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We introduce a method for digital preparation of ground states of simulated Hamiltonians, inspired by cooling
in nature and adapted to leverage the capabilities of digital quantum hardware. The cold bath is simulated by
a single ancillary qubit, which is reset periodically and coupled to the system nonperturbatively. Studying this
cooling method on a 1-qubit system toy model, we optimize two cooling protocols based on weak-coupling
and strong-coupling approaches. Extending the insight from the 1-qubit system model, we develop two scalable
protocols for larger systems. The LogSweep protocol extends the weak-coupling approach by sweeping ener-
gies to resonantly match any targeted transition. We test LogSweep on the 1D transverse-field Ising model,
demonstrating approximate ground-state preparation with an error that can be made polynomially small in
the computation time for all three phases of the system. The BangBang protocol extends the strong-coupling
approach, and exploits a heuristics for local Hamiltonians to maximize the probability of deexciting system
transitions in the shortest possible time. Although this protocol does not promise long-time convergence, it
allows for a rapid cooling to an approximation of the ground state, making this protocol appealing for near-term

demonstrations.

DOI: 10.1103/PhysRevA.104.012414

I. INTRODUCTION

Ground-state preparation is an essential algorithm in the
quantum computing toolbox. Any polynomial-time quantum
algorithm can be mapped to the problem of estimating the
ground-state energy of an artificial Hamiltonian given an
approximation to its ground state [1], and without such ad-
ditional input this problem is known to be QMA-hard for
even 2-local Hamiltonians [2]. Digital quantum simulation of
problems in materials science and chemistry, one of the “killer
apps” of a quantum computer, is most often concerned with
properties of ground states of the simulated systems [3,4], and
many problems in optimization may be mapped to ground-
state finding problems [5,6]. This has led to a wide range of
schemes for digital ground-state approximation, via adiabatic
evolution [5], variational methods [6-8], phase estimation [9],
amplitude amplification [10-12], and approximate imaginary-
time evolution and other Hamiltonian function techniques
[13—-16]. However, these algorithms suffer from large com-
putational costs or approximation errors, making designing
better schemes an active area of interest.

In nature, ground states are achieved by coupling to a large
cold reservoir, which takes energy from the system in keeping
with the second law of thermodynamics. Simulating an entire
bath would require an impractically large quantum register;
however it has long been suggested that this may be mimicked
by coupling to a single qubit which may be reset to its ground
state with sufficient frequency [3]. This idea has been since
studied in digital quantum computing for the initialization of

*polla@Iorentz.leidenuniv.nl

2469-9926/2021/104(1)/012414(13)

012414-1

quantum devices [17,18] and as an inspiration of an algorithm
based on resonant transitions and postselection [19]. This idea
was also explored in analog simulation settings, for the prepa-
ration of physical [20] and artificial [21,22] ground states.
However, cooling an artificial system in the digital quantum
setting provides a set of unique challenges: the system being
studied may be completely different from the physical quan-
tum hardware, and the digitized Hamiltonian may be only
an approximation to the target of interest. Furthermore, the
periodic nonunitary reset may break the unitary evolution into
short-timescale chunks which do not conserve energy, imply-
ing that one may artificially reheat the system without clever
protocol design. This is of critical importance in near-term
devices, where limited coherence times compete against the
desire for slower cooling cycles.

In this work, we detail how one may prepare ground states
of an artificial Hamiltonian on a digital quantum computer
via quantum digital cooling (QDC). We first present an an-
alytic study of the cooling of a two-level system, from which
two different approaches may be outlined to deexcite to the
ground state while preventing reheating. We investigate the
behavior of both methods in the digitized setting, and find
they continue to be robust. The protocols deriving from these
two principles are tested in the one-qubit black-box Hamil-
tonian setting, where the energy gap and matrix elements
are unknown. We extend these protocols to N-qubit systems,
and investigate their ability to cool small-scale simulations of
the transverse-field Ising model numerically. Our LogSweep
protocol, based on the weak-coupling approach, is demon-
strated to converge to the ground state of all three phases of
the transverse-field Ising model. It further shows a relative
energy error constant in the system size at a fixed protocol

©2021 American Physical Society
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FIG. 1. The deexcitation of the system transition |E;)s — |Ep)s
mediated by (a) a continuous-spectrum natural bath B, where an
excitation |€)p at energy ¢ is produced, and (b) a single-qubit digital
fridge F, which can be excited if € = A.

length for the weakly coupled and critical phases of this
model, which corresponds to a requirement to simulate time
evolution for O(N?) and O(N?) Trotter steps, respectively. By
contrast, the strong-coupling BangBang protocol shows the
ability to prepare low-cost ground-state approximations of the
same model in the paramagnetic and ferromagnetic regime,
but seems to perform much worse close to the critical point,
where the system spectrum shows a less-ordered structure.
The small number of calls to the system evolution operator
needed to realize this protocol makes it attractive for near-term
application.

II. COOLING A SYSTEM WITH A SINGLE FRIDGE QUBIT

In nature, gapped physical systems cool down to a state
with high overlap to the ground state when interacting with a
bath that is cold and large, under the condition of ergodicity.
By cold, we mean that temperature T of the bath is small
compared to the ground-state gap Ag of the system to be
cooled: kg Ty < Ag (with kg Boltzmann’s constant). By large,
we mean that the bath has a sufficiently large Hilbert space
that the above condition is unchanged by the addition of the
energy from the system. By ergodic, we mean the system
must not have symmetries that prevent excitations from being
transferred from the system to the bath, or that reduce the
effective size of the accessible bath Hilbert space. Given a sys-
tem with Hamiltonian Hg and eigenstates Hg|E;) = E;|E;),
energy conservation implies that the bath must have states at
energies E; — Ey to allow deexcitation of the eigenstates E;.
This is typically achieved by considering a bath with a con-
tinuous or near-continuous low-energy spectrum [Fig. 1(a)].
However, the bath need not cool all states immediately to the
ground state. Instead, a bath typically absorbs single quanta of
energy € = E; — E that correspond to local excitations of the
system |E;) — |Ey), at a rate given by Fermi’s golden rule:

Py Z/Wd (E/, €|Hc|E:, 0)) py(e)
=- €(Ef, € i €
dt i 0 f C PB
in[(E; —Er —€)t
« Tim SME = Ep = o1 (1)
t—00 Ei_Ef_E
27 2
=7 [(Ef, €|Hc|E;, 0)|” p(E; — Ey), 2

where Hc is the coupling between the system and the bath,
and pg is the density of states of the bath [23]. This requires
the bath to be large enough to prevent reexcitation of these
states as the system continues cooling. In other words, the bath
must have a large Hilbert space compared to the one of the
system. This ensures that at equilibrium, most of the entropy
is distributed in the bath.

To represent such a large bath with an ancillary register on
a quantum device in order to cool a system register would
be impractically costly. In this work, we approximate the
presence of a much larger bath B with a single ancilla qubit F
[Fig. 1(b)], with bath Hamiltonian Hg — Hg = € Zg/2. This
can be considered a simplified form of a collisional model [24]
that does not allow for non-Markovian effects (that would be
in our case unwanted). The coupling between the bath and
the system takes the form He = yXg ® Vs /2, where y is the
coupling strength, and V5 a coupling term that acts on the
system alone. A key advantage of the digital approach is that
we are free to choose Vs as desired to optimize the cooling
protocols. The Hamiltonian of the entire system and bath then
takes the form

H = Hs + Hr + Hc. 3)

This has an immediate problem, as the bath can only absorb
a single quantum of energy €, but we may circumvent this by
periodically resetting the ancilla qubit to |0). The nonunitary
reset in effect extracts energy and entropy from the ancilla to
a much larger external bath (the experimenter’s environment).
For this reason we call the ancilla qubit a “fridge” qubit (hence
F). The nonunitarity introduced in the process is necessary to
dissipate entropy, allowing us to prepare the ground state from
an arbitrary starting state. As the time between resets is finite,
the + — oo limit in Eq. (1) is no longer justified and energy
is no longer conserved. This is both a blessing and a curse:
we need not precisely guess the energy gap A = E; — Ey of
the transition that we need to deexcite, but we run the risk of
reheating the system at each cooling round. Minimizing re-
heating while maximizing the range of targeted deexcitations
is key to the successful design of QDC protocols. In a realistic
experiment, qubit reheating would be effectively increased by
reset infidelity on the ancilla qubit, making the protocol less
effective.

III. DEEXCITING A SINGLE TRANSITION:
THE 1 + 1 MODEL

In order to design some basic protocols for QDC, we turn
to a toy ‘“‘1 + 1” model. We take a single-qubit system with
Hamiltonian Hs = A Zs/2, and couple it to a single fridge
qubit with coupling term Vs = Xs. Although this model is
simple, it can for instance represent a pair of levels being
targeted for cooling in a much larger quantum system. We will
make use of this interpretation when extending these cooling
protocols in Sec. IV.

A. Elementary approaches to digital cooling:
Strong and weak coupling

Let us first assume A is known, in which case resonant
cooling (¢ = A) can be seen to be the most effective choice of
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€. With this fixed, the transition probabilities after time r may
be calculated exactly to be

(Y y?sin’ (1)
P = sin’® (Et>’ Pos1 = i 4)
where Q = \/y2/4 + €2. We wish to maximize the cooling
probability P;_,o while minimizing the reheating probability
Po—.1 by optimizing the remaining free parameters: the cou-
pling strength y and the cooling time f. To maximize the
cooling rate P;_,o = 1, we must set

t=my L. (5)

We assume this constraint throughout this paper. This goes
beyond the perturbative regime y¢ < 1 in which Eq. (1) is for-
mulated. However, we can take two very different approaches
to minimize reheating, based on strong or weak coupling. The
weak-coupling approach is based on the observation that the
off-resonant transition Py_,| is bounded by 7/2 /492. As such,
we may suppress reheating to an arbitrary level by choosing
sufficiently small y. The time cost for Hamiltonian simulation
of e scales at best linearly in ¢ [25], so this implies one
may obtain the ground state with failure probability p in time
O(p~"), regardless of the initial state of the qubit. The strong-
coupling approach consists of tuning y so that Q¢ = m, which
is achieved when

2
y \/§6' (6)
This fixes the reheating exactly to 0, guaranteeing the qubit to
be in the ground state in the shortest possible time, but at the
cost of requiring fine-tuning.

Unlike in analog quantum simulation, digital devices can-
not exactly implement the dynamics of the Hamiltonian in
Eq. (3), and must approximate it digitally instead. A common
approach to such digitization is that of the Suzuki-Trotter
expansion [26,27], which we now explore for the two cool-
ing paradigms. We apply the (second-order) expansion of the
coupled system-bath evolution with Trotter number M,

o~ itHs FHEHO [e—iHCﬁe—i(Hﬁ-HF)ﬁe—iHcﬁ]M' 7

Note that when we later approach larger systems, we will
practically realize e~#s'/M as a single second-order Trotter
step, effectively implementing a second-order Trotter simu-
lation of the coupled Hamiltonian Hs + Hp + Hc with trotter
number M. If we restrict ourselves to the subspace containing
the states involved in the cooling transition |10)sg — |01)sF,
at resonant cooling we have Hs + Hr o 1 (specifically, in this
model [01) and |10) generate a zero-eigenvalue subspace of
Hs + Hp). Thus, the Trotterized evolution behaves exactly like
the continuous one with regard to the cooling transition. We
study reheating probabilities as a function of 7 for different
values of M in the weak-coupling regime. We observe (Fig. 2)
that the digitized evolution approximates well the behavior of
the continuum limit whenever tQ/m < M (i.e., for the first
M Rabi oscillations with pulse €2). For longer times rQm >
M, the second-order Trotter approximation fails, leading to
reheating rates far larger than in the continuum limit. This
allows us to define a practical choice of M to avoid reheating

s

m

O —HO B
\
/

transition probability
N
i/

FIG. 2. Effects of Trotterization on cooling and reheating proba-
bilities as a function of the coupling time ¢, for different numbers of
Trotter steps M per cooling cycle. Vertical dotted lines indicate the
Mth reheating oscillation, at which point the Trotter approximation
fails.

due to digitization: we require

M > J1+€2/y?, (®)

which sets the working point # = 7y ! before the M/2 Rabi
oscillation. However, in the strong-coupling case t Q/m =
/3, which implies that a single step is sufficient. Indeed,
digitized cooling with probability 1 and no reheating can
be realized by a bang-bang approach (inspired by similar
approach in variational methods [28,29]). This consists of
defining the evolution as in Eq. (7) with M =1, as long
as the coupling strength is adjusted to y = 2¢. With this
choice, the digitized evolution implements resonant Ramsey
interference on the cooling transition [10)sg — |01)sr and
antiresonant Ramsey interference on the reheating transition
100)sp — [11)sF.

A key difference between the two approaches to digi-
tal cooling is in their behavior off-resonance, i.e., when the
energy gap is mistargeted or not precisely known. For the
bang-bang approach, detuning reduces the cooling efficiency
while symmetrically boosting reheating [Fig. 3(a)]. The wide
resonance peak around zero detuning makes this approach
ideal to quickly cool transitions whose energy is known up
to a small error. In the weak-coupling approach the resonance
peak becomes sharper and the reheating gets more suppressed
as the coupling is made smaller [Fig. 3(b)], approaching the
energy conservation limit. Detuning makes cooling inef-
ficient, but thanks to the low reheating probability this
weak-coupling cooling can be iterated while changing € to try

2 1.0 - T T
= (&) 27T N == =0 (b)) N te=5
]% N\ —— |0)>||1) / \ te =20
o ! \
o / \
iy ! \
!

° / \\
=) / \
(7]
5 \ l, -~ \ "
E ‘,/ \,7 LAl
5

T T T

-1 0 1 a/e

FIG. 3. Effect of fridge-system detuning § = A — € on the cool-
ing (dashed lines) and reheating (solid lines) probabilities for (a) the
bang-bang cooling approach, and (b) the weak-coupling cooling
approach, where colors indicate different coupling strengths.
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P1,0=94.7% += 13.8%
min(P150) = 0%

P1,0=98.5% * 0.8%
min(P150) =95%

P1,0=98.4% = 0.5%
min(P150) =97%

y y y
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T NP0 — P10 y ¥
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FIG. 4. Probabilities P, of transitioning from |1) to |0) after
three iterations of the weak-coupling (f € = 10) cooling procedure,
with coupling potentials V¢ = X, X, X (left), V& = X, Y, X (center),
and V{ = X, Y, Z (right), on a system qubit with Hamiltonian Hs =
hii-& and known energy splitting i. The orientation of the unit
vector 7 is represented on spherical surfaces. The average, standard
deviation, and minimum of P;_,( are shown above each panel.

to match the transition energy, without destroying the cooling
effect.

B. Common symmetries and the coupling alternation method

In large systems of interest, we do not know the Hamil-
tonian’s eigenstates, making it more challenging to couple
between them. This is required for cooling, as can be seen by

the direct dependence of the cooling rate dl:;f on the overlap
[(Ey, €|Hc|E;, 0)|> [Eq. (2)]. This overlap dependence will
prohibit cooling if the system Hamiltonian Hs and the cou-
pling operator Vg share a common symmetry S (i.e., [S, Hs] =
[S, Vs] = 0). When this is the case, the Hamiltonian may be
simultaneously diagonalized with Hg, and a state with some
overlap to any eigenspace of S that does not contain the
ground state cannot be cooled to the ground state by coupling
with Vs. Note that this is a strictly stronger condition than just
requiring [Hs, V5] # 0. A simple solution is to alternate over a
set of couplings {V{} as we cool. Then, any symmetry S of H
need commute with each V¢ in order to guarantee that a state
starting with overlap in a high-energy eigenspace will remain
there. Sets of coupling terms {Vi} on N qubits need only be
size O(N) to break commutation with all nontrivial operators
(for example, the set of all single-qubit Pauli operators), so
although symmetries need to be taken into account, they will
not destroy the feasibility of QDC protocols.

This issue may be demonstrated on the prototype 1+ 1
qubit model by considering the system Hamiltonian Hg =
hii- &, where 7 is a 3-dimensional unit vector (so Hg points in
a random direction on the Bloch sphere), 2/ is a fixed energy
splitting, and o is the vector of Pauli matrices. For a fixed
coupling operator Vs, there is a risk that [Hs, Vs] ~ 0. When
this is the case, the off-diagonal elements of Vg in the sys-
tem eigenbasis are zero, preventing cooling. We may prevent
this by alternating between different coupling terms during
the cooling protocol, such that no nontrivial Hamiltonian can
commute with all such coupling terms. This may be achieved
for the 1+ 1 model by iterating over Vsi € {Xs, Ys, Zs}, or
alternatively over Vsi € {Xs, Zs}. The effectiveness of this
scheme is studied in Fig. 4 for resonant coupling. We see the
probability P;_,¢ of successful cooling of the weak-coupling
approach (f € = 10) increased to min(P;_.¢) = 97% for all

choices of 7 when iterating over Vsi = Xs, Ys, Zs, and above
95% when iterating V¢ = Xs, Zs, Xs, compared to the pos-
sibility for complete cooling failure [min(P;_.¢) = 0] when
Vd is held constant. Similar results are seen for off-resonant
coupling.

IV. SCALABLE QDC PROTOCOLS

We now look to use the insight obtained for cooling in
the 141 toy model to develop QDC schemes for larger
systems. The sub-additivity of entropy places a rough lower
bound on the number of cooling steps required to cool an
N-qubit system. This limits the entropy ASs that the system
can transfer to the fridge qubit before the nonunitary reset to
ASs > —ASp > —1 bit. If we demand the ability to cool an
arbitrary state, a QDC protocol must also be able to cool the
maximally mixed state, which has entropy Ss = N. We then
require N repetitions of an optimal coupling-and-reset step
to reach the pure ground state (which has entropy Ss = 0).
This can be obtained in the simple example of cooling N non-
interacting qubits with known energies, by simply repeating
the protocols of the 1 + 1 model. However, this cannot be
generalized to arbitrary strongly correlated systems, as cool-
ing is complicated by irregular and unknown energy gaps and
coupling terms between eigenstates. This is to be expected, as
preparing ground states of arbitrary Hamiltonians is a known
QMA-hard problem [2]. However, as cooling is a physically
motivated process, we hope QDC will be able to achieve poly-
nomial scalings for systems of physical interest, i.e., models of
systems that are found in low-temperature equilibrium states
in nature. We focus for the rest of the work on exploring this
thesis.

In the rest of this text, we introduce two scalable QDC
protocols for N-qubit systems: the strong-coupling-based
BangBang protocol and the weak-coupling-based LogSweep
protocol. These extend and generalize the two approaches we
established for the 1 4 1 toy model of Sec. III A. Each proto-
col iterates over a sequence of cooling steps, each of which
consists of coupling the fridge qubit to part of the system for
a short-time evolution, and then resetting the fridge qubit to
its ground state. The protocols differ in the choice of coupling
strengths y;, coupling terms V¢, and fridge energies ¢; at each
ith cooling step. [The coupling time for each cooling step is
fixed by Eq. (9)].

A. The BangBang protocol

We now develop a protocol to extend the strong-coupling
approach [Eq. (6)] to a larger system. This motivation is in line
with recently proposed bang-bang approaches to adiabatic
state preparation [28,29], which are known to outperform
initial theoretical expectations stemming from a naive Trotter
error estimate. We are thus optimistic that this “BangBang”
protocol may provide a low-cost, near-term method for QDC.
However, such a protocol needs to associate each fridge-
system coupling with a single fridge energy, that should match
the transitions that this coupling triggers. An appropriate
choice of fridge energy can be estimated via a perturbation
theory approximation. To derive this approximation, we note
that the rate of a transition between eigenstates |E;) — |E;)
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depends on the matrix element of the coupling Vs:
(Ei|[Hs, VS1IE;)
Ei—E; '

If Vs is local and bounded, [Hs, Vs] is as well, so the matrix
element V;;y will be bounded proportionally to (E; — E_,-)‘l.
The matrix element is additionally bounded by ||V||; this sec-
ond bound becomes dominant when E; — E;/||V || falls below
the maximum off-diagonal element of [H, V] in any basis,
which we define with the notation ||[[H, V]| .:
(@|0]P) — (V]|0O|V)
(@lOIY)| = max, 5 ,
(10)
where O is Hermitian and the maxima are taken over all
possible states |Y/), |¢) and |¥), |P). A simple proof is given
in Appendix A. We use this energy scale to set the fridge
energy:

Vijy == (EIVSIE;) = )

lolL =

max |
(@1¥)=0

e =[5 Hs]] an

for any coupling potential st. This way, the maximum-energy
transitions accessible by Vg are on resonance, while smaller
energy ones (which are less important for cooling) still have a
higher probability of cooling than of reheating [see Fig. 3(a)].
This defines the BangBang protocol: we iterate over coupling
to each qubit, with ¢; fixed by Eq. (11). As this protocol
does not attempt to suppress reheating, we choose a single
coupling Vs =Y, for the nth qubit, instead of iterating over
Vs = X, Y,, Z, (as was suggested in Sec. III B). In general,
the best choice of V5 will depend on the system that we want
to cool, and the couplings should be picked to enable as many
transitions as possible. We repeat the coupling to each qubit R
times, resulting in a total of RN cooling steps. Each cooling
step contains two first-order Trotter steps simulating e~#c!/2
(of depth d;{]c)), a single second-order Trotter step for e s (of

depth d ;,25)), and a reset gate, resulting in a total circuit depth

dpangBang = RN (2dy) + djj) +1). (12)

To test the BangBang protocol, we study the cooling of an
N-qubit transverse-field Ising chain

N N—-1
Hs =Y BXi+ Y JZZy, (13)
i=0 i=0

where B represents the transverse magnetic field Zeeman
splitting and J is the Ising coupling strength. The relative
coupling strength J/B dictates whether the system is in the
paramagnetic (J/B < 1), ferromagnetic (J/B > 1), or critical
(J/B ~ 1) phases. This ability to simply tune between three
phases of matter with significantly different physical prop-
erties make the transverse-field Ising model (TFIM) a good
benchmark model to investigate the ability of different QDC
schemes in various scenarios.

We first demonstrate that our choice for the fridge energy
Eq. (11) is appropriate. In Fig. 5, we plot the effect of a single
cooling step on the maximally mixed state. We observe that
cooling is maximized for fridge energies around the point
defined by Eq. (11), for all phases of the TFIM. We find
this behavior to hold for all other (local) choices of coupling
potential Vs used in this work, as predicted.

energy change

0.0 0.5 1.0 1.5 2.0

€/||[Hs, V5]l «

FIG. 5. Change in energy expectation value for the application of
a single cooling step to the maximally mixed state of a N = 8 qubit
transverse field Ising chain Eq. (13), depending on the fridge energy
€. The coupling potential is Vs = Y3, the Pauli Y on the third qubit.
The relation B> + J? = 1 fixes the energy scale.

We next turn to the ability of the BangBang protocol to
prepare an approximation p of the ground state, starting from
a maximally mixed (i.e., infinite temperature) initial state. We
benchmark by the final state with two figures of merit: the
ground-state fidelity

F =Tr[|Eo){Eo| p], (14)

and the energy relative to the ground-state energy
Tr[Hspl/|Egs|. This last property is local in the local
system, and represents an energy density in TFIM. To verify
convergence, we compare cooling results to a reheating limit,
obtained by running the protocol with the ground state as
initial state. We observe that all TFIM phases converge after
R =~ N repetitions (with the weakly coupled phase system
converging already at the first repetition). In Fig. 6 we plot
the energy density of the cooled state, as well as the reheating
limit, as a function of the number of sites in the system.
This shows that convergence is indeed achieved for R =N

—0.6F1 1 1 1 1 1 1]
%)
)
=R 0.7+ —
>~
= I J/B=02 I J/B=5
= —0.8 J/B=1 reheating ]
&= limit
% I i 4
0 _0.9f e
Lﬁ i ; ; I I 1 ITNI Loy X I I L r T I T T
target
—1.0=deeeees booereerers doeeeerees oeeeee-es | ERSTPPPPPTS | ERTOIPPIO |
2 5 8 11 14 17 20

system size N

FIG. 6. Performance of the BangBang protocol as a function of
the system size N for the three different phases of the transverse-field
Ising model (detailed in legend). The coupling potentials are V¢ = ¥;.
Dots correspond to result when the protocol is applied to the maxi-
mally mixed state; shaded region corresponds to result when protocol
is applied to the true ground state (which gives a bound on protocol
reheating). Data were generated by Trotterized wave-function sim-
ulations of the protocol, and random sampling of the initial mixed
state and of nonunitary operations (details in Appendix F). All points
are run with 200 samples, and average results are plotted with the
sampling error.
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independently of the system phase and size, and that the
final energy density stays approximately constant, without
showing any other trend. The BangBang protocol achieves
a final energy density close to 90% and 95% of ||Hs||, for
the ferromagnetic and paramagnetic regime, respectively,
while performing significantly worse in the critical regime.
This is to be expected, as in this regime the spectrum is no
longer banded, and excitation energies are not as uniform
as in the paramagnetic or ferromagnetic regimes. Following
Eq. (12), the protocol’s circuit depth is 7NR for a gate set
containing single- and double-qubit rotations (and the reset
gate). Given the low cost of the protocol, we suggest that this
is of particular interest for near-term experiments, and may be
further refined by other cooling protocols, or methods such as
quantum phase estimation, in the long term.

B. The LogSweep protocol

Refrigeration at weak coupling suppresses reheating, but
only allows for the cooling of transitions within a narrow
energy band [as shown in Fig. 3(a)]. We may take advantage
of this in a larger system, where a wide range of energy gaps
is present, by sweeping the fridge energy ¢; from high to low
as we iterate over cooling steps. (As low-energy transitions
are more susceptible to reheating than high-energy transitions,
this will in general be more efficient than sweeping from low
to high.)

To construct a full protocol, we further need to fix the
set of fridge energies €; and linewidths &; =, . ¥« that
we plan to use for each cooling step. We will be guided
by two principles. First, the target band of fridge energies
(Emins Emax) should be tightly covered by the cooling lines
€ £ 8. Second, the reheating should be suppressed to a
certain degree throughout the protocol. As by Eq. (4) the
reheating suppression depends on y/€x, we fix this value
to a small constant throughout the protocol (i.e., we choose
Y X €). Thus we define the LogSweep protocol, where the
fridge energy €, is swept over (Ewmin, Emax) in a logarithmic
gradation. Specifically, given the gradation number K, we

index each cooling step k = 1, ..., K, and we define
k=l k=L
€ = En,;;] Emaxki1 s (15)

and choose J; to fix €1 + 8ki1/C = € — 8¢ /¢, with ¢ a
constant (potentially dependent on K). In Appendix B, we
prove that such a scheme will cool a single transition in
the range (Emin, Emax) With probability 1 as K — oo, and in
Appendix C we demonstrate that the logarithmic gradation is
optimal for such a scheme for a choice of ¢{(K) ~ log(K).
To make sure all system excitations have a chance of being
dissipated, we further iterate the couplings Vs over a set of
local couplings {V{} throughout the system: for the considered
spin systems we choose {Vsi} = {X,, Y,, Z,} for each qubit n
(see Sec. III B), for a total of 3NK cooling steps. The number
of Trotter steps My for each cooling step k is chosen to prevent
reheating. This follows Eq. (8), but as transition energies be-
tween system eigenstates may be as large as the Hamiltonian
spread 2||Hg|| ., we set

2| Hs||?
Mk=2/1+”—§”i. (16)
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FIG. 7. Choices of energies €, and linewidths §; (bars at the
top of the graph showing ¢, & §;) for a K = 4 LogSweep protocol
applied to the model introduced in Sec. IIl A with an unknown A €
(Emin = 1, Eqax = 5). Colored lines show cooling (dashed) and re-
heating (solid lines) probabilities for each jth step alone; the dashed
black line shows the cooling probability after sequential application
of the 4 steps.

The choice of the fridge energy range [Emin, Fmax] Will gen-
erally depend on heuristics on the system. E.x should be
greater than or equal to the largest energy of the transitions
that we are able to deexcite with the chosen couplings Vg (for
local Hamiltonians we can estimate this with the techniques
described in Sec. IV A). For ground-state cooling, E\;, should
be close to the system ground-state gap Ags, as no transition
with an energy lower than Agg can lead from an excited state
to the ground state.

We first test the LogSweep protocol as applied to the 1 + 1
model defined in Sec. III A, with the system gap A now
taking an unknown value between E.;, and E.x (Fig. 7).
At each step k =1, ..., K we want to maximize cooling of
transitions A ~ €, while minimizing reheating of previously
cooled transitions A ~ €, k' < k. As demonstrated by the
black dashed curve in Fig. 7, when Epax/Emin = 5 this can
be achieved well with only K = E.x/Emin Steps. Note that to
maintain a constant relative linewidth (and thus constant max-
imum reheating per step), we should scale K ~ Eyax/Emin-
This implies K — 00 as En, — 0, in line with the third law
of thermodynamics.

In a larger system, the situation is more complex than
in the model above. Instead of a single transition from the
excited state |E1) — |Ep) which occurs with unit probability
when € = A = E; — Ej, our system may transition to one of
many eigenstates |E;), to each with a transition probability
A; j (assuming an initial state |E;)). As there are many possible
target states, the maximum transition probability might be
very small (max; A; ; < 1). If we restrict ourselves to a single
transition |E;) — |E;) with the above reduced cooling rate,
one may show that the LogSweep protocol still cools that
transition with unit probability as K — oo, albeit at a rate
that scales exponentially in A; ;. Luckily, we do not need to
ensure any specific transition occurs; instead we may cool
sequentially

|E;)) — |Ej,) — |Ej)) — ... — |Ep), a7

with a growing number of possible cooling paths as the system
grows and the transition probabilities spread over more eigen-
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FIG. 8. Effect of banding on single LogSweep iterations. A max-
imally mixed state in the three different phases of the 7-qubit TFIM
spin chain is evolved by the LogSweep protocol for three different
values of K. We plot the distribution of the result here over the
system’s eigenstates (indexed by energy), at three different values
of K. We see that while the critical system demonstrates an approx-
imate thermal or exponential distribution, the weakly and strongly
coupled systems demonstrate an inversion in the population of the
system within each band, which increases with K. Data were gen-
erated by continuous-evolution density-matrix simulation (details in
Appendix F).

states. A good choice of the fridge energy interval [Epin, Emax]
and of the coupling potentials {V{} allows all eigenstates
to be connected to the ground state by sequences of tran-
sitions |E;) — |Ej,,) that have unit probability of being
deexcited for K — oco. However, a single transition probabil-
ity approaches 1 only over the entire LogSweep protocol. In
particular, if the transition |E;) — |Ej,,) during step k* of
the protocol corresponds to an energy loss Ej, — Ej,,| > €,
this transition will be off-resonance for the entire remaining
duration of the protocol (as €, < €+ for k > k*), making it un-
likely to occur. This can cause convergence issues especially
when cooling systems with banded spectra. For such systems,
as we set Enin & Ags as detailed above, there may be a point
k* in the protocol after which €; will become smaller than the
average interband gap, but never as small as the spread of a
single band. After this point, states at the bottom of a band
might transition to states in the lower band, but states at the
top of each band never have any resonant transitions to lower
energy states, thus becoming absorbing states. This effect is
clearly shown in Fig. 8, representing the LogSweep-cooled
states of the transverse-field Ising model in different regimes.
We start with the maximally mixed state, and plot the resul-
tant distribution over the eigenstate energies. In the banded
regimes (side panels), we observe that the distribution of ener-
gies in any given band is tilted toward the higher-energy states
in that band (i.e., the aforementioned absorbing states), by
some orders of magnitude. This dead end ultimately hinders
sequential cooling, and prevents the LogSweep cooling from
converging to the same state independently of the initial state.
The effect worsens as K is increased, as transition linewidths
S become smaller making off-resonant transitions less and
less probable. This issue can be fixed in practice by using an
initial state with fewer high-energy excitations (e.g., a classi-
cal approximation of a low-energy state). We solve the issue
in principle by constructing an iterative LogSweep protocol,
where the LogSweep cooling is repeated with growing K. The
early, lower-cost iterations cool the highest energy excitations,

iterative cooling reheating fit oc K7

10°=7 T T T T T 7] T  — —

—
S
—_
T |||||||
1 IIIIIII

ground space infidelity

—_
S
o
IIIII

FIG. 9. Convergence of the LogSweep protocol to the ground
state as a function of the gradation number K, starting from the
maximally mixed state (dots) and the ground state (crosses), for three
phases of the transverse-field Ising model (detailed in legend). Data
were generated by deterministic density-matrix simulations of the
iterative LogSweep protocol, with second-order Trotter Hamiltonian
simulation (details in Appendix F).

while the larger K iterations grant vanishing reheating, and
probabilities approaching unity for the cooling transitions al-
lowed by symmetries. Thus, adding iterations with larger and
larger K will make the whole protocol converge to the system
ground state (unless symmetries forbid all paths from some
states to the ground state). Note that this adjustment is not
required for systems with a continuous spectra (i.e., critical
systems), as in such a system there will be on-resonance
transitions for any state with an energy E., or more above
the ground state.

We now investigate the performance of the (iterative)
LogSweep protocol on different phases of the transverse-field
Ising model. In Fig. 9, we plot the ground-state infidelity
of the prepared state p [1 — F with F as in Eq. (14)], as a
function of K. The protocol consists of K — 1 sweeps of a
LogSweep QDC protocol, each sweep having gradation num-
ber g; = 2, ..., K. The Hamiltonian simulation is performed
by second-order Trotter approximation. We investigate the
protocol effect on two initial states pg: the maximally mixed
state oo = 1/2" to check for cooling capabilities (dots), and
the ground state py = |Ep){Ep| (crosses) to show the lower
bound originated by reheating. We observe polynomial con-
vergence to the ground state in all three phases of the model,
attaining an infidelity of ¢ = 1 — F in approximately K ~
O(e~/#) energy gradation steps for B ~ 0.4-0.8. Addition-
ally, we verify that the protocol converges to the reheating
limit for the critical and strongly coupled regimes. In the
weakly coupled regime instead, although the cooling is far
more efficient because of the local nature of the system ex-
citations, the reheating bound is not saturated. We attribute
this to the very small linewidths {4}, a consequence of the
well-defined transition energies, together with the strong
banding of the system spectrum.

The number of Trotter steps for a single iteration
of the LogSweep protocol with gradation number g; on
a system of N spins with Hamiltonian Hs scales as
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FIG. 10. Performance of the LogSweep protocol as a function of
the system size for the three different phases of the transverse-field
Ising model (detailed in legend), with fixed K = 5. Dots correspond
to result when protocol is applied to the maximally mixed state;
shaded region corresponds to result when protocol is applied to
the true ground state (which gives a bound on protocol reheating).
Data were generated by Trotterized wave-function simulations of
the protocol, and random sampling of the initial mixed state and of
nonunitary operations (details in Appendix F). All points are run with
100 samples, and average results are plotted with the sampling error.

O(|Hs |l 1 AgeNgi log(g)™"). Thus, the iterative implemen-
tation required to deal with the banded cases needs a total
number of Trotter steps

Mo ~ O(IIHs |l L AggNK? log(K) ™). (18)

The gate complexity required to attain an error (infidelity) &
for the models studied scales thus as O(¢~3) to O(e~%).

We next investigate the scaling of the LogSweep proto-
col as a function of the system size. In Fig. 10 we plot
the relative error in the ground-state energy as a function of
the system size for a single (not iterated) LogSweep with
gradation number K = 5. We see a constant error in the
ground-state energy as a function of the system size for the
weakly coupled and critical systems. Thus, here we expect
no need to scale K with N for the protocol to be accurate.
Let us also note that the gap in these two cases shrinks as
Ags/||H| ~ N~" and Ags/||H| ~ N2, respectively. Using
the above arguments and the estimate (18), one can find how
the circuit length (in terms of time evolution steps), required
to obtain a constant energy error, scales with N. We obtain
O(N?) for the weakly coupled and O(N?) for the critical case.
From this analysis, we expect that the QDC protocol may
be asymptotically competitive with methods such as adiabatic
state preparation, whose runtime naively scales as O(1/ AZGS)
[4,5]. In the strongly correlated phase, we do not see such
positive results; the energy error increases with the system
size, though the relative error remains beneath 10% for up to
14 spins. This may be explained by the relative growth of the
extension of excitations within the strongly correlated phase,
while cooling is performed with local couplings. Due to the
error in the simulation, we are unable to reliably extract an
estimate of the computational cost in the same way as for
the critical and weakly coupled systems. Future work may
explore whether this error may be improved on by adjusting
the form of the coupling terms {V{} based on heuristics on the
considered system.

V. CONCLUSION

In this paper, we investigated how cooling can be simulated
on a digital quantum computer, and demonstrated that this
can be exploited for the design of scalable algorithms for
preparing ground states of N-qubit systems. We identified how
one can meet many of the fundamental challenges that the
digital approach to cooling raises and use the leverage offered
exclusively by digital quantum hardware, namely the freedom
of choice in the coupling strength and fridge energy. We laid
out a general approach of simulating a cold bath with a single
ancilla qubit, which is iteratively coupled to various locations
in the system and reset periodically to extract entropy and
energy. We studied how to digitize the system-fridge coupling
simulation without causing additional reheating, and how to
avoid symmetries which produce nonergodic behavior that
hinders cooling. By tuning coupling parameters beyond the
perturbative regime described by Fermi’s golden rule, effi-
cient cooling of targeted transitions can be realized. Following
these principles we proposed two protocols for preparing ap-
proximate ground states of N-qubit systems: the BangBang
protocol and the LogSweep protocol. We studied numerically
how these protocols perform on the three phases of the 1D
transverse-field Ising model. We found that the BangBang
protocol quickly cools the system near the ground state in
the paramagnetic and in the ferromagnetic regime, but has
difficulty in the critical regime. The LogSweep protocol is
observed to cool all three phases to the ground state at a poly-
nomial cost in the overlap error. In the weakly coupled and
critical phases, the LogSweep protocol further demonstrates a
constant energy error as a function of the system size (for fixed
gradation number), making it a competitive state preparation
method.

Thanks to the low number of steps required, we believe the
BangBang protocol has the potential of finding a near-term
application, specially if integrated with projective or varia-
tional methods to improve its performance. The requirement
of precise Hamiltonian simulation and multiple cooling steps
makes the LogSweep algorithm in its current form unsuit-
able for near-term implementation. Nevertheless, the scaling
arguments discussed at the end of Sec. IV B show that our al-
gorithm can be competitive with other non—noisy intermediate
scale quantum (non-NISQ) methods such as projective quan-
tum phase estimation (QPE) and adiabatic state preparation.
QPE in its standard form requires multiple ancillas and an
initial state with a finite ground-state overlap, while ours has
no requirement on the initial state. Adiabatic state preparation
requires an integrable Hamiltonian which can be adiabatically
connected to the required Hamiltonian, and requires time scal-
ing as O(I/Afmn) [4,5] where Amin < Ags 1s the minimum
gap along the adiabatic path.

The introduction of quantum digital cooling opens future
research directions related to the characterization of proposed
protocols, their optimization, and their extension beyond
ground-state preparation. A study of the effect of noise on
currently proposed QDC protocols, and the optimization of
such protocols for noise resilience, are in order to establish
their applicability on near-term devices. Applying QDC to
more complex physical systems, in areas such as quantum
spin liquids, many-body localization, and quantum chemistry,
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would bring new challenges to the protocol construction. A
thorough study of the role in the cooling process played by
the symmetries and locality of coupling could lead to the
design of more optimized protocols. Furthermore, various
extensions to the QDC protocols proposed in this work can be
suggested. In a parallelized version of QDC, the use of mul-
tiple fridge qubits coupled to various locations in the system
might allow us to trade space complexity for time complexity.
A variationally optimized QDC protocol might be devised
that can efficiently prepare a state in the ground-state man-
ifold of some Hamiltonian starting from an arbitrary initial
state—differently from the variational quantum eigensolver
[7], which requires the preparation of a fiducial state at every
iteration. The principles of QDC might inspire a new class
of efficient nonunitary quantum algorithms, where nonunitary
operations are mediated by a single ancillary qubit, with possi-
ble application, e.g., in the simulation of open quantum system
dynamics.

One application of particular future interest for QDC pro-
tocols is in the preparation of Gibbs thermal states, which
are useful, e.g., for semidefinite programming [30]. This
seems especially promising given the near-thermal distribu-
tion in Fig. 8 of the critical system under the evolution of
the LogSweep scheme. However, it is as of yet unclear how
to overcome the finite width of the distribution, and how well
these protocols behave in the banded case (or for more general
systems). Adjustment of the LogSweep protocol to produce
robust thermal state preparation schemes is an obvious target
for future research.
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APPENDIX A: PROOF OF EQUATION (10)
To prove Eq. (10) we first show that

(@]0|P) — (¥]O|Y)

#l01Y)] < max 5 ;

(AL)

for all |y), |@) : (¥]|¢p) = 0. We can assume without loss of
generality (¢|O|y) is real and non-negative (if it is not, we
can multiply one state by an irrelevant global phase), and drop
the absolute value. As (¥|¢p) = 0 we can define the states
|£) = 1 \i['w we can then write

{(+101+) — (=10]-)
5 )

1
(Gl01Y) = S((B101¥) + (¥[0l¢)) =

immediately proving Eq. (Al). The opposite inequality is
proven by noticing that the |W) and |®) that maximize the

right of Eq. (10) have to be eigenvalues (by the variational
principle). With these, we can redefine the states |+) =

% which are also granted to be orthogonal, thus

(PlO]®) —
2

WO _ gig(4101-11

<(max l{@l01¥)],

< [(+10]-)]

which combined with Eq. (A1) proves Eq. (10).

APPENDIX B: ASYMPTOTIC REHEATING AND COOLING
PROBABILITIES FOR QDC PROTOCOLS

Let us consider a two-state subsystem of a larger Hilbert
space with a gap energy E, evolving under a QDC protocol
on the kth step via a coupling term that does not mix the
{|01), |10)} and {|00), |11)} subspaces (where the second in-
dex denotes the fridge). Under this assumption, the evolution
of the system within this space is a Markov process. Following
the main text, let the fridge energy on the kth step be ¢, the
coupling strength be y;, and the time evolved for the cooling
protocol #;. Additionally, let the spacing of the fridge energies
be

o
(ex — €x41) = ¢ 8k + Spq1) = E(Vk + Vi)

for some K-dependent o = «(K) We may calculate

_ 2

T oK)
the transition matrix for the Markov process, p(k)(E ) [defined
by p(k) (E) = P(Ja) — |b)) in a single cooling step] as

1 —sinX (/2% sin (a)ktk/Z)y*
k

PHE) =

sin2(Qut/2)% 1 — sin(wk /2)” ’
k
(B1)
where
=/(E—&)+ Y2, (B2)
Q= /(E+ea)P+ Y2 (B3)

Assuming no additional cooling or heating to the rest of the
system during the protocol, the transition matrix for the kg —
ki block takes the form

ki

P (E) =[] p™(E),

k=ko

(B4)

and the transition matrix for the entire process may be written
P(E) = P, x(E).

Exact analytic evaluation of this expression in the large-K
limit is quite difficult. Instead, we aim for a conservative es-
timate, bounding the final cooling probability p. = [P(E)]o
from below. For this, given the energy E, we first lower-bound
the “initial” cooling around the resonant step k., i.e., such k.
that |e;, — E| is minimal. Then we give an upper bound on
reheating during the following protocol steps k =k, ..., K.
Given the estimated cooling probability p*~) and reheating

probability p( k) "\we can obtain a lower bound for p,:

pe > (1= pf)plo. (BS)
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The value of p*<) can be conservatively estimated from the
formula

2
—pk < 1_[|: - sinz(wklk/2)i%:| (B6)
p

< [I [&-ear/m] (B7)

E—e,
k’M<1
Yk

where the second line follows from the
sin(24E2) /(1 4 x2) > min(0, 1 —x2) applied to each
term in the product. In the perfect resonance scenario,
|E — €| =0 and the cooling probability is exactly 1. The
worst-case scenario is when E is right between the two
neighboring €;’s, thus |E — € | = Fyi. In this case, we can
calculate the logarithm of (B7) in the leading order of K ', «

22

kk()

inequality

)

‘ 2/ In
)

2 e _ E d
=—/ 1n’6 € @9
o Jeo y(€) |y(e)

Here, we used the fact that y« defines energy spacing
[and so dk = ay(¢)], and introduced summation limits k{*,
€® as the points where £ = £1. As this implies scaling
€® = E 4+ 0(y), (BY) should scale as O(1/a). The calcu-

lation can be completed for the LogSweep gradation €, 4,
which implies €, o y(€) o €. In particular, if x = % then

dx = Ede — %[1 + O(1/K)], and we have
de 4

€y
2 (" |le—E ! 4
—/ ln‘ — = —/ Inxdx=—-——. (B10)
o Jeo v [y alo o
Substituting into Eq. (B7), we find the initial cooling proba-
bility bounded by

pk) > 1 — exp[—4/a(K)].

e—F dk
de—
y(€) de

(B8)

(B11)

The reheating accumulated between steps k. and K, p(k &)

can be upper-bounded as

K 2
) . Y,
Pk <1 - ]_[ [1 - smz(szktk/z)g—"z]. (B12)
k=k. k
The product in Eq. (B12) can be further estimated as
K ]/2 K }/2
.2 k k
]_[[1 — sin (thk/z)g—%} > 1] (1 - Q_i> (B13)
k=k, k=k.
K
B14
kl_[ < (E + Gk)2> B9
K )/2
k
~exp|— — 1, B15
p( ,g(E+ek)2> B>

where in the last line we assumed that y;, < E + €, for all
k. As we are most concerned about the large-K asymptotics
of the total cooling probability, let us now analyze how the
expression (B15) behaves in this limit. Since sz scales as
O(1/K?) and we have K terms in the sum, we generally

expect O(1/K) scaling for the sum. Such scaling would imply
a rapidly vanishing reheating for a large-K protocol. In the
specific case of the LogSweep protocol, to the leading order
in 1/K one indeed obtains

(k K) ~ 1 /E y(€)
e Z (E+€k)2 a(K) Jg, (E+€)2d6 (B16)

‘min

In Zo 1y E 2E
N 5 - +In | ———
(K)K 2 E + Emin E + Emin

B17)

R(Emin ) Emax 5 E)
= (B13)
a2(K)K
Here, we used Eq. (15) and the fact that «(K )y, defines energy
spacing |€;+1 — €|. Finally, combining Eqgs. (B5)-(B18), we
obtain an asymptotic lower bound to the final cooling proba-
bility:

=11 4 1 R(EminaEmax»E) B19
p”_[ ‘“"(‘m)}[ TR }'( :

This estimate implies pC — 1 for large K, provided that both
e~ ® — 0 and iz — 0.

To ensure that the infidelity is minimized and thus «(K)
is optimal, we solve the extremum condition E)O,(e_“‘)‘fl +
ﬁ) = 0 for «. The solution can be expressed in terms of
the product logarithm function W, a(K) =4 W~ (8K/R).
For large K, at the leading order we obtain simply a(K) =
4 In"'(8K/R). The infidelity then scales down almost linearly
with K: 1 — p, = 1"2(186#
yields the choice ¢(K) =
our simulations.

. This asymptotically optimal «(K)
5= In(8K/R), which we use in all

APPENDIX C: OPTIMIZING ENERGY SPACING
IN LOGSWEEP PROTOCOL

In Sec. IVB, we argued that the energy spacing of the
LogSweep protocol is optimal for the protocol precision for
a K-step protocol. This was based on the reheating estimate
taken from the cooling step k. only. One may ask whether this
persists when one takes the total reheating into account. In the
large-K limit, we can use the estimate (B15) for this check.

Fixing the constraint y; = M , we proceed by means of
variational calculus:
K
) A
— ———— =0 Cl1
dex = (E + €r)? b
[€/ (K)]*

dk=0 Cc2

5€(k) / [E + e(k)]? ()

= €"(W[E + e(k)] = [¢ ()] (C3)

The solution to Eq. (C3) that satisfies boundary conditions
e(k.) =E, e(K) = Enyn, 1s as follows:

= el
— QE) 4 (E + Ein)F 4t — E. (C4)

This shows that the logarithmic character of the optimal spac-
ing persists when we consider total reheating [cf. Eq. (15)].
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However, we cannot directly use the embellished result (C4)
for our cooling protocol. That is because this formula uses
the targeted energy E as a reference, whereas we are targeting
a continuum of energies. Therefore, we keep using the sim-
pler and more practical formula Eq. (15) for the LogSweep
protocol.

APPENDIX D: COOLING RATE FOR LOGSWEEP
PROTOCOL IN A LARGE SYSTEM

In a large system, the above analysis is complicated by
the presence of multiple transitions from every energy level.
We now give a simplified analysis that focuses on a pair of
states |E;), |E;), in a spirit similar to Appendix B. This means
we formulate the protocol as a Markov process equivalent to
[Eq. (B1)], where the transitions to levels other than i and j
are ignored. Note that in the perturbative limit, this is a good
approximation of the actual Markov process as restricted onto
the subspace |E;), |E;). Specifically, even though we ignore
the indirect transitions between i and j via other levels, this is
justified at the first order of perturbation theory. Unlike in the
1 + 1 model however, the transitions here are imperfect. If our
total coupling has strength y (i.e., |Hc|| = 2Vy), following
the analysis in Sec. IV A the coupling between states |E;) and
|E;) will take the form y/A; ; with \/A;; scaling down as
O(E; — E j)_z). This has the effect of scaling both the cooling
and reheating rates by A; ;, recasting the Markov process
[Eq. BD)] as

®) Aj jsin (2)—"2 Aj jsin (2)_k;
p”_ /~2 E kkkkz
,jsm( )_i ,]sm( )_f

As this only reduces both the heating and cooling rates, our
claim that reheating in the LogSweep protocol tends to O as
K — oo still holds. However, we need to repeat the analysis
of Appendix B to bound the cooling rate p*<) below and
check that it continues to tend to 1. For the sake of generality,
we drop the i, j indices, and consider a cooling probability
restricted by a k-independent factor A.

With this adjustment, we may recast Eq. (B7) when A < 1

as
Am? An* (E — &)
]—[ [(1— T) +K—y2 } (D1)

kA=Al g k
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Then, taking the log and converting again to an integral, we
obtain

ke l/e+ [ /M]d_e
ln(l pc)<a g In|B+A SER |7E)

where A’ = 470 ~ 24, and B =1 — 47" < 1. Next, setting

5 o> and using the fact that for the LogSweep protocol

y(e) ~ €, we find

(D2)
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FIG. 11. Difference between cooling by applying a single
LogSweep protocol with gradation number K (round markers), and
iterating LogSweep for all g; = 2, ..., K (solid lines). The iterative
and reheating data are the same as in Fig. 9; the same context and
simulation techniques apply.

This may be evaluated by integrating by parts, giving

. 2 +1 x2
Il( pc ) < o /;l BA/—I +x2 ( )
—4 /—1 —1 47 p—1
= —[1-BA "tan"'(A'B™)] (D5)
o
4 2 p—2 4
~ ——A”B? + 0(A"). (D6)
3a

Using the optimal scaling «(K) = 4In~!(K) we identified in
Appendix B, this adjusts our bound in the cooling rate to

pe>1—Kk AT (D7)

which continues to tend to 1 as K — oo, albeit at a rate
reduced proportionally to A.

This result requires some consideration in a large system;
if our coupling I" from a state |E;) is spread over transitions to
J states |E;), we have A; ; ~ J~!, and the probability of any
transition being cooled can be found to be

142 2 1
1_[ (] — pIZ”j) ~ e Z/ 13047045 L o7
J

(D8)

This implies that we require o ~ J~! in order to maintain a
constant cooling rate, which in turn may require adjustments
to the optimal scaling identified in Appendix B. As such ad-
justments are highly system-dependent, we do not investigate
them further here.

APPENDIX E: EFFECT OF BANDING
ON QDC PROTOCOLS

In this Appendix we demonstrate the effect of banding
on single sweeps of the LogSweep protocol. In Fig. 11, we
plot the infidelity of a single shot of the LogSweep protocol
with gradation number K acting on the maximally mixed
state, as a function of K (triangular markers). We see that in
the critical case, the system continues to tend to the ground
state polynomially in K. However, for the TFIM chain in the
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weakly and strongly coupled phases, we find that the protocol
fails to converge as a function of K, due to the banding issue
described above. This lack of convergence is rectified in the
series marked by dots (same data as in Fig. 9) by repeating
the LogSweep protocol as a function of K. We note that the
failure in the strong-coupling case is not of the same degree
as in the weak-coupling case, which we ascribe to the fact that
the banding is not as strongly pronounced in Fig. 8, and so the
result has not yet presented itself.

APPENDIX F: NUMERICAL METHODS

In this Appendix we report the methods used to simulate
QDC protocols on many-qubit systems. The Python code is
packaged and available on GitHub [31], and uses Cirq [32] to
build and simulate the required quantum circuits. All the data
reported in this paper, and more simulation results that are left
out in the interest of space and clarity, can be found in the
same repository.

The simulations for the BangBang protocol energy valida-
tion Fig. 5, as well as the study of LogSweep performance
with increasing K (Figs. 9 and 11), were performed using the
Cirq density matrix simulator. This stores the system’s state in
a density matrix, to which are applied sparse unitaries (repre-
senting the circuit’s unitary gates) and the eventual quantum
channel representing the reset gate. For BangBang, as pre-
scribed by the protocol, the unitary circuit applied before each
fridge reset gate is defined by second-order Trotter expansion
of the coupled system-fridge Hamiltonian with a single step
(Trotter number M = 1). This corresponds to Eq. 7 where
also e~ is substituted by its M = 1 second-order Trotter
expansion.

To push to a larger number of qubits the results on scaling
of both protocols, data for Figs. 6 and 10 were generated

with the Cirq state vector simulator. The nonunitary reset
required by QDC protocols and the initially mixed state used
to benchmark cooling cannot be represented deterministically
in state vector simulations. These are instead implemented by
random sampling. Each sample is constructed by choosing at
random an initial computational basis state (these are enough
to sample the maximally mixed state, because of the density
matrix equivalence class). For each nonunitary reset gate, the
outcome is sampled probabilistically. This process is repeated
for 100 samples for each data point. The mean value of the
quantity of interest is plotted, together with an interval repre-
senting the standard deviation of the mean.

In both the density matrix and the wave function simu-
lations performed with Cirq, the numerical error causes the
final state to be often non-normalized. In the worst cases,
the deviations from unit L2 norm (for wave functions) and
trace norm (for density matrices) are up to few parts per
thousand and percent, respectively. This is attributed to the
large number of short-time Trotter steps required to produce
LogSweep data in Fig. 9, which translate to sparse unitaries
with small entries and a building up of numerical error. As all
operations are linear, the first-order error can be dealt with by
forcing normalization on the final state. This technique was
used for results reported in Figs. 9, 10, and 11.

The numerical error of Trotterized sparse-unitary simula-
tions still is too large to show the final state occupations in
Fig. 8, which range over more than 18 orders of magnitude.
For this reason, these simulations were performed by con-
structing the continuous evolution operator e~ (H#s+Hr+Hc)t for
each unitary evolution step. These results were validated by
comparing with the Trotterized approach the results for large
occupations and the energy expectation values (which are less
sensitive to the numerical error).
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