secretion
In contrast with the 2 groups of clinical scientists that 

assumed healthy children have an IC-GH above 3.0–3.2 
μg/L (see Critical Appraisal of the Concept of GH Neuro-
secretory Dysfunction), 2 other groups emphasized the 
wider range of GH secretion and the considerable overlap 
with children with GHD [52, 53]. However, the conclu-
sions of the 2 latter groups differed. Rose et al. [84] con-
cluded that “standard GH stimulation tests, despite their 
limitations, remain the best definitive test of GH secre-
tion,” which ended the NIH programme. In contrast, the 
group of Albertsson-Wikland and her successors consid-
er a 12-h GH profile superior to a GHST. As mentioned 
earlier, in Sweden such profile or a GHST preceded by a 
3-h GH profile to control for refractoriness are currently 
used in Sweden (personal communication Drs. Alberts-
son-Wikland and Kriström).

The current approach of this Swedish group is based 
on a series of studies between the early 1980s and 2007, in 
which spontaneous GH secretion was used as a potential 
predictor in the growth “prediction model.” The Gothen-
burg prediction models were designed to predict the 
growth response in the first 2 years of GH treatment (ex-
pressed as the change in height SDS) in short children ir-
respective of GH secretion, so including GHD and idio-
pathic short stature (ISS). In addition to data included 
into the basic model data (auxological data from the year 
before the start of GH treatment and parental heights), 
the other 4 models included either growth data from the 
first 2 years of life, serum IGF-I, GH secretion estimated 
during a provocation test (AITT) or a spontaneous GH 
secretion profile [49]. While the GH peak during the 
AITT or IGF-I SDS were predictive (though at an inter-
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mediate magnitude, similar to the predictive value of ear-
ly growth), the maximum GH peak over 24 h (GHmax24h) 
was the most informative variable, closely followed by the 
area under the curve above baseline. Adding early growth 
variables and GHmax24h to the basic model resulted in the 
model with the best accuracy (narrower prediction inter-
val), considerably better than if the GH peak during the 
AITT provocation tests or IGF-I SDS was added [49]. A 
further refinement of the prediction model, including 
data from children born prematurely and/or small for 
gestational age (SGA), was published in 2007 [85].

The original prediction model [49] was used to test the 
hypothesis whether individualized GH doses, based on 
variation in GH responsiveness estimated by the predic-
tion model, reduced variability in growth response 
around a preset height target compared with a standard-
ized weight-based dose, in 153 short prepubertal children 
who were tested with a 24-h GH profile as well as an 
AITT. If the highest GH peak from the 24-h profile was 
used instead of the GH peak in the AITT, the diagnosis 
was switched from isolated GHD to ISS in 30% of cases 
[50]. Individualized GH doses during catch-up growth 
indeed reduced the proportion of unexpectedly good and 
poor responders around a predefined individual growth 
target, while mean growth responses were equal [50].

Several studies have assessed to which extent a shorter 
interval than 24 h would generate similarly useful infor-
mation. The highest GH peak obtained during a sampling 
period limited to 12 h at night resulted in an acceptable 
prediction level for 97% of the children and was still a bet-
ter predictor of the growth response than the GH peak 
during an AITT or IGF-I levels when used in the predic-
tion models [86]. Shortening the time interval to 6 h re-
sulted in a considerable loss of accuracy [86, 87]. Techni-
cal aspects of the analysis of 24-h GH profiles (secretion 
rate and pattern) were described in detail [56, 65] as well 
as the influence of standard preparations, GH isoforms, 
assay characteristics, GH-binding protein (GHBP) [22] 
and 24-h profiles in short children born SGA [88].

In the discussion about whether one should use the 
GH peak in a GHST or an indicator of spontaneous GH 
secretion (or both), there is a tension between theoretical 
and pragmatic arguments. In theory, a 12- or 24-h GH 
profile should be a better indicator of spontaneous GH 
secretion than the GH peak in a GHST, considering all its 
drawbacks [10]. However, the burden to the patient and 
the financial and logistical burden to the health and hos-
pital system are considered larger. We assume that these 
are the main reasons that presently GH profiles are used 
only in few centres.

We believe that for centres where GH profiles are not 
done, it is still helpful to be informed about observations 
in centres performing 24-h GH profile as well as a GHST. 
First, it is informative to see the scatterplot of the highest 
GH peak in the 24-h GH profile (GHmax24h) versus the 
GH peak observed in the AITT, as shown in Figure 1, 
kindly provided by Drs. Berit Kristrom and Albertsson-
Wikland, Umea and Gothenburg, Sweden (data derived 
from [49] and used in [50]). As expected, there is a posi-
tive correlation, but at any cutoff limit, there are children 
who could be diagnosed as GHD or ISS depending on 
whether the clinician chooses the GHmax24h or stimu-
lated GH peak as diagnostic criterion.

In a recent retrospective study from Sweden on 102 
short children [24], a highly variable frequency (6–42%) 
of divergent results from AITTs and nocturnal spontane-
ous GH tests was found, which was significantly associ-
ated with cutoff values applied. At a cutoff of 7 μg/L, 57% 
had normal results on both tests, 18% pathological results 
on both tests, 7% pathological results on the nocturnal 
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Fig. 1. Scatterplot of results of GHmax24h (in mU/L, y axis) versus 
GHmaxAITT (in mU/L, x axis). Both for the GH profile and AITT, 
polyclonal antibodies and WHO IRP 80/505 standard were used. 
Stippled lines indicate a cutoff of 32 mU/L (equivalent to 10 μg/L 
with the respective assay). The data are derived from Albertsson-
Wikland et al. [49]. The figure was first published in the PhD the-
sis of Dr. Kristrom, Umeå University Medical Dissertations, ISBN 
91–7191–611–3, and kindly provided by Dr. Kristrom. GH, growth 
hormone; GHmax24h, highest GH peak in a 24-h GH profile; 
GHmaxAITT, GH peak in an arginine-insulin tolerance test.
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test only, and 19% pathological results on the stimulation 
test only. At a cutoff of 10 μg/L, these percentages were 
34, 37, 11, and 18%, respectively [24]. These results show 
that a potential advantage of this strategy is that the 12- or 
24-h GH profile can reduce the number of false-positive 
tests of GHSTs by approximately 20%. The authors pro-
vided evidence that this discrepancy is frequently caused 
by the refractory interval of 3 h [23]. At the same time, in 
7% of short children, a low nocturnal GH peak is found 
in contrast to a normal GH peak in a GHST [24], who may 
respond positively to GH treatment [24]. Interestingly, a 
similar percentage was found in Tübingen (Germany), 
where 9% of non-acquired cases with GHD were labelled 
GHND [89]. While it is tempting to assume that these 
cases indeed represent GHND, one should still bear in 
mind the suboptimal reproducibility of GH profiles as 
well as GHSTs [61, 63]. A reassuring observation is that 
the stimulated GH peak can be reliably replaced by the 
12-h GH peak with similar accuracy in the KIGS predic-
tion model [90].

Conclusion
If for logistical or financial reasons, no GH profile for 

a short child with a low serum IGF-I and normal GHST 
can be performed, the clinician can choose among 3 op-
tions. First, one can decide to prescribe rhGH as a thera-
peutic trial, if national regulations permit, for example, in 
Sweden [91, 92] and the USA. Second, one can conclude 
that the child is not GH deficient and abstain from any 
treatment. A third option was taken by the paediatric en-
docrine community in the Netherlands, where an IGFGT 
is performed in such cases; if the IGF-I response is suffi-
cient on any dose, a 1-year trial with rhGH therapy is al-
lowed by the National Committee, which may be contin-
ued if the growth response is appropriate [26].

Genetic Conditions Associated with Normal GH 
Sensitivity

Kowarski Syndrome (Bioinactive GH Protein, Caused 
by a Pathogenic GH1 Variant)
While in the majority of IGF-I-deficient children with 

a normal result of the GHST or spontaneous GH secre-
tion, the cause may be associated with the inaccuracy of 
both tests, there can also be a genetic origin. The 2 main 
candidate genes for such presentation include GH1, en-
coding the pituitary GH protein, and GHSR, encoding the 
GH secretagogue receptor (ghrelin receptor).

Most pathogenic variants of GH1 cause a form of con-
genital GHD, either with an autosomal recessive inheri-
tance pattern (isolated GHD types 1A [MIM #262400] or 
1B [MIM #612781]) or an autosomal dominant inheri-
tance (isolated GHD type 2, MIM #173100) [93–95]. Pa-
tients with isolated GHD type 1A have severe growth re-
tardation, which usually becomes apparent in the first 6 
months of life and is caused by homozygous or com-
pound heterozygous deletions, insertions, frameshift, or 
nonsense variants in GH1. In patients with isolated GHD 
type 1B, serum GH levels are low but detectable and the 
phenotype is more heterogeneous. In most cases, homo-
zygous or compound heterozygous splice site, frameshift, 
nonsense, or missense variants in GH1 or GHRHR (en-
coding the GH-releasing hormone receptor) are found. 
In isolated GHD type 2, with autosomal dominant inher-
itance, GH secretion is very low but usually still detect-
able, and in most cases, it is associated with heterozygous 
intronic deletions, missense, splice site, or splice enhanc-
er variants in GH1 [94, 96, 97].

Kowarski syndrome (MIM #262650) was named after 
the American paediatric endocrinologist who studied 2 
unrelated boys with growth retardation and delayed bone 
ages, presenting with a normal immunoreactive GH peak 
after stimulation, but low levels of serum IGF-I [98]. 
Their growth and serum IGF-I responded positively to 
GH administration. At that time, further genetic assess-
ment could not be performed. In the following years, sev-
eral patients with similar clinical features were reported 
[29, 99–101].

Proof of the existence of a clinical syndrome caused by 
a bioinactive GH protein was provided in 1996–1997 
[102–104] (Table 1). The first case with clinical and labo-
ratory features of severe GHD, but with an increased GH 
peak in an insulin tolerance test (38 μg/L), was reported 
to carry a p.(Arg77Cys) variant (c.307C>T, p.(Arg-
103Cys) according to the HGVS nomenclature) [102, 
103, 105]. The mutant GH did not stimulate tyrosine 
phosphorylation in IM-9 cells and also inhibited the abil-
ity of wild-type GH (wt-GH) to stimulate tyrosine phos-
phorylation, thus having a dominant negative action. The 
affinity of the mutant GH for GHBP was significantly 
higher than that of wt-GH. Interestingly and unexplained, 
in the proband’s father carrying the same variant, isoelec-
tric focussing revealed that the father’s serum contained 
a single GH peak corresponding to wt-GH.

The second case with a milder phenotype was reported 
to carry a heterozygous p.(Asp112Gly) variant (HGVS 
c.413A>G, p.(Asp138Gly)) [104]. The locus of this vari-
ant was found within site 2 of the GH molecule in binding 
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with the GH receptor and GHBP, and the expressed re-
combinant mutant GH tended to form a 1:1 instead of the 
1:2 GH-GHBP complex normally produced by wt-GH. 
The authors concluded that this variant molecule is bio-
inactive by preventing dimerisation of the GH receptor. 
After these seminal papers, several more cases have been 
reported, and the clinical and laboratory data of all pres-
ently known GH1 mutations associated with bioinactive 
GH syndrome are shown in Table 1 [102–114].

In an interesting study on children with short stature, 
reduced height velocity, and bone age delay [106] and a 
cohort of children with severe GHD, there was one child 
with a normal GH peak in a GHST and his short mother 
who carried a heterozygous GH1 variant reported as  
p.(Ser71Phe) (HGVS c.290C>T, p.(Ser97Phe)). Although 
segregation of the variant was not confirmed and al-
though no data were reported on serum IGF-I and the 
growth response to GH, in vitro studies showed that the 

Table 1. Genetic, clinical, and biochemical characteristics of patients with bioinactive GH syndrome, sorted according to gene position

GH1 
(NM_000515.4)
Variant (HGVS)a

Reported as Age, 
years

Height 
SDS at 
diagnosis

GHmax, 
µg/L

IGF-I 
SDS

GH therapy 
responseb

Comments Reference

c.236G>C
p.(Cys79Ser)

p.(Cys53Ser) 9 −3.6 44.7 −3.4 +/good Absence of disulphide bridge; reduced 
affinity for GHR

[109]

c.253C>T
p.(Pro85Ser)

p.(Pro59Ser) 9.9 −4.6 17 −2.8 Lower affinity for binding to GHR and JAK2/
STAT5 signalling

[114]

8.0 −5.5 11 −3.0

c.254C>T
p.(Pro85Leu)

p.(Pro59Leu) 7.7 −2.5 6.9; 5.6 −2.4 +/good Decreased GH secretion and lower affinity for 
binding to GHR and JAK2/STAT5 signalling

[113]

13.6 −2.0 4.7; 4.8 +/good

Adult −4.2

c.290C>T
p.(Ser97Phe)

p.(Ser71Phe) 13.5 −3.8 13.6c No data on segregation. Reduces ability to 
activate JAK2/STAT

[107]

c.307C>T
p.(Arg103Cys)

p.(Arg77Cys) 5.6 −6.1 38; 15; 35 −2.1 +/poor Inhibition of binding of wt-GH, mutant was 
not expressed in father

[103, 104, 
106]

37 −0.2 23.7 −1

c.307C>T
p.(Arg103Cys)

p.(Arg77Cys) 6–20 −2.5 to 
−1.9

28 −3.1 to 
−2.2

Less induction of GHR/GHBP [110]

32 −1.4 32 −2.1

64 −1.7 26 −2.3

c.413A>G
p.(Asp138Gly)

p.(Asp112Gly) 3 −3.6 26; 41; 51 −2.5 +/good Mutant prevents dimerisation [105]

c.611G>A
p.(Arg204His)

p.(Arg178His) 5–10 −6.0 to 
−7.2

3.9 −2.3 +/moderate 
(+3.2 SD)

Affects GH secretion, binding and signalling [112]

c.615C>G
p.(Ile205Met)

p.(Ile179Met) 6.9 −2.7 10.4 −1.2 No cosegregation, normal activation of JAK-
STAT. Activation of ERK reduced to half

[108]

c.615C>G
p.(Ile205Met)

p.(Ile179Met) 4.7 −2.0 5.9 +/good No functional studies; segregation with 
phenotype

[115]

c.626G>A 
p.(Arg209His)

p.(Arg183His)
n = 4

2.1–9.8 −4.0 to 
−2.6

5.5–10.9 −4.5 to 
−2.5

Two siblings carrying same variant have 
isolated GHD

[117]

Adapted from [95, 96]. Compared with our previous publication [96], 2 variants, p.(Ser134Arg) and p.(Thr201Ala), were omitted, because these were 
GH deficient. GH, growth hormone; IGF-I, insulin-like growth factor I; SDS, standard deviation score; GHBP, GH-binding protein; GHD, growth hormone 
deficiency. a The transcript that was used for HGVS nomenclature was NM_000515.4, and the protein reference sequence was NP_000506.2. The c. denotes 
nucleotide position on cDNA with the A of the translation start site (ATG) of the cDNA numbered +1. b A positive growth response is indicated as “+.” c The 
GH peak was reported as 27.2 mU/L, at that time equivalent to 13.6 μg/L.
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variant reduced the ability to activate the JAK2/STAT sig-
nalling pathway [106]. Although the authors did not 
identify this child as Kowarski syndrome, this diagnosis 
appears likely in this case.

The pathogenicity of the variant, c.615C>G, p.(Ile
205Met), reported by Lewis et al. [107] is uncertain. Argu-
ments in favour include evolutionary conservation of the 
residue and evidence from molecular modelling, but ar-
guments against are the absence of cosegregation with 
short stature in the family, the similar degree of resistance 
manifested by the GH variant to proteolytic cleavage as 
compared with wt-GH, normal binding to the GH recep-
tor, and the normal STAT5 activation. The minimum al-
lele frequency of this variant is 0.04%, and it was later 
reported in a child with GHD [114].

In the following years, several cases with bioinactive 
GH1 variants were reported by the group of Petkovic/
Mullis from Bern (Switzerland). The p.(Cys79Ser) variant 
was bioinactive at the physiological range, showing that 
the disulphide bridge Cys-53 to Cys-163 is required for 
mediating the biological effects of GH [108]. Studies on a 
family carrying the same variant, as previously reported 
by Takahashi et al., p.(Arg77Cys), showed a reduced ca-
pability of the variant to induce the GHR/GHBP gene 
transcription rate when compared with wt-GH [109]. In 
2010, they described a patient suffering from short stature 
caused by a heterozygous GH1 alteration (reported as 
p.(Arg178His)), which not only affected GH secretion 
(consistent with isolated GHD type 2) but also GH bind-
ing and signalling [111]. One year earlier, a child with 
isolated GHD type 2 had been reported with the same 
variant [110]. A similar alteration of secretion as well as 
bioactivity was observed in a patient carrying a previous-
ly reported variant, p.(Pro59Leu) [112]. Interestingly, an-
other variant at the same position, p.(Pro59Ser), led to a 
high secretion of GH-P59S and had also an impact on 
GHR binding and signalling, which may alter GHR re-
sponsiveness to wt-GH [113].

While Kowarski syndrome is characterized by a nor-
mal immunoassayable GH secretion in contrast to a low 
bioactivity, a Japanese case report showed that a GH1 
variant can also show undetectable serum GH values dur-
ing insulin, clonidine, and GH-releasing hormone provo-
cation tests, whereas urinary GH excretion was within the 
normal range [115]. Genetic testing showed compound 
heterozygosity in the GH1 gene for a missense variant, 
p.(Asp116Glu), of paternal origin and a frameshift vari-
ant, p.(Gln68fs*106), of maternal origin. Genotype-phe-
notype correlations in this family and in vitro functional 
studies indicated that the p.(Asp116Glu)-GH could be 

measured with another GH kit and had a reduced in vivo 
bioactivity. The p.(Gln68fs*106) yielded no GH protein. 
Finally, a recent paper in a large extended family showed 
that a heterozygous GH1 variant known to be associated 
with type II GHD (c.626G>A, p.(Arg209His), previously 
reported as p.(Arg183His)), can in some individuals also 
lead to a presentation of short stature with a normal 
GHST and good growth response to rhGH, suggestive for 
Kowarski syndrome [116].

In conclusion, there is no doubt that some heterozy-
gous GH1 variants encode variant GH molecules that are 
bioinactive and can have a dominant negative effect. In a 
few cases, GH secretion is also affected, at first sight sus-
pected for isolated GHD type 2, and in other cases, it may 
be combined with partial GHI. The syndrome is charac-
terized by clinical features and low serum IGF-I and 
IGFBP-3 concentrations compatible with GHD, in con-
trast with a normal or even increased serum GH response 
to a GHST, and the growth response to rhGH treatment 
in terms of growth and serum IGF-I is generally appropri-
ate.

Ghrelin Insensitivity (GHSR Defects)
In 1999, ghrelin was isolated as the endogenous ligand 

for the receptor GHSR1A (encoded by GHSR) and for its 
ability to stimulate GH secretion [117]. In addition to a 
direct stimulatory effect on the pituitary gland, ghrelin 
was shown to amplify GH secretion by modulation of the 
activity of GHRH neurons [118]. Consistent with the 
physiological actions of acyl-ghrelin on energy homeo-
stasis and GH secretion, animals with a disruption in 
GHSR display a leaner and shorter phenotype and have 
reduced IGF-I levels [119], supporting a role of the GHSR 
in body growth [118]. Two GHSR isoforms have been 
identified [120, 121]; the primary GHSR1A product con-
tains 7 transmembrane domains, whereas GHSR1B is an 
inactive form with 5 transmembrane domains [122].

Although “isolated partial GHD” due to a GHSR vari-
ant is a registered syndrome (MIM #615925), only few 
cases have been reported, the clinical and laboratory phe-
notype is remarkably diverse, and cosegregation of the 
genotype with short stature is little convincing [123, 124]. 
A summary of reported cases is shown in Table 2. GHSR 
variants have also been associated with obesity [125].

The first case was found in a genetic analysis in 43 chil-
dren with “short normal stature,” probably equivalent to 
ISS. The novel heterozygous genetic variant c.837C>A, 
p.(Phe279Leu), led to the exchange of a highly conserved 
amino acid in the sixth transmembrane domain of GHSR 
[125], which had been previously described to exert de-
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creased specific binding properties for a GHSR agonist 
[126]. Further support for the pathogenicity of the variant 
was offered by the observation that the variant was inher-
ited via the mother with short stature [125].

The second variant, c.611C>A, p.(Ala204Glu), was re-
ported in 2 unrelated families from Morocco [127]. In 
family 1, the proband (with a homozygous mutation) was 
very short (height −3.7 SDS) and had a normal GHST re-
sult. Of the 5 relatives heterozygous for the variant, the 
parents and 2 siblings were short, but 1 sibling had a nor-
mal stature. In family 2, the heterozygous proband had 
isolated GHD (height –3.2 SDS), but only the parent car-
rying the GHSR variant was short, while height of the 2 
siblings (also carriers) was well within the reference range, 
one even +1.0 SDS. The authors suggested that this vari-
ant is dominant with a penetrance of 66%. In vitro, the 
variant resulted in decreased cell surface expression of the 

receptor and selectively impaired the constitutive activity 
of the GHSR, while preserving its ability to respond to 
ghrelin [127]. The high basal activity of GHSR has shown 
to be of physiological importance in regulating both GH 
secretion and food intake, as demonstrated with in vivo 
experiments (reviewed in Wang and Tao [128]). The 
functional effect of the variant was recently confirmed in 
a GHSR-Ala203Glu mutant mouse model, which also 
showed decreased body weight, body length, and femur 
length at 1 year of age [129].

In a later publication by the French group [130], a boy 
with partial isolated GHD (height −2.7 SDS) was found 
to be compound heterozygous for 2 GHSR variants. The 
2 heterozygous carriers of the p.(Trp2*) nonsense variant 
(mother and 1 sibling, height −1.3 and −1.7 SDS, respec-
tively) tended to be shorter than the carrier of the p. 
(Arg237Trp) missense variant (father, height −0.6 SDS) 

Table 2. Selected characteristics of patients with GHSR (NM_198407.2) variants, sorted according to year of publication

cDNA 
change

Protein change gnomAD 
(v2.1.1) MAF

Zygosity N Height SDS (mean, 
range)

GH peak in GHST, 
µg/L

Diagnosis Country Reference

c.837C>A p.(Phe279Leu) 0.0053% Het 1 Less than −2.0 ISS Germany [126]

c.611C>A p.(Ala204Glu) 0.0028% Hom 1 −3.7 9.7–16 ISS Morocco [128]

Het 6 −2.3 (−3.7 to −1.1) 3–4.7 in GHD
14.3 in ISS

1 GHD, 4 ISS, 
1 normal

Het 1 −3.2 1–1.7 in GHD GHD

Het 3 −1.1 (−2.0 to 1.0) 1 ISS, 2 normal

c.6G>A
c.709A>T

p.(Trp2*)
p.(Arg237Trp)

NR
0.020%

Comp het 1 −2.7 6–7 GHD France [131]

c.107_109del p.(Gln36del) 0.0058% Het 3 −3.3 (−3.4 to −3.1) ISS? Japan [123]

c.323C>T p.(Pro108Leu) 0.00080% Het 1 −2.8 ISS?

c.517T>C p.(Cys173Arg) NR Het 2 −2.4 (−2.8 to −1.9) ISS?

c.737A>C p.(Asp246Ala) NR Het 2 −3.1 (−3.3 to −3.0) ISS? One wt sibling 
equally short

c.251G>T p.(Ser84Ile) NR Het 1 −2.4 → −0.7 10.3 ISS/CDGP Brazil [132]

c.545T>C p.(Val182Ala) NR Het 1 −2.3 → −1.4 7.9 ISS/CDGP

c.611C>A p.(Ala204Glu) 0.0028% Het 2 −2.6; −1.7 4.6 1 GHD, 1 normal Morocco [115]

c.611C>A p.(Ala204Glu) 0.0028% Het 2 −2.1; −1.4 7.5 1 GHD, 1 normal

c.526G>A p.(Gly176Arg) NR Het 2 −3.2; NR 7.2 1 ISS, 1 GHD Czech Rep [134]

c.545T>C p.(Val182Ala) NR Het 1 −2.6 → −2.5 CDGP Brazil [133]

CDGP, constitutional delay of growth and puberty; Comp het, compound heterozygous; gnomAD, Genome Aggregation Database; GHD, growth 
hormone deficiency; GHST, growth hormone stimulation test; Het, heterozygous; Hom, homozygous; ISS, idiopathic short stature; MAF, minor allele 
frequency; NR, not reported; SDS, standard deviation score; Rep, Republic; wt, wild type; →, longitudinal data on height SDS.
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and the sibling carrying wt-GHSR (height −0.2 SDS). In 
vitro experiments showed that the p.(Arg237Trp) variant 
would result in a partial loss of constitutive activity of the 
receptor, whereas both its ability to respond to ghrelin 
and its cell surface expression were preserved.

A Japanese group performed mutational screening of 
GHSR in 127 unrelated Japanese patients diagnosed with 
either isolated GHD (n = 14) or ISS (n = 113), and 188 
control subjects were analysed for the presence of these 
mutations [122]. For 4 variants, the clinical features and 
functional studies (loss of constitutive activity) made it 
likely that the GHSR variants may cause short stature. The 
heterozygous p.(Gln36del) variant was detected in 3 pa-
tients as well as 1 control and the 3 other heterozygous 
variants, p.(Pro108Leu), p.(Cys173Arg), and p.(Asp246
Ala), were only found in a single patient each. However, 
data on cosegregation were limited, and in several cases 
not confirmatory. For the first patient with the p.(Gln-
36del) variant, no genetic data on the normal-stature par-
ents were available, the parent of the second patient car-
rying this variant had a completely normal height (0.0 
SDS), and clinical or genetic data were not available for the 
third patient. For the p.(Pro108Leu) variant, both parents 
had normal stature and their DNA was not tested. The 
parent and sibling carrying the variant encountered in the 
third patient p.(Cys173Arg) had a height of −1.9 SDS and 
−0.5 SDS, respectively. The proband and his mother car-
rying the p.(Asp246Ala) variant had a similar height SDS 
(−3.3 and −3.0 SDS, respectively), but the sibling carrying 
the wt genotype was equally short (−3.1 SDS) [122].

In a Brazilian study, the GHSR coding region was di-
rectly sequenced in 96 independent patients with ISS (31 
of them with constitutional delay of growth and puberty 
[CDGP]), 150 adults, and 197 children with normal stat-
ure [131]. Two short girls with CDGP who reached a nor-
mal adult height were found to carry a pathogenic variant, 
showing a decrease in basal receptor activity, in part ex-
plained by a reduction in cell surface expression. The 
p.(Ser84Ile) variant was not inherited via the mother, and 
no genetic analysis could be performed in the father. No-
tably, the 2 siblings who had normal stature and puberty 
were also heterozygous for the same variant. The father 
and sister of the girl carrying the p.(Val182Ala) variant 
were also carriers, and their growth and puberty patterns 
were compatible with CDGP. Her sister was treated with 
rhGH for GHD (maximum GH peak at stimulation test 
of 1.8 μg/L) [131]. In a recent paper [132], an unrelated 
proband carrying this same variant was reported, with a 
height of −2.5 SDS at a relatively late pubertal onset of 
13.5 years, with a bone age delay of 3 years [131].

In a cohort of 46 Moroccan index cases with isolated 
GHD, the same GHSR variant, as previously reported, 
p.(Ala204Glu) [127], was detected in 2 children from 2 
families, but in each family, this variant was also present 
in 1 sibling with normal height [114]. A child with severe 
GHD carried a novel variant, p.(Ala358Thr), inherited 
from his father with a height of −2.2 SDS. Though the 
alanine residue at codon 358 is conserved among mam-
malian species, the p.(Ala358Thr) variant was reported as 
a rare polymorphism [131] and is now listed as single-
nucleotide polymorphism (SNP, rs150344113) with a fre-
quency of 0.6 and 1.7% in American multi-ethnic (db-
SNP) and African American (Exome Variant Server) co-
horts, respectively. Finally, in a study on genetic testing of 
children with familial short stature, a heterozygous GHSR 
variant, p.(Gly176Arg), was found in an SGA born child 
with borderline GHD and limb shortening, as well as in 
his younger brother born appropriate for gestational age 
diagnosed with GHD [133].

Besides these case reports, it is important to note that 
in another cohort of short children, no pathogenic GHSR 
variants were found [134]. As applies to most scientific 
information, one can expect that there is a publication 
bias, because negative findings are not likely to be pub-
lished. In our Laboratory for Diagnostic Genome Analy-
sis, we detected 8 GHSR variants in 9 unrelated children 
out of 1,698 patients referred for genetic testing by next 
generation sequencing for short stature and/or skeletal 
dysplasia (0.5%). Three variants were previously reported 
as pathogenic (2x c.611C>A p.(Ala204Glu); c.709A>T 
p.(Arg237Trp); and c.837C>A p.(Phe279Leu)) [125, 127, 
130, 135]. The other 5 variants included 1 likely patho-
genic truncating variant and 4 missense variants of uncer-
tain significance (Drs. Losekoot and Van Duyvenvoorde, 
personal communication).

An indirect indication that GHSR variants may be as-
sociated with height is the significant association of GHSR 
polymorphisms with height in genome-wide association 
studies [136–138]. However, in another study, common 
variation in GHSR was not associated with body size 
[139]. In a study aimed at identifying genetic polymor-
phisms, which could serve as predictive markers of re-
sponse to rhGH therapy, no such marker in GHSR was 
found [140]. In contrast, body length and weight of goats 
and pigs were significantly higher in animals carrying a 
GHSR polymorphism [141, 142].

In theory, a diminished function of the ghrelin recep-
tor may occur not only as a result of a pathogenic GHSR 
variant but also because of a genetic abnormality of a reg-
ulator of GHSR expression. A recent paper reported that 
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mice with a reduced Reck expression or with induced 
Reck deficiency from 10 days after birth showed decreas-
es in body size and plasma levels of IGF-I. Reck is a tu-
mour suppressor gene encoding reversion-inducing cys-
teine-rich protein with Kazal motifs (Reck), a membrane-
anchored protease regulator expressed in multiple tissues 
in mouse embryos. In postnatal Reck−/− mice, immuno-
reactivity of GH was greatly reduced, while GHSR and 
GHRH receptor immunoreactivity was decreased, al-
though their mRNAs were increased [143].

In conclusion, arguments in favour of the hypothesis 
that GHSR variants are associated with short stature and 
CDGP are the various case reports, GWAS studies, func-
tional data on decreased constitutive action of GHSR, and 
the knock-out mice studies. Arguments against include 
the variability of clinical phenotypes (GHD, ISS, or 
CDGP) and circulating IGF-I concentrations, incomplete 
segregation of the variations with the phenotype (normal 
stature in some carriers and short stature in parents or 
siblings with a wt genotype), and potential publication 
bias, in line with our previous considerations [123, 124].

Other Suggested Mechanisms of a Diminished Action 
of GH
There are a few other potential medical conditions for 

which the evidence on diminished GH action is weak. 
These will be discussed in the following paragraphs.

Abnormal Composition of Secreted and Circulating 
GH Isoproteins
Human GH isolated and secreted from the pituitary 

gland is not a single protein but rather a mixture of vari-
ants (isoproteins) differing in amino acid sequence, post-
translational modified forms, and fragments [144]. The 
major component (22 kDa, GH molecule with a molecu-
lar weight of 22 kDa [22K-GH]) is a single-chain polypep-
tide containing 191 amino acids and 2 intra-chain disul-
phide bridges, synthesized and stored in granules of spe-
cific acidophilic cells of the anterior pituitary [145]. 
According to an analysis of the approximate mean distri-
bution of pituitary GH isoforms in human blood 15–30 
min after a secretory pulse, 45% consists of 22K-GH, half 
of which is bound to high-affinity GHBP [144]. The sec-
ond main GH isoform (20K-GH), derived from GH1 by 
alternative mRNA splicing, has a structure analogous to 
22K-GH, except for the deletion of internal residues 32–
46. It has 176 amino acids and a molecular mass of ap-
proximately 20 kDa [146]. Five percent of the secretory 
pulse consists of GH molecule with a molecular weight of 
20 kDa (20K-GH) [144]. Acidic GH (desamido-, acylated, 

and glycosylated GH) occupies 5% of the secretory pulse. 
Other components of the secretory pulse include 3 class-
es of dimeric GH (22K 20%, 20K 5%, and acidic GH di-
mers 2%) and 3 classes of oligomeric GH (22K 10%, 20K 
2%, and acidic GH dimers 2%) [144]. A third isoform, 
arising from skipping of exon 3 and lacking amino acid 
residues 32–71, was proposed as an additional GH variant 
(17.5K-GH) [147] but is not expressed in significant 
amounts under normal conditions [144].

In initial studies, various isoforms appeared to show 
differences in bioactivity. For example, 20K-GH was re-
ported to lack insulin-like effects and have diminished 
diabetogenic activity [148]. However, subsequent studies 
yielded conflicting information, probably in part due to 
species differences. In humans, the somatogenic activity 
of 20K-GH appears qualitatively similar and quantita-
tively equivalent to that of 22K-GH [144]. However, the 
bioactivity of naturally occurring GH oligomers com-
pared to monomeric 22K-GH ranges from moderately re-
duced to full bioactivity [144].

Regarding immunoreactivity, the heterogeneity of GH 
is the main cause of the disparities of GH results obtained 
among assays and laboratories, particularly with the 
modern specific monoclonal assays [149]. Furthermore, 
the plasma half-life of endogenous 20K-GH and of mo-
nomeric, dimeric, and oligomeric GH is longer than that 
of 22K-GH [150]. The picture is complicated further in 
the circulation, where GH binds to 2 GHBP, each with 
different affinities for the GH isoforms.

There are 2 papers suggesting that an abnormal com-
position of GH isoproteins may cause short stature. In the 
first case report [151], a 14-year-old boy showed a growth 
pattern consistent with GHD, normal GH peaks to 
GHSTs, and an excellent growth response to GH admin-
istration. Plasma somatomedin C level (the previous 
name for IGF-I) was interpreted as normal (1.7 U/mL, 
reference 0.4–4.5 U/mL for age). The ratio of radiorecep-
tor-assayable to radioimmunoassayable GH was de-
creased, as well as the biological activity. When analysed 
by column chromatography, most of the immunoreactive 
GH migrated as approximately 85 kDa (“big-big”) and 45 
kDa (“big”) species, and these GH polymers constituted 
60–90% of all immunoreactive material [151]. At the 
time, the normal quantity of tetramers and dimers in 
plasma was estimated at 14–39% [152], in later studies 
slightly higher (41%) [144]. Furthermore, in the patient, 
almost all polymers were resistant to conversion by urea. 
The authors concluded that the patient’s short stature was 
due to an abnormal structure of his endogenous GH mol-
ecule. Our present interpretation is that the normal so-
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matomedin-C (IGF-I) level is a rather strong argument 
against this hypothesis. Genetic studies have not been re-
ported for this patient.

The initial data on differences in bioactivity, binding 
properties, and metabolic clearance of the various GH 
isoproteins, as well as reports that different GH analogues 
and fragments may interact as weak agonists or antago-
nists of the GHR depending on the relative affinities of 
binding sites 1 and 2 to the GHR [153], were the reason 
for a Swedish group to test the hypothesis that short stat-
ure may be due to an abnormal distribution of GH iso-
proteins [154]. Serum non-22-kDa GH levels, expressed 
as a percentage of the total GH concentration, were de-
termined by the 22-kDa GH exclusion assay. The median 
proportion of non-22-kDa GH isoforms was only slightly 
increased in children born SGA and girls with Turner 
syndrome but not in the group of children with ISS, com-
pared with 23 normal-stature children (8.1%). In the SGA 
group, the proportion of non-22-kDa GH isoforms was 
negatively correlated with height SDS. Although the pro-
portion of non-22-kDa GH isoforms in children with ISS 
was not significantly different from that in normal-stat-
ure children, 2 children with ISS had markedly elevated 
proportions of non-22-kDa GH isoforms (>20%), but in 
the same range as several girls with Turner syndrome 
[154]. Unfortunately, no specific clinical data on these 
children were presented, and further specification of the 
GH isoproteins was not performed. As far as we know, 
the potential role of abnormal GH isoproteins in growth 
failure has not been studied thereafter. We conclude that 
the current understanding that the various GH isopro-
teins have a similar biological activity and the absence of 
any convincing case report makes it unlikely that an ab-
normal GH isoprotein profile may cause unexplained 
short stature.

Disturbances of GH1 Expression by Variants in the 
Promoter Region
As with any genetic disorder, clinical features of a syn-

drome cannot only be caused by a pathogenic variant in 
the coding sequence of a gene but also in the 5′ or 3′ re-
gions around the gene, including promoter regions or en-
hancers. In a few studies, allelic variants in the GH1 pro-
moter were studied, as a potential cause of decreased GH 
secretion.

Wagner et al. [155] analysed the GH1 promoter region 
for structural alterations and allelic variations in 113 pa-
tients with isolated GHD type 1B, 21 unaffected family 
members, and 78 normal-stature controls. Of the 22 se-
quence variation sites, 14% were located around the re-

gion of −1,075 bp, 77% between −550 bp and the transla-
tional start site (+1 bp), and 9% within the first intron. All 
the variations found in patients were also observed in 
non-affected family members as well as in normal unre-
lated controls. While these findings implied that there 
was not a single variation within the GH1 gene promoter, 
which causes isolated GHD, the authors could not ex-
clude the possibility that combinations of variations 
might perturb expression.

The group from the Institute of Medical Genetics of 
the University of Wales College of Medicine did interest-
ing work on the polymorphic variation in the proximal 
promoter and locus control region of GH1 [106, 156]. In 
a group of healthy male individuals, an association was 
noted between adult height and the mean in vitro expres-
sion value corresponding to an individual’s GH1 promot-
er haplotype combination, although it explained only 
3.3% of the variance [156].

In the same year, Millar et al. [106] investigated GH1 
variants, including GH1 proximal promoter haplotypes, 
in 41 individuals with short stature, reduced height veloc-
ity, and bone delay, as well as in 11 individuals with idio-
pathic GHD and 154 controls. For the purpose of the 
present review, we concentrate on short individuals with 
a normal result in the GHST, a variant in the GH1 pro-
moter region, and a GH1 haplotype associated with a low 
expression level relative to the wt-haplotype. There were 
3 individuals complying with these conditions. Cases 57 
and 75 (with heights of −2.8 and −6.2 SDS and stimulated 
GH peaks of 27.3 and 6.8 μg/L, respectively) carried a het-
erozygous variant in the proximal promoter (−60G>A, 
recommended nomenclature according to [157]) associ-
ated with a haplotype with a low GH1 expression (haplo-
type 19 according to Horan et al. [156]), inherited from 
their mothers. However, the mothers of both cases had a 
fully normal height SDS (0.3 and −0.6 SDS), which makes 
it unlikely that the variant is causative for the short stature 
of the child. Case 76 (with a height SDS of −2.2 and a GH 
peak of 18.3 μg/L) carried a complex variant in the prox-
imal promoter (−216A>G and −40_-39delGGinsCT), as-
sociated with haplotype 17 (associated with a low GH1 
expression). The variant was not found in the parents, 
who both were short (−2.2 and −2.4 SDS), so also in this 
case a causative role of the variant in the patient’s short 
stature is unlikely.

In a Dutch study on 62 individuals with isolated GHD, 
several GH1 promoter SNPs were associated with height 
and IGF-I levels among patients and controls, but no data 
were reported on short individuals with low serum IGF-I 
and a normal GHST [158]. In conclusion, the available 
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evidence does not support the hypothesis that distur-
bances of GH1 expression by variants in de promoter re-
gion cause short stature in children with a low serum IGF-
I and normal GH peak in a GHST.

Disturbances in the Translation of GH1 mRNA
A disturbed GH1 RNA translation was suggested in a 

study on 3 short children with normal or high GH secre-
tion, normal GHBP serum levels, low IGF-I serum levels, 
catch-up growth under rhGH treatment, and absence of 
any GH1 variant or anti-hGH antibodies [159]. Serum 
samples were measured by polyclonal hGH-RIA, Nb2 rat 
lymphoma proliferation assay, and GH immunofunc-
tional assay. In comparison to controls, the patients’ se-
rum GH levels were much lower when measured by Nb2 
rat lymphoma cell proliferation bioassay and by the im-
munofunctional assay than by RIA. Retesting of 2 of the 
3 patients including a 1 year break of therapy confirmed 
the rhGH dependence of growth in spite of normal en-
dogenous GH secretion. The authors speculated that 
post-translational processing of GH might reduce the bi-
ological activity of the normal translation product.

Conditions with Decreased GH Sensitivity

In the following paragraphs, we shortly review the 
clinical features of the well-established causes of GHI 
characterized by low serum IGF-I (pathogenic variants of 
GHR, STAT5B, STAT3, IGF1, and IGFALS) and 2 syn-
dromes where partial GHI appears likely (Noonan and 
3M). We also mention the unexplained occurrence of low 
serum IGF-I in rare patients carrying pathogenic hetero-
zygous IGF1R defects, in contrast to the usual presenta-
tion with IGF-I concentrations in the upper half of the 
reference range or above [160].

Similarly to the continuous spectrum of GH secretion, 
there is also a continuous spectrum of severity of GH sen-
sitivity. In addition, there is a large variability of the clinical 
presentation of individuals carrying pathogenic variants of 
GHR, STAT5B, STAT3, IGF1, and IGFALS. Therefore, any 
distinction between classical and non-classical forms, as 
previously proposed [27], is inevitably arbitrary. Still, for 
clinical purposes, such subclassification is useful, since the 
classical forms of these conditions, caused by a total func-
tional loss of biological activity of the respective gene prod-
uct, usually leads to such specific phenotype, that a candi-
date gene approach is warranted. Given the availability of 
recent reviews on these genetic disorders [27, 28, 161–164], 
we keep the descriptions of these conditions short.

GHI due to GHR Defects
The first reported disorder characterized by classical 

GHI was Laron syndrome (MIM #262500), caused by a 
complete biallelic defect of the gene encoding the GH re-
ceptor (GHR) [165]. Clinical features include extreme 
postnatal growth failure, midfacial hypoplasia, relatively 
normal head circumference, small external genitalia in 
males, sparse and thin hair, small hands and feet, delayed 
dentition and puberty, and hypoglycaemia. Biochemical-
ly, GH secretion is increased and serum concentrations of 
IGF-I, IGFBP-3, and ALS are severely subnormal and do 
not respond to an IGFGT. The serum concentration of 
GHBP is usually decreased but can be normal or even el-
evated depending on the position of the genetic variant 
[27, 161].

Non-classical GHI associated with GHR variants in-
cludes the GHR pseudoexon variant (6ψ) and heterozy-
gous GHR variants. For some heterozygous GHR vari-
ants, a dominant-negative effect has been confirmed, but 
for many others, the clinical relevance is questionable 
[27].

GHI due to STAT5B Defects
Homozygous variants of STAT5B, first reported in 

2003 [166], cause a similar pattern as Laron syndrome 
with regard to growth, bone age, pubertal delay, facial 
characteristics, and serum IGF-I, IGFBP-3, and ALS 
(MIM #245590). There are 2 additional, and characteris-
tic, features: symptoms of immune dysfunction (e.g., se-
vere eczema and chronic pulmonary disease) and elevat-
ed serum prolactin [27, 162].

A milder (“non-classical”) clinical presentation was 
found in 3 probands with heterozygous dominant-nega-
tive STAT5B variants and several of their relatives [167]. 
Heights ranged from 2.9 to −5.3 SDS and eczema and el-
evated IgE were noted, without severe immune or pulmo-
nary problems. Elevated serum prolactin was only found 
in one of the 3 probands [27, 162, 167]. A similar clinical 
presentation was shown by 2 unrelated patients with a 
heterozygous STAT5B variant in combination with a het-
erozygous IGFALS variant [36, 168]. Other heterozygous 
STAT5B variants may also have some effect on growth 
and serum IGF-I, according to a study on heterozygous 
carriers of pathogenic STAT5B variants, without clinical 
features [169].

GHI due to Activating Variants of STAT3
Germline STAT3-activating (gain-of-function) vari-

ants result in early-onset multiorgan autoimmunity, lym-
phoproliferation, recurrent infections, and short stature 
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(MIM #615952). There are indications that such STAT3 
variants may negatively regulate GH-induced STAT5B 
activation through the induction of SOCS3 protein, the 
formation of non-functional STAT3/STAT5 heterodi-
mers, or through the competition for binding to target 
gene loci, activating different transcriptional programmes 
(reviewed in [163]). Milder forms with isolated growth 
failure have not been reported.

GHI due to IGF1 Variants
IGF1 variants can be categorized into biallelic loss-of-

function variants, biallelic variants with decreased func-
tion, and heterozygous variants [28]. The classical pre-
sentation of children with a homozygous loss-of-function 
variant consists of extreme pre- and postnatal growth fail-
ure, poor feeding, severe microcephaly, retrognathia, sen-
sorineural deafness, and severe global developmental de-
lay (MIM #608747, reviewed in [28]). The first case with 
a deletion was reported in 1996 [170], followed by 2 cases 
with a missense variant [171, 172]. Cases carrying a bial-
lelic IGF1 variant with decreased function have a milder 
phenotype, without hearing loss and developmental delay 
[173]. Serum IGF-I varies from undetectable to elevated, 
and IGFBP-3 and ALS are generally normal [28].

Heterozygosity for a pathogenic IGF1 variant or dele-
tion can cause short stature [174–176] with a wide height 
SDS range. In 1 family, no dominant-negative effect of the 
truncated protein was shown [177]. A small effect of het-
erozygosity for a pathogenic IGF1 variant on growth and 
adult stature was also shown in relatives of patients with 
a homozygous IGF1 variant [171, 172, 178].

GHI due to IGFALS Variants
The characteristic clinical presentation of individuals 

carrying 2 pathogenic variants of IGFALS, first reported 
in 2004 [179], is mild-to-moderate short stature, delayed 
puberty, low serum IGF-I and ALS SDS, and even lower 
IGFBP-3 SDS (MIM #615961). A low birth weight and/or 
length, reduced head circumference, and insulin resis-
tance are commonly observed (for review, see [164]). 
Heterozygous carriers of an IGFALS variant frequently 
present with mild growth failure and subnormal levels of 
ALS, IGFBP-3, and IGF-I [164, 180] and were reported in 
approximately 10% of children initially considered “idio-
pathic short stature” [164, 181].

Unexplained Low Serum IGF-I in 2 Cases with 
Heterozygous IGF1R Variants
As mentioned previously, the great majority of chil-

dren carrying a heterozygous pathogenic IGF1R variant 

(MIM #270450) have a serum IGF-I in the upper half of 
the reference range or above [160]. However, at least 2 
children presented with a decreased IGF-I concentration 
[182, 183], which has remained unexplained.

Syndromes with Dysmorphic Features Associated with 
Diminished GH Sensitivity
Partial GHI has been suggested for children with 

Noonan syndrome (MIM #163950) based on the observa-
tion of low IGF-I values, preserved GH secretion, and 
suboptimal growth response to rhGH therapy (reviewed 
in [184]). The precise mechanism is still unclear and may 
be associated with an increase in tyrosine phosphatase 
activity, since SHP-2 binds to and dephosphorylates sig-
nalling molecules such as STAT5b [27]. Alternatively, ac-
tivation of the RAS/MAPK pathway may play a role [184].

Three-M (3M) syndrome (MIM #273750) is associat-
ed with normal or high peak GH levels and normal or low 
IGF-I levels, and the growth response to rhGH is usually 
low. In vitro studies have provided evidence for a com-
bined insensitivity to GH and IGF-I [185].

Abnormal Interaction of IGF-I with Its Chaperones
Even if there is no abnormality of the coding region of 

the IGF1 gene nor in its expression and translation, the 
secretion of IGF-I may be decreased by other causes. One 
potential cause could be an insufficient functionality of 
the chaperone protein that is needed for a normal secre-
tion of IGF-I and -II, that is, the chaperone glucose-reg-
ulated protein 94 (GRP94) [186]. Indeed, a hypomorphic 
variant (p.(Pro300Leu) variant NM_003299.2: c.962C>T 
p.(Pro321Leu) according to the HGVS nomenclature) 
was found in a child with primary IGF deficiency but was 
later considered a non-common SNP with frequencies of 
1–4% in various populations [187]. Heterozygous carri-
ers had a 9% lower circulating IGF-I concentration than 
non-carriers. When tested in the grp94(−/−) cell-based 
complementation assay, Pro300Leu supported only 58% 
of IGF secretion relative to wt-GRP94. Furthermore, re-
combinant Pro300Leu showed impaired nucleotide-
binding activity. The authors concluded that variants in 
GRP94 can affect its IGF-chaperone activity, which may 
represent a novel causal genetic mechanism that limits 
IGF biosynthesis [187], although this needs further con-
firmation.

Therapeutic Options for Children with GHI
The classical forms of GHI generally do not respond to 

rhGH treatment. For children with Laron syndrome, 
rhIGF is a registered treatment, leading to a modest in-
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crease in height velocity and adult height [188]. There are 
few data on the effect of rhIGF in cases with homozygous 
or heterozygous STAT5B or IGF1 defects. Preliminary 
observations suggest that rhGH may have a positive effect 
in cases with heterozygous IGF1 variants [174].

While in children with biallelic IGFALS variants, 
rhGH and rhIGF appear ineffective, preliminary reports 
have suggested that rhGH could be effective to accelerate 
growth velocity in children who are heterozygous carriers 
of IGFALS variants [164, 189]. rhGH is registered for the 
treatment of Noonan syndrome, based on the moderate 
effect on height velocity and adult height [190]. The 
growth response to rhGH treatment in children with 3M 
syndrome is variable and modest [185]. Interestingly, GH 
treatment appears effective in increasing growth in girls 
with anorexia nervosa, despite the GHI associated with 
this condition [191].

Hypothetical Causes of Short Stature Associated 
with a Low Serum IGF-I and Normal Stimulated GH 
Peak

The current differential diagnosis is of course com-
pletely dependent on the presently available genetic tool-
kit in the clinic. However, in the meantime, new tech-
niques have developed in basic science, which have not 
found their way to the clinic yet. One can expect that fur-
ther technological advances will take place, which will 
help to get more insight into the complex signalling path-
way of the GH-IGF-I axis. In the following paragraph, we 
speculate about the sort of clinical insights that may be 
generated using an intensified clinical use of presently 
available technology.

Intensified Use of Exome and Genome Sequencing
The past decades have shown an accelerating speed of 

discoveries of novel genetic causes of multiple congenital 
disorders, including disorders of the GH-IGF-I axis. There 
is little reason to think that this has reached the end.

Pituitary GH secretion is mainly controlled by GHRH 
and somatostatin [192], so one would expect that defects 
of the genes encoding these proteins or their receptors 
would cause abnormal GH secretion. Besides defects of 
the gene encoding the GHRH receptor, causing GHD 
type 1B, no genetic aberrations have been found in the 
genes encoding GHRH, somatostatin, and somatostatin 
receptors.

In theory, an activating variant in a somatostatin re-
ceptor expressed in the pituitary might cause a decrease 

in GH secretion, serum IGF-I, and height, and the result 
of a GHST acting through GHRH activation could be 
normal. Four out of the total of 5 somatostatin receptors 
are expressed in the pituitary, but predominantly the re-
ceptors encoded by SSTR2 and SSTR5. Interestingly, in a 
study on patients with acromegaly and controls, 2 poly-
morphisms in SSTR5 were associated with serum IGF-I 
and IGFBP-3 [193]. Another SSTR5 variant was associ-
ated with 11% lower levels of circulating IGF-I and 
IGFBP-3 [194]. We speculate that genetic variants will be 
discovered in somatostatin receptors or other compo-
nents of the complex GH regulatory system, which may 
cause short stature associated with low IGF-I and a nor-
mal GHST result.

Potential Yield of Studies on Cellular Pituitary 
Crosstalk (“Paracrinicity”)
So far, the publications on cellular pituitary crosstalk 

have only reached the eyes of few clinical endocrinolo-
gists. However, these studies have generated very inter-
esting information that theoretically may be associated 
with clinical phenotypes. To cite one of the key investiga-
tors in this field, Dr. C. Denef from Louvain (Belgium): 
“in the anterior pituitary, paracrine communication and 
autocrine loops that operate during foetal and postnatal 
development in mammals and lower vertebrates have 
been shown in all hormonal cell types and in folliculo-
stellate cells. More than 100 compounds have been iden-
tified that have, or may have, paracrine or autocrine ac-
tions” [195].

We believe that the studies on the induction of func-
tional hypothalamus and pituitary tissues from pluripo-
tent stem cells, which may result in an “artificial pitu-
itary” [196], may generate novel insights in the complex 
cellular intra-pituitary interactions. This may also lead to 
novel defects of GH secretion that have still remained in 
hiding.

An example of a condition that may be associated with 
abnormal cellular pituitary crosstalk is the IGSF1 defi-
ciency syndrome (MIM #300888, caused by a hemizy-
gous defect of IGSF1 [197]), in view of decreased Igsf1 
expression in the somatotroph, lactotroph, and thyro-
troph cells in the rat [198] and variable deficiency of the 
respective pituitary hormones in humans. Partial and 
transient GHD is encountered in approximately 10% of 
males with IGSF1 deficiency syndrome, while GH secre-
tion tends to increase above the normal range in adults 
[199].
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Potential Yield of Tools to Estimate DNA Methylation 
Status and Histone Modification
Imprinting Disorders and Other Methylation 
Disturbances
The best known imprinting disorders, for example, 

uniparental disomy and other methylation disturbances, 
associated with short stature include Silver-Russell syn-
drome, Temple syndrome, IMAGe syndrome, and Prad-
er-Willi syndrome. Three out of the 5 forms of Silver-
Russell syndrome (MIM #180860, #618905, and #616489) 
are known to be caused by an imprinting disorder [200]. 
The 40% of patients with the clinical features of Silver-
Russell syndrome in whom no (epi-)genetic cause can be 
found with current technology suggest that other forms 
may be detected in the future, although these patients 
usually show normal or slightly elevated IGF-I. The GH-
IGF-I axis in Temple syndrome (MIM #616222) and IM-
AGe syndrome (MIM #614732) has not been investigated 
in depth. So far, there is little indication that this axis is 
affected, except for 1 case with IMAGe syndrome with a 
low GH peak [201]. In short children born SGA, several 
DNA methylation changes at multiple loci were observed 
[202, 203], but the potential association with the GH-
IGF-I axis remains to be established.

Histone Modification
The expression of genes is not only regulated by meth-

ylation status but also by histone modification. There are 
a number of genes encoding enzymes that catalyse post-
translational histone modifications, such as methyltrans-
ferases, demethylases, acyltransferases, chromodomain 
helicases, and arginine-methyltransferases. An indica-
tion that abnormal modification may play a role in growth 
regulation is offered by the observation that pathogenic 
variants of KDM3B cause intellectual disability, short 
stature, and facial dysmorphism. KDM3B encodes a his-
tone demethylase and is involved in H3K9 demethyl-
ation, a crucial part of chromatin modification required 
for transcriptional regulation [204]. A better insight in 
histone physiology may lead to novel tests for aberrations 
of histone functionality and possibly novel syndromes as-
sociated with low IGF-I and normal GH secretion.

Potential Yield of RNA Sequencing
RNA sequencing is available in the laboratory but has 

rarely been used in the clinic. Still, RNA sequencing has 
helped in re-evaluating and further classifying the genetic 
variants found by exome sequencing, such as confirmation 
of putative splicing mutations [205]. It is also used to deter-
mine whether 2 variants in the same gene are localized on 

the same or different chromosome and to detect monogen-
ic defects undetected by exome sequencing (e.g., a deep in-
tronic variant leading to a pseudoexon) [206, 207].

RNA sequencing can also be targeted to analyse long 
non-coding RNAs (lncRNA). lncRNAs are transcripts of 
>200 nucleotides in length not containing an extended 
open reading frame; 28,000 lncRNAs are annotated in the 
human genome. Defects have been associated with a 
number of diseases, including Silver-Russell syndrome 
(H19), Temple syndrome, cartilage-hair hypoplasia, and 
Turner syndrome (XIST) [208].

Specific PCR tests have been developed for micro
RNAs (miRNA expression profiles). miRNAs are epigen-
etic regulators of gene expression that act at the post-tran-
scriptional level, influencing regulatory gene networks 
[209]. Several miRNAs regulate the growth plate and GH-
IGF axis, contributing to longitudinal growth. For exam-
ple, miR-709 inhibits GHRP6-induced GH synthesis by 
targeting PRKCA in the pituitary [209, 210]. There are 
indications that miRNAs are also involved in catch-up 
growth in children born SGA [211].

General Conclusions

The differential diagnosis of a non-syndromic short 
child with low circulating IGF-I and a normal GH peak in 
a stimulation test is extensive. Numerical data are not avail-
able, but our impression is that the major causes are discor-
dance between stimulated and spontaneous GH secretion 
and partial GHI (including Noonan syndrome, which can 
present with few dysmorphic features). Of the genetic con-
ditions associated with normal GH sensitivity, bioinactive 
GH (Kowarski syndrome), is well documented, while there 
is still doubt about the role of GHSR variants.

We believe that genetic assessment of such patients is 
indicated, given that for cases with classical GHI, such as 
Laron syndrome and biallelic STAT5B variants, GH treat-
ment is not warranted. Instead, such patients are candi-
dates for rhIGF treatment. However, various other ge-
netic disorders are expected to respond well to rhGH 
treatment, such as heterozygous carriers of IGF1 or  
IGFALS variants.

For an effective diagnosis of such patients as well as 
other patients suspected for one of the many genetic dis-
orders associated with short stature, the establishment of 
a multidisciplinary team on growth genetics has proven 
to be very beneficial, as well as a joint clinic of a paediatric 
endocrinologist and clinical geneticist. A challenge for 
the future is how to deal with previous patients suspected 
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for a genetic aetiology with initially negative genetic find-
ings. We believe that a guideline is needed on the selec-
tion of such patients who may be called back to the clinic 
when new genetic tools become available in future years. 
The potential advantage of such an approach is illustrated 
by the observation that re-analysis of exome data of chil-
dren with developmental disorders increased the diag-
nostic yield from 27 to 40% [212].
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