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Abstract
There is an urgent need for better treatment of lung diseases
that are a major cause of morbidity and mortality worldwide.
This urgency is illustrated by the current COVID-19 health
crisis. Moderate-to-extensive lung injury characterizes several
lung diseases, and not only therapies that reduce such lung
injury are needed but also those that regenerate lung tissue
and repair existing lung injury. At present, such therapies are
not available, but as a result of a rapid increase in our under-
standing of lung development and repair, lung regenerative
therapies are on the horizon. Here, we discuss existing targets
for treatment, as well as novel strategies for development of
pharmacological and cell therapy–based regenerative treat-
ment for a variety of lung diseases and clinical studies. We
discuss how both patient-relevant in vitro disease models
using innovative culture techniques and other advanced new
technologies aid in the development of pulmonary regenerative
medicine.
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Introduction
Loss of functional lung tissue is a characteristic of a
range of acute and chronic lung diseases. In patients

with severe end-stage chronic lung disease who are re-
fractory to treatment, the only solution is lung trans-
plantation. The type of injury that results in loss of lung
www.sciencedirect.com
function varies between these disease entities and may
include destruction or remodeling of the distal lung
parenchyma, where gas exchange occurs in the alveoli.
Alveolar damage occurs in acute respiratory disease
(ARDS), whereas repetitive alveolar damage can result
in parenchymal destruction as observed in emphysema
in patients with chronic obstructive pulmonary disease
(COPD). In contrast, extensive remodeling due to

fibrotic processes is observed in idiopathic pulmonary
fibrosis (IPF) and other interstitial lung diseases. The
current COVID-19 crisis highlights the range of pro-
cesses leading to loss of functional lung tissue because
some patients with COVID-19 (especially those with
severe disease) may not only suffer from acute alveolar
damage but also suffer from subsequent fibrotic pro-
cesses [1]. Airway remodeling is also an important cause
of lung function loss and is observed in COPD, asthma,
and cystic fibrosis or may result from stenosis due to, for
example, tumor formation. Finally, vascular remodeling

in patients with pulmonary arterial hypertension also
results in not only problems in the lungs but also in
the heart and may be a cause of the need for lung
transplantation.

Lung transplantation can be a life-saving procedure in
patients with end-stage lung disease, but shortage of
donor lungs and rejection of the transplanted lungs are
important limitations. Pulmonary regenerative medicine
holds promise for patients with severe loss of lung
function requiring transplantation and also for those

with progressive loss of lung function. In many of these
lung diseases, including COPD, IPF, ARDS, cystic
fibrosis, and COVID-19, the epithelium is affected.
This epithelium covers the conducting airways, as well
as the alveoli located in the distal lung parenchyma.

In the last decade, our understanding of lung develop-
ment and lung repair has markedly increased, and much
of this research has focused on the epithelium and its
stem or progenitor cells and the niche (i.e. extracellular
matrix and surrounding cells) these cells reside in.

Injury models in animals and cell culture models have
shown that the adult lung has marked repair capacity.
Interestingly, this is supported by observations in pa-
tients after pneumonectomy [2]. Use of this increased
knowledge of lung development and repair has resulted
in the realization that pharmacological approaches,
cell therapy, and tissue engineering are realistic options
Current Opinion in Pharmacology 2021, 59:85–94
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for a better treatment of a range of lung diseases.
Therapeutic strategies to repair lung tissue include
those aimed at regeneration (cell therapy, extracellular
vesicles, and pharmacological interventions) and
replacement (cell therapy and tissue engineering) [3].
In this review, we will focus on regenerative pharma-
cology and cell therapy as a regenerative approach.
Readers interested in tissue engineering are referred to

other excellent reviews on this topic [4].
Lung stem cells and their role in repair and
regeneration
Injury models in animals, mainly mice, have markedly

increased our insight into the identity and role of lung
stem cell populations in repair. However, such models
are increasingly replaced by cell culture models, using
primary cells isolated from lung tissue or by using
(human) induced pluripotent stem cells that can be
differentiated into the various lung cell populations [5].
The need to use more human cell and tissue culture
models also arises from the realization that there are
limitations in the translation of findings from murine
studies to the human situation, resulting from differ-
ences in anatomical organization, biology/physiology,

and cell-ratio differences along the epithelium lining the
lungs [6].

Recent reviews provide a detailed overview of the
rapidly evolving field of research into lung stem/pro-
genitor cell populations and associated models, to which
we refer the interested reader to obtain further detailed
information that is beyond the scope of this review
[5,7e10]. Table 1 provides a summary of the main stem/
progenitor populations in the mouse and human
lung because these species have been most widely
studied. Briefly, in the airway epithelium, the basal cells

are the most widely recognized cell type that acts as a
progenitor cell. These basal cells have the capacity to
self-renew and to differentiate into the various types of
luminal cells that constitute the airway epithelium:
ciliated cells, secretory cells (mucus-producing goblet
cells and club cells) and more rare cell types such as the
cystic fibrosis transmembrane conductance regulator
(CFTR)-expressing ionocytes, the chemosensory tuft or
brush cells, and neuroendocrine cells [5,7,10e12]. At
least two subpopulations of basal cells can be recog-
nized, in which one serves as a self-renewing stem cell,

whereas the other population mediates formation of the
luminal cells during epithelial differentiation [13].
Single-cell analysis has, however, shown that these basal
cells consist of various (and likely more than two)
subpopulations that may have different characteristics
and may differ in abundance in disease, as shown for
instance in COPD [14]. A detailed understanding of the
function of these subpopulations in health and disease is
still missing. Especially after injury, and mainly
demonstrated in mouse injury models, also luminal cells
Current Opinion in Pharmacology 2021, 59:85–94
may contribute to repair as shown for club cells [15].
Mouse studies showed that these cells may even give
rise to basal cells after extensive injury [16], but it is
unclear whether this also contributes to repair in ho-
meostatic conditions and after milder forms of injury.
Furthermore, to which extent these basal cells are
different from ‘conventional’ basal cells remains to be
determined. Furthermore, in the distal airways including

at the junction between the bronchioli and alveoli,
additional stem cell populations have been identified in
the mouse that contribute to airway and alveolar (re)
generation (reviewed in [5]).

There has also been a marked progress in our under-
standing of alveolar development and repair, not only
through animal models but also especially through
organoid studies including those with human cells [9].
Within the alveolus, the cuboidal alveolar type 2 cell
(AT2) serves multiple functions: it produces surfactant

to lower surface tension and prevents alveolar collapse,
secretes host defense and inflammatory mediators, and
serves as a progenitor for the flattened alveolar type
1 cells (AT1) that allow gas exchange. Importantly, AT2
cells also function as stem cells and have the capacity to
self-renew [17,18]. WNT/b-catenin activation was re-
ported to be central in self-renewal, whereas inhibition
of WNT/b-catenin signaling is important for AT2-to-
AT1 differentiation [18,19], although others report that
activation is needed for this transition [20]. This illus-
trates not only that we are only beginning to understand

alveolar development and repair but also the challenges
and opportunities associated with pharmacological ap-
proaches based on this knowledge because the same
pathway may regulate self-renewal and differentiation in
different ways. Nevertheless, restoring disturbed WNT/
b-catenin signaling in mouse emphysema models using
blocking of inhibitory LTbR signaling [21] or direct
activation of WNT/b-catenin signaling [22] was found to
restore alveolar tissue, whereas inhibition of WNT/b-
catenin signaling may exert antifibrotic effects in IPF
[23,24].
Impact of lung tissue remodeling on repair
Lung epithelial cell function in lung repair and regen-
eration relies on essential cues from the surrounding
niche. In lung diseases, profibrotic and proinflammatory
microenvironmental cues, including those resulting

from altered mesenchymal cell function, may contribute
to dysregulated repair and lung tissue remodeling.
Fibroblast activation by transforming growth factor
(TGF)-b, a growth factor with increased expression in,
for example, lung tissue from patients with COPD or
IPF, was found to result in a loss of the ability of these
cells to support lung epithelial cell organoid formation
[25]. Furthermore, changes in extracellular matrix
composition, as well as mechanical cues resulting from
increased stiffness in fibrotic areas or alveolar stretch in
www.sciencedirect.com

www.sciencedirect.com/science/journal/14714892


Table 1

Overview of the various stem/progenitor populations in the mouse and human lung.

Cell type Marker expression Differentiation/cell fate Location/species References

Basal cell TP63, KRT5, NGFR Self; airway luminal cells
(including secretory goblet
and club cells, and ciliated cells)

Airway
Human/mouse

[11,12,14,49]

Club/secretory cell Scgb1a1 Self; ciliated cells Airway
Human/mouse

[15,16]

Myoepithelial cell TP63, Scgb1a1 Self; basal and luminal cells Submucosal gland
Mouse

[50]

Distal airway cell populations
(BASC, DASC, LNEP,
MHChigh [H2-K1high])

Various markers (depending
on the subpopulation)

Self; basal, club, ciliated
cells; AT1, AT2

Distal airways
Mouse

Reviewed in [5]

AT2 SFTPC, HT2-280, DC-LAMP,
ABCA-3

Self; AT1 Alveoli
Human/mouse

[17]

AEP SFTPC, HT2-280, Axin2/TM4SF1 Self; AT2; AT1 Alveoli
Human/mouse

[18,51]

ABCA-3: ATP-binding cassette sub-family A member 3; AEP: alveolar epithelial progenitor cell; BASC: bronchioalveolar stem cell; DASC: distal airway stem
cell; DC-LAMP: dendritic cell lysosomal-associated membrane glycoprotein; H2-K1: mouse MHC class I marker; KRT5: keratin 5; LNEP: lineage-negative
epithelial progenitor; NGFR: nerve growth factor receptor; Scgb1a1: secretoglobin family 1A member 1; SFTPC: surfactant protein C; TM4SF1:
transmembrane 4 L six family member 1; TP63: tumor protein p63.
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areas of tissue destruction or mechanical ventilation,
may alter repair and differentiation processes, as illus-
trated by studies on AT2-to-AT1 differentiation [26,27].
Furthermore, although acute proinflammatory cues may
promote AT2-to-AT1 differentiation and thus
contribute to alveolar repair, prolonged inflammation
may impair AT1 maturation and thus regeneration of
alveoli [28].
Therapeutic approaches to achieve lung
repair and regeneration
A better understanding of mechanisms involved in the
respiratory developmental and repair pathways, the

stem/progenitor cells and growth factors and other
signaling molecules involved, provides clues for inter-
vention strategies. Such interventions have been suc-
cessfully evaluated in a variety of animal studies [29],
but only few of these have reached the stage of clinical
evaluation. Table 2 provides an overview of clinical
studies using pharmacological or cell therapy approaches
that have aimed at regeneration or repair of lung
tissue and are discussed in the following.

Regenerative pharmacology
Insight into the important role of mesenchymal celle
derived fibroblast growth factors in lung development
and repair [8] has resulted in clinical studies. Based on a

variety of model studies, including a human lipopoly-
saccharide challenge model of acute lung injury that
showed favorable effects [30], the effect of intravenous
FGF7 (formerly named keratinocyte growth factor) was
evaluated in patients with ARDS [31]. However, there
was no clinical benefit or a change in physiological pa-
rameters, and study results even suggested that patients
www.sciencedirect.com
on active treatment did worse than those on placebo.
Retinoids and retinoic acid receptor agonists are another
class of drugs that have been evaluated in clinical
studies aimed at lung repair. These studies were a
logical follow-up from the observation that retinoic acid
is able to restore alveolar tissue after elastase-induced
emphysema in rats [32]. Although these initial obser-
vations were confirmed in variousdbut not alldstudies

in rodents, it proved difficult to translate these pre-
clinical findings to effective treatment in patients with
meaningful outcomes (see Table 2 for details). A third
category of drugs that are now close to evaluation for
their capacity to stimulate repair and regeneration of
lung tissue in clinical trials are those that target senes-
cence. The realization that senescence impairs repair
and that lung function declines with aging has led to the
discovery that some lung diseases display features of
accelerated aging, as demonstrated, for example, in
COPD [33] and IPF [34,35]. Accelerated aging is

accompanied by increases in senescent cells that have a
decreased repair capacity and secrete proinflammatory
mediators. These observations have prompted re-
searchers to investigate the effects of senotherapy
(using senolytics and senostatics) in animal models of
these diseases [33,34], but so far, this has not yet
resulted in published clinical studies although some of
the drugs used in animal models have been approved for
human use for other clinical indications.

Cell therapy
In addition to pharmacotherapy, cell therapy holds

promise for pulmonary regenerative medicine. This has
been demonstrated in various animal models of lung
injury that have been reviewed elsewhere [5,36]. So far,
Current Opinion in Pharmacology 2021, 59:85–94
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Table 2

Clinical studies on regenerative therapies in human lung disease.

Indication/therapeutic
area

Registration nr. and design Treatment/dosing/timing Outcome References

LPS-induced human
model of lung injury
(n = 36)

ISRCTN 98813895
Randomized, double-blind, placebo-controlled
trial

KGF (palifermin) or placebo
60 mg/kg/day (i.v.)
3 days

Increased Sp-D, increased alveolar IL-1Ra,
MMP-9, GM-CSF (pro-repair/pro-resolving
effect)

[30]

ARDS (n = 29) ISRCTN95690673
Randomized, double-blind, placebo-controlled
trial
Phase 2

KGF (palifermin) or placebo
60 mg/kg (i.v.)
6 days

No/worsening effect; fewer ventilator-free first
28 days; higher mortality at day 28

[31]

AATD-emphysema (n =
262)

Randomized, double-blind, placebo-controlled
trial
Phase 2

RARg-agonist (palovarotene-retinoid)
5 mg/day (oral)
12 months

No effect [52]

COPD-emphysema (n =
148)

Randomized, double-blind, placebo-controlled
trial
Phase 2

All-trans retinoic acid (ATRA), 13-cis retinoic acid
(13-cRA:) or placebo
ATRA: 1 mg/kg/d or 2 mg/kg/d (oral)
13-cRA: 1 mg/kg/d (oral)
6 months followed by a 3-month crossover
period

No effect [53]

COPD (n = 6) Randomized, double-blind, placebo-controlled
trial
Pilot trial

FGF-2
2.5 ng by inhalation
3 times a day during two weeks

Safe and well-tolerated
No significant improvements in respiratory
symptoms and lung function

[54]

Mild/severe COVID-19
(n = 18)

NCT04288102
Non-randomized, controlled trial
Phase 1

UC-MSC
3 × 107 cells/infusion (i.v)
Day: 0, 3, and 6

Safe and well-tolerated [55]

Advanced COPD-
emphysema (n = 4)

NCT01110252
Single-arm trial
Phase 1

Mononuclear cells (BMMC)
1x i.v. BMMS (autologous)

Safe and well-tolerated [56]

Moderate to severe
COPD-emphysema
(n = 62)

NCT00683722
Randomized, double-blind, placebo-controlled
trial
Phase 2

BM-MSC
4x 100 × 106 cells/infusion (i.v.; allogeneic)
Monthly

Safe and well-tolerated, trend toward lower
CRP

[57]

Severe COPD-
emphysema (n = 8)

NCT01306513
Single-arm trial
Phase 1

BM-MSC
2x 1–2 × 106 BM-MSCs/kg (i.v.; autologous)
1 week apart

Safe and well-tolerated; increase in alveolar
septal CD31

[58]

Severe COPD-
emphysema (n = 10)

NCT01872624
Randomized, patient-blinded, placebo-
controlled trial
Phase 1

BM-MSC
1x 108 cells (i.v.; allogeneic)
Combined with EBV insertion

Safe and well-tolerated, increased QoL,
decreased CRP, decreased BODE and
MMRC.

[59]

Mild-to-very severe
stable COPD (n = 9)

ANZCTR12614000731695
Single-armed trial
Phase I

BM-MSC
2x 106 cells/kg (i.v.; allogeneic)
1 week apart
111indium-labeled MSC

Safe and well-tolerated; Reduced MSC
uptake in emphysema lungs, decreased
systemic inflammation

[60]

COPD (n = 5) Open-label,
Single-armed trial
Phase (1/2)

UC-MSC
4x 1‒2x106BM-MSCs/kg (i.v.)

Safe and well-tolerated; no significant effects [61]

(continued on next page)
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cell therapy related to lung regeneration in patient
studies has focused on mesenchymal stromal cells
(MSCs) [36], although also other cell types have been
evaluated including alveolar epithelial cells (Table 2).
MSCs are cells of nonhematopoietic origin that have the
capacity to differentiate into multiple mesenchymal cell
lineages, that is, chondrocytes, osteoblasts, and adipo-
cytes. Cell culture, animal studies, and clinical studies

in graft-versus-host disease and inflammatory bowel
disease have shown that MSCs may modify immune and
inflammatory responses and possibly increase repair and
regeneration. MSCs may help create a more favorable
microenvironment for lung repair to occur through their
immunomodulatory activity, or they may enhance repair
by secreting mediators that enhance repair. MSCs have
been used in clinical studies for a variety of indications,
including COPD, ARDS, IPF, and COVID-19 (Table 2),
but so far, clinical efficacy of MSC treatment for lung
diseases remains to be demonstrated.

This lack of a clinical benefit of MSC treatment for lung
diseases may be explained by the fact that they enter
inflamed lung tissue. Lung inflammation has indeed
been found to modify MSC behavior, as demonstrated in
a recent study in which human bone marrowederived
MSCs were cultured with bronchoalveolar lavage
(BAL) fluid from patients with ARDS or patients with
lung diseases other than ARDS (non-ARDS). Incubation
of MSCs with BAL from non-ARDS resulted in a
different gene expression pattern in MSCs and in a

stronger anti-inflammatory phenotype in monocytes
exposed to bone marrowederived MSC conditioned
medium than using ARDS BAL [37]. Evidence was
provided that especially IL-6 in conditioned medium
from ARDS BALeexposed MSCs contributed to this
effect. The authors stressed that also other factors of the
(diseased) lung environment may affect MSC behavior,
including oxygen levels, tissue stiffness, and mechanical
forces such as stretch.

In addition to using, for example, pharmacotherapy to
reduce lung inflammation at the time of MSC infusion,

there are several other options to improve treatment
outcomes of MSC administration. First, the route of
administration needs to be considered. Clinical studies
have used intravenous administration, whereas local
delivery into the lung has been widely used in animal
models and only in few human studies (Table 2).
Second, conditioning of MSCs by treatment with
selected mediators or gene editing may enhance
regenerative properties of MSCs [36] and can be
considered in clinical studies.
Conclusions and future directions
Although a multitude of pharmacological and cell ther-
apy approaches have been evaluated in animal models
(reviewed in several recent reviews; [8,29,38]), the
Current Opinion in Pharmacology 2021, 59:85–94
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number of regenerative approaches evaluated in clinical
trials for acute or chronic lung disease has so far
been limited. Clearly, there is difficulty in translating
outcomes from animal models to the human situation,
and there are ethical concerns regarding the use of an-
imals in research. This has important consequences for
Figure 1

Approaches to drug discovery in pulmonary regenerative medicine. In vit
be used for target identification as well as serve as the model to test drug effic
new drug candidates, and these can be used in (semi) high-throughput screeni
are also particularly worthwhile for drug repurposing. Candidate drugs select
abovementioned in vivo, in vitro, and in silico approaches and lead to regene

Current Opinion in Pharmacology 2021, 59:85–94
drug discovery, which previously largely relied on animal
models and observations in human lung tissue. Rapid
developments in in silico approaches and culture
methods, such as organoids, lung-on-chip, and precision-
cut lung slices (PCLSs), have markedly contributed to
the tool box for regenerative drug development
ro, in vivo, ex vivo, and in silico modeling of respiratory lung diseases may
acy. Thus, these complementary approaches contribute to development of
ng approaches (depending on the technique). Such screening approaches
ed using such screens can be further analyzed and validated using the
rative pulmonary medicine for a variety of lung diseases.

www.sciencedirect.com
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(Figure 1). PCLSs provide an ex vivo tool to mimic and
study mechanisms operational in pulmonary diseases
and provide a platform to screen (novel) regenerative
medicine approaches. PCLSs enable studying the
various cell types present in the lung in their inherent
surrounding, while maintaining tissue structure and
integrity, as reviewed in [39]. However, the contribution
of, for example, circulating factors and exposure to air

cannot be included in PCLS models, but this limitation
is shared with conventional cell culture models.
Furthermore, so far, PCLSs are mainly used in short-
term studies because prolonged culturing of these ex
vivo tissue slices proved to be difficult. However, recent
studies have shown that improvements such as use of
customized hydrogels may support extended culture
duration [40]. The advantage of using the PCLS derived
from patient tissue for studying lung regeneration is
illustrated by a study showing that activation of WNT/b-
Figure 2

Regenerative approaches for lung diseases and the role of disease stat
phasizes the need to consider different treatment approaches and combination
may be determined by the stage of the disease. ARDS, COPD, and fibrosis ar
therapy approach. See text for further details.

www.sciencedirect.com
catenin signaling in the PCLS from patients with COPD
resulted in an increase in markers of alveolar repair [41].
In addition, in cell culture models, inclusion of patient-
derived cells may increase their relevance. Depending
on availability, such cells can be obtained from patients,
but (human) induced pluripotent stem cells have also
shown potential for the development of patient-specific
and disease-relevant in vitro models, as illustrated for

Herman-Pudlak syndrome type 2, associated with pul-
monary fibrosis [42]. As shown in Figure 1, these com-
plementary approaches contribute to target discovery
and development of new drug candidates, and culture
methods can be adapted for use in (semi) high-
throughput screening approaches using, for example,
WNT/b-catenin reporters or, for instance, functional
assays for which organoids may be suitable. Such
screening approaches are also particularly worthwhile for
drug repurposing. Candidate drugs selected using such
e. Lung diseases present with heterogenous characteristics, which em-
s for pulmonary regenerative medicine. In addition, the choice for a therapy
e presented as examples of diseases that may benefit from a regenerative
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screens can be further analyzed and validated using the
abovementioned in vivo, in vitro, and in silico approaches.
More advanced culture models, such as lung-on-chip
models in which mechanical forces of breathing
(airflow and stretch) [43,44] or culture of, for example,
alveolar cells on curved membranes to mimic the
morphology of the alveolus [45], have the potential to
better mimic the lung environment and may help

reducing the need for animal models.

These new approaches may help to improve the se-
lection of candidate drugs for human studies. Here,
there is also a need for better outcome markers.
Especially in COPD, relevant clinical outcomes often
require treatment for years to observe, for example, a
slowdown of the progressive decline in lung function.
This illustrates the need for surrogate (bio)markers of
repair or a focus on the exacerbation of disease as a
window of accelerated lung function loss and intensi-

fied disease burden. Analysis techniques such as pro-
teomics, metabolomics, single-cell/nucleus RNA
sequencing, mass cytometry, and advanced imaging
techniques also hold great promise for target discovery
and biomarker identification.

The type of regenerative treatment may depend on the
stage of the disease, with pharmacological interventions
being feasible at earlier disease stages than cell therapy
(Figure 2). Timing and duration of treatment may be
crucial because some compounds have differential ef-

fects on differentiation and proliferation, as shown for
retinoic acid [46]. The same holds true for anti-
inflammatory treatment that may preferentially be
used before starting a repair-inducing treatment. Com-
bined treatments indeed have the potential to enhance
the efficacy of therapies. Cell therapy with MSCs or
lung progenitors, either derived from induced pluripo-
tent stem cells or from progenitor populations isolated
from tissue, may be more effective when combined with
pharmacological approaches aimed for instance at
improving the microenvironment or niche in which
these cells are supposed to act. Furthermore, clearly, the

development of additional lung injury should be slowed
down or stopped when applying regenerative treatment.
In emphysema, alveolar destruction needs to be halted,
and repair and regeneration need to be stimulated.
Smoking cessation is the most effective intervention to
slow down lung function decline in COPD and restrict
alveolar destruction, but inflammation does persist for at
least some time after cessation [47]. Interestingly, some
interventions may have the opportunity to inhibit
ongoing destruction while also enhancing repair. This is,
for instance, not only likely for anti-inflammatory

treatments but also for those targeting mitochondrial
dysfunction because this may both trigger inflammation
and restrict repair [48]. In lung fibrosis, there is an
urgent need to block ongoing fibrosis, and new classes of
antifibrotics have shown promise in slowing down
Current Opinion in Pharmacology 2021, 59:85–94
progression in, for example, patients with IPF.
Combining such an antifibrotic approach with treatment
that helps restoring or repairing damaged lung tissue
may be most suitable for IPF and other interstitial lung
diseases. The need to consider different treatment ap-
proaches and combinations for pulmonary regenerative
medicine is illustrated in Figure 2.
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