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ACO2 clinicobiological dataset with 
extensive phenotype ontology 
annotation
Khadidja Guehlouz1, Thomas Foulonneau2, Patrizia Amati-Bonneau2,3, Majida Charif2,4, 
Estelle Colin2,3, Céline Bris2,3, Valérie Desquiret-Dumas2,3, Dan Milea5, Philippe Gohier1, 
Vincent Procaccio2,3, Dominique Bonneau2,3, Johan T. den Dunnen   6, Guy Lenaers   2, 
Pascal Reynier   2,3 & Marc Ferré   2 ✉

Pathogenic variants of the aconitase 2 gene (ACO2) are responsible for a broad clinical spectrum 
involving optic nerve degeneration, ranging from isolated optic neuropathy with recessive or dominant 
inheritance, to complex neurodegenerative syndromes with recessive transmission. We created the 
first public locus-specific database (LSDB) dedicated to ACO2 within the “Global Variome shared 
LOVD” using exclusively the Human Phenotype Ontology (HPO), a standard vocabulary for describing 
phenotypic abnormalities. All the variants and clinical cases listed in the literature were incorporated 
into the database, from which we produced a dataset. We followed a rational and comprehensive 
approach based on the HPO thesaurus, demonstrating that ACO2 patients should not be classified 
separately between isolated and syndromic cases. Our data highlight that certain syndromic patients 
do not have optic neuropathy and provide support for the classification of the recurrent pathogenic 
variants c.220C>G and c.336C>G as likely pathogenic. Overall, our data records demonstrate that 
the clinical spectrum of ACO2 should be considered as a continuum of symptoms and refines the 
classification of some common variants.

Background & Summary
Aconitate hydratase (ACO2; EC# 4.2.1.3) is a ubiquitous human mitochondrial monomeric enzyme composed 
of 780 amino acids. It catalyses the second reaction of the citric acid cycle by isomerising citrate to isocitrate1. 
It is encoded by the aconitase 2 gene (ACO2; MIM# 100850) that extends over 35 kb on chromosome 22q13 
and includes 18 translated exons2. Biallelic pathogenic variants of this gene have been associated with infantile 
cerebellar-retinal degeneration (ICRD; MIM# 614599), a severe neurodegenerative disorder with optic neuropa-
thy beginning in childhood and including retinal dystrophy, cerebellar ataxia, seizure, strabismus, axial hypoto-
nia and athetosis3. Isolated optic neuropathies have also been associated with ACO2 pathogenic variants, either 
with recessive (locus OPA9; MIM# 616289)4 or dominant inheritance, as recently reported5. A recent review of 
the literature has listed a total of 26 individuals reported from 15 families with the syndromic form since 2012, 
while only seven individuals from four families have been reported with the recessive form of isolated optic neu-
ropathy6. More specific clinical presentations, possibly without optic neuropathy, have also extended the clinical 
spectrum, such as a form of hereditary spastic paraplegia reported in two siblings7. The recent description by 
our team of 116 additional cases belonging to 94 families brings the total to over a hundred cases listed in the 
literature to date5.

The high frequency of dominant ACO2 mutations in our molecular diagnosis experience of optic neuropa-
thies and the diversity of the neurological involvement led us to develop a reliable database dedicated to ACO2 
as part of the Global Variome shared Leiden Open-source Variation Database (LOVD) installation8,9. Indeed, 
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we recently developed such a database to list the genetic variants and clinical presentations of OPA1-related dis-
orders, the major cause of dominant optic neuropathies with either isolated (80%; MIM# 165500) or syndromic 
(20%; MIM# 125250) presentations, and with some rare biallelic cases affected by early severe syndromes (MIM# 
605390)10. The interoperability and the use of an international clinical thesaurus11 should, therefore, make it 
possible to progressively improve understanding of how this increasing number of genes responsible for optic 
neuropathies contributes to the diversity of the pathophysiological mechanisms responsible for their common 
clinical phenotype.

In this article, we describe the construction of this ACO2 dataset, listing all the patients referenced in the liter-
ature, and drawing statistical information on gene variants and clinical diversity.

Methods
Nomenclature.  All names, symbols, and OMIM numbers were checked for correspondence with current 
official names indicated by the Human Genome Organization (HUGO) Gene Nomenclature Committee12 and 
the Online Mendelian Inheritance in Man database (OMIM)13. The phenotype descriptions are based on the 
standardised Human Phenotype Ontology (HPO)11, indicating the HPO term name and identifier. ACO2 var-
iants are described according to both the NCBI genomic reference sequence NG_032143.1 and transcript ref-
erence sequence NM_001098.2, including 18 exons encoding a protein of 780 amino acids reference sequence 
NP_001089.114. The numbering of the nucleotides reflects that of the cDNA, with “+1” corresponding to the 
“A” of the ATG translation initiation codon in the reference sequence, according to which the initiation codon 
is codon 1, as recommended by the version 2.0 nomenclature of the Human Genome Variation Society (HGVS; 
http://varnomen.hgvs.org)15. Information concerning changes in RNA levels has been added from the original 
papers or predicted from DNA mutations if not experimentally studied. Following the HGVS guidelines, deduced 
changes are indicated between brackets. Protein domains were predicted according to InterPro version 79.016 and 
Pfam version 32.017.

Data collection.  Since no locus-specific database (LSDB) dedicated to the ACO2 gene previously existed 
(http://www.hgvs.org/locus-specific-mutation-databases, accessed on January 12, 2021), this work was done from 
scratch. The causative variants were collected from the literature published to date (January 2021)3–7,18–24 using 
the NCBI PubMed search tool25 with the keyword “ACO2,” and from the classifications of diagnostic laboratories 
in the Netherlands who recently decided to share them publicly (so-called the VKGL initiative)26. The posi-
tions of variants in the reference transcript were determined according to the HGVS nomenclature version 2.015. 
Correct naming at the nucleotide and amino acid levels were verified, and reestablished when necessary, using 
the Mutalyzer 2.0.32 Syntax Checker27. All clinical descriptions of the dataset have been strictly and exhaustively 
translated using exclusively the HPO vocabulary, i.e. each phenotype mentioned having successfully matched an 
HPO term (or one of the synonyms associated with).

Integrity of the dataset.  The work was coordinated by a single ophthalmologist to ensure consistency, with 
the help of our clinical and research team specializing in hereditary optic neuropathies, which performs moni-
toring of literature on the subject for several years. No data was rejected, the corresponding molecular biologist 
or ophthalmologist were contacted when clarification was required. Finally, the consistency and integrity of the 
entire dataset was validated by the curator of the database, who is a referent specialist, before the technical valida-
tion that followed. (Please also refer to the section Author contributions.)

Implementation of the dataset.  The ACO2 dataset belongs to the Global Variome shared Leiden 
Open-source Variation Database (LOVD) currently running under LOVD v.3.0 Build 239, following the guide-
lines for LSDBs28 and hosted under the responsibility of the Global Variome/Human Variome Project8. The 
dataset reviews clinical and molecular data from patients carrying ACO2 variants published in peer-reviewed 
literature, as well as unpublished contributions that are directly submitted.

Data classification.  The criteria of pathogenicity, which depend upon the clinical context and molecular 
findings, are stated under the headings: “ClassClinical” for the classification of the variant based on standardised 
criteria, and “Affects function (as reported)” and “Affects function (by curator)” respectively for the pathogenicity 
reported by the submitter and concluded by the curator (Fig. 1d). As several patients can be registered with differ-
ent reported pathogenicity or new patients with existing variants added to the database, the status of the variants 
is reassessed on the basis of the data submitted and stated in the “SUMMARY record.”

Dataset and analysis.  Starting with version ACO2:200608 of the ACO2 LSDB (last updated on June 8, 
2020), we produced a dataset. To carry out the statistical analysis, the HPO terms have been checked and pre-
pared using the suite of R packages ontologyX29 within R version 4.0.030 to read in the OBO file version hp/
releases/2020-06-0811. Hierarchical clustering is performed using the hclust function from the R-Core package30.

Data Records
The ACO2 dataset is available on the Code Ocean cloud-based computational reproducibility platform as a 
Code Ocean “compute capsule31”: snapshot of the ACO2 dataset as of June 8, 2020, /data/LOVD_full_down-
load_ACO2_2020-06-21_18.03.52.txt (LOVD flat file format); the Human Phenotype Ontology data-version hp/
releases/2020-06-08, /data/hp.obo.2020-06-08.txt (OBO flat file format), which is also available in figshare32. The 
updated dataset is accessible on the Global Variome shared LOVD server (https://www.lovd.nl/ACO2; or through 
the Mitochondrial Dynamics variation portal: https://mitodyn.org). The data can also be retrieved via an appli-
cation programming interface (API), i.e. a web service allowing simple queries and retrieval of basic gene and 
variant information (documentation available on the web page of the database)9; as well as serving as a public 
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beacon in The Global Alliance for Genomics and Health Beacon Project33. General information is available on the 
database home page. The process for submitting data begins by clicking the “Submit” tab.

The ACO2-LOVD dataset contains four main interconnected tables. These tables are visible on a typical 
web page entry as shown in Fig. 1. The “Individual” table contains details of the patient examined, including 
gender, geographic origin, and patient identification, if applicable (Fig. 1a). The “Phenotype” table indicates 
the clinical phenotypic features, described according to the root of the Phenotypic abnormality subontology 
(HPO# HP:0000118; Fig. 1b). The “Screening” table gives details of the methods and techniques used for inves-
tigating the structural variants and the tissue analysed (Fig. 1c). The “Variants” table includes information about 
the sequence variations at the genomic (DNA) and the transcript variant (cDNA) levels, as well as the reported 
and concluded status for each variant (Fig. 1d). To date, the dataset records 123 patient records and 126 unique 
variants (Online-only Table 1).

Since the ACO2 dataset is built on the same central platform (to allow interoperability) and on the same model 
(for ease of handling) as our previous OPA1 gene database, the description of these data records extends our 
related work10, but the data recorded relates to a new gene and is entirely different.

Technical Validation
Molecular relevance.  The dataset contains 126 unique variants, of which 73% (92) are considered patho-
genic sequence variants with almost two thirds in a dominant condition and the last third recessive, 7% (9) of 
unknown significance and 20% (25) benign (Online-only Table 1). The variants considered pathogenic, which 
affect the coding sequence and exon-intron boundaries of the gene (Fig. 2a), are particularly overrepresented in 
the aconitase C-terminal domain of the protein (spanning from end of exon 14 to half of exon 17), highlighting 
the importance of this domain in ACO2 functions (Fig. 2b), as well as the aconitase domain since it spans more 
than half of the protein sequence (from beginning of exon 5 to beginning of exon 13). Only one mutation con-
sidered pathogenic (intron 1 splicing site) and two benign (exon 2) are localized in the N-terminal presequence 
that is cleaved upon import of ACO2 into the mitochondrial matrix, predicted in the first 28 to 35 amino acids34. 
Among the most frequently observed pathogenic effects on ACO2, 66% are missense variants; 14% are associated 
with altered splicing, which produces effects that are difficult to assess experimentally; 11% are frameshift variants 
leading to a premature protein truncation; 8% are nonsense variations; one variant is a deletion of a single amino 
acid (Fig. 2c). Although only a few mutations are recurrent, two have been significantly more frequently reported, 
both located in exon 3 (Fig. 2a) with a recessive mode of inheritance: the c.220C>G variant, which induces a mis-
sense mutation p.(Leu74Val), has been reported 19 times affecting one allele (of which 14 belongs to compound 
heterozygous genotypes); the c.336C>G variant, which induces a missense mutation p.(Ser112Arg), has been 
reported 10 times affecting both alleles (homozygous).

Fig. 1  Sample recording for a given patient in the ACO2 dataset. (a) individual items; (b) phenotype items; (c) 
screening items; and (d) molecular items (some uninformative lines were removed to save space). Abbreviations 
and legends of the fields are given by following the link “Legend” on the web page of each table; SEQ-NG: next 
generation sequencing; M: male. Data as of June 8, 2020.
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The Global Variome shared LOVD server has integrated the data from The Genome Aggregation Database 
(gnomAD), which is the aggregation of the high-quality exome (protein-coding region) DNA sequence data for 
about 150,000 individuals35. It was decided to indicate for each variant its frequency in gnomAD rather than 
adding it as a new record, in order not to swamp the locus-specific databases (LSDBs) with data not associated to 
a phenotype. This information is mainly used to assist the curator in estimating the relevance of the classification 
of variants. In total, only two of the unique variants in our dataset (less than 2%) have assigned a “likely patho-
genic” status with a frequency slightly below 1% in gnomAD. Interestingly, one of these, the previously mentioned 
c.220C>G variant, has a frequency from 0.2 to 0.4% (depending on versions of gnomAD) which does not allow 
its definitive classification as rare or frequent; it is registered in dbSNP (Build 153; dbSNP# rs141772938)36 refer-
ring to ClinVar (record last updated May 9, 2020; ClinVar# VCV000189310.8)37 for an unclear interpretation 
(“Conflicting interpretations of pathogenicity”). This last-mentioned heterozygous variant has been reported 19 
times by at least five independent sources in our dataset, of which 14 are compound heterozygous disease cases. 
In addition, variant c.220C>G has so far not been reported as a third variant in a case with two other pathogenic 
variants. These observations provide strong evidence that has allowed us to classify this missense variant as “likely 
pathogenic (recessive)”, strengthening the importance of the LSDB approach and data sharing to support variant 
classification and DNA diagnostics.

Clinical relevance.  The dataset includes 123 patient records (71 males, 49 females, and three records of 
unspecified gender). Among these, 99 patients had isolated optic neuropathy4–6,18, 8 had infantile cerebellar-retinal 
degeneration (ICRD; MIM# 614559)3, 8 had various forms of encephalopathy (including epileptic encephalopathy 
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Fig. 2  Distribution of the ACO2 variants classified as pathogenic or likely pathogenic. (a) Distribution of 
the 89 unique variants. Exons involved in the variants are shown as blue bars; the variants in the intronic 
neighborhood of the exons are shown as red bars; the location of the two variants significantly more frequently 
reported being indicated by the “+” symbol. (b) Comparison for each region of its size on the sequence (Amino 
acids), of the distribution of the variants reports in the dataset (i.e. by counting each of the reported case of 
the same variant; Reported variants), and of the distribution of the unique variants (i.e. by counting only once 
several reported cases of the same variant). (c) Distribution of the different effects on the protein of the ACO2 
variants considered pathogenic. Data as of June 8, 2020.
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Visual impairment
Abnormality of vision
Reduced visual acuity
Abnormal best corrected visual acuity test
Abnormal eye physiology
Visual loss
Scotoma
Visual field defect
Central scotoma
Dyschromatopsia
Color vision defect
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Nonprogressive visual loss
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Abnormality of the optic disc
Optic neuropathy
Abnormality of the optic nerve
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Aplasia/Hypoplasia of the optic nerve
Increased cup−to−disc ratio
Abnormality of optic chiasm morphology
Astigmatism
Pigmentary retinopathy
Retrobulbar optic neuritis
Cystoid macular degeneration
Pseudopapilledema
Abnormal retinal morphology on macular OCT
Optic disc hypoplasia
Peripapillary atrophy
Macular dystrophy
Abnormal macular morphology
Retinal dystrophy
Abnormal retinal morphology
Diffuse optic disc pallor
Temporal optic disc pallor
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Neurodevelopmental abnormality
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Ataxia
Abnormal central motor function
Abnormal muscle tone
Abnormal muscle physiology
Muscular hypotonia
Aplasia/Hypoplasia involving the central nervous system
Abnormal cerebral morphology
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Morphological central nervous system abnormality
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Profound global developmental delay
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Seizure
Pituitary gland cyst
Tonsillitis
Hypoplasia of the optic tract
Abdominal obesity
Abnormal circulating cholesterol concentration
Exercise intolerance
Diabetes insipidus
Delayed speech and language development
Bifid uvula
Limb hypertonia
Short stature
Submucous cleft soft palate
Abnormality of the face
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Epileptic encephalopathy
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Developmental regression
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Limited pronation/supination of forearm
Equinovarus deformity
Spastic paraplegia
Microcephaly
Babinski sign
Lower limb muscle weakness
Neurodegeneration
Generalized hypotonia
Hyporeflexia of lower limbs
Hyporeflexia of upper limbs
Abnormality of the lower limb
Abnormality of the upper limb
Recurrent otitis media
Inguinal hernia
Intellectual disability, severe
Abnormality of the digestive system
Increased inflammatory response
Migraine
Anorexia
Bilateral sensorineural hearing impairment
Spastic paraparesis
Bradycardia
Cyanosis
Cerebral atrophy
Vertigo
Metabolic acidosis
Coma
Central apnea
Hyperglycemia
Vegetative state
Reduced consciousness/confusion
Scoliosis
Abnormality of the curvature of the vertebral column
Hyperreflexia
Abnormal axial skeleton morphology
Abnormality of the musculature of the limbs
Abnormality of the head
Abnormality of limbs
Dysarthria
Paraplegia/paraparesis
Lower limb spasticity
Hypertonia
Asthma
Functional respiratory abnormality
Abnormality of immune system physiology
Abnormality of the immune system
Abnormal cardiovascular system physiology
Abnormality of the cardiovascular system
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Increased blood pressure
Peripheral neuropathy
Poor eye contact
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Fig. 3  Visualisation of the Phenotypic abnormality subontology (HPO# HP:0000118) annotation in the ACO2 
dataset. Describing the 113 symptomatic patients’ reports with an extended set of full clinical description. 
Rows are clustered using hclust by separating the terms descending from Abnormal eye physiology (HPO# 
HP:0012373) and Abnormal eye morphology (HPO# HP:0012372); human readable shortened ontological term 
names were used (where possible). In columns, the identifiers of the patients (8 digits) are prefixed by code of 
the disease reported (3 letters): ICD: degeneration, cerebellar-retinal, infantile; RDA; dystrophy, retinal, with 
or without extraocular anomalies; ENM: encephalomyopathy, mitochondrial; ENC: encephalopathy; ENE: 
encephalopathy, epileptic; ENS: encephalopathy, neonatal, severe; NDG: neurodegeneration; OPN: neuropathy, 
optic; SPG: paraplegia, spastic; SZR: seizures. A red box indicates the presence of the phenotype. Data as of June 
8, 2020.
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and neonatal severe encephalopathy)4,19,20, 2 had spastic paraplegia7, together with single cases of autosomal reces-
sive spinocerebellar ataxia, neurodegeneration21, retinal dystrophy (RDEOA; MIM# 617175)22, seizures23 and 
unclassified diseases24. Of these patients’ reports, 113 have an extended set of full clinical description (the remain-
ing ten are either asymptomatic or not described), 90 relating to our Molecular Genetics Laboratory, along with 
data from 23 retrieved from publications. For the description of all of these phenotypes, use is made exclusively 
of a standard vocabulary for referencing phenotypic abnormalities, the so-called Human Phenotype Ontology 
(HPO)11, confirming the maturity of this ontology to describe eye diseases38. Genomic medicine requires the pre-
cise and standardized description of phenotypes39–41; these HPO annotations are key elements that make possible 
the development of algorithms for molecular diagnostics and genetic research.

A total of 154 unique HPO terms were used, each assigned from 1 to 92 patients for the most frequent term, 
optic neuropathy (HPO# HP:0001138); 208 unique HPO terms have been analysed by including the parent terms 
inferred by the ontological relationships. Figure 3 shows an exhaustive overview of the ontological annotation 
of the phenotypic abnormalities as a grid (mode of inheritance and natural history of the disease not shown), 
highlighting that patients reported with an isolated optic neuropathy, especially with a dominant mode of inher-
itance, have a similar limited phenotypic profile, different from the other patients whose phenotypic variability is 
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b Patients reported with a 
syndromic form (21)

a Patients reported with an 
isolated or predominant 
optic neuropathy (92)

Fig. 4  Visualisation of ontological annotation in the ACO2 dataset by disease. Subgraphs of the mode 
of inheritance (HPO# HP:0000005), the phenotypic abnormalities (HPO# HP:0000118) and the natural 
history of the disease (Clinical Course, HPO# HP:0031797), descending from the root of all terms (All; 
HPO# HP:0000001) in the Human Phenotype Ontology: (a) for the 92 patients reported with an isolated or 
predominant optic neuropathy; (b) for the 21 remaining patients reported with a syndromic form. Terms 
which are annotated to exactly the same objects as well as all of their children have been removed, showing only 
informative terms. Arrows indicate relations between terms in the ontology. Colors correspond to the frequency 
of the phenotypes, from the least frequent in yellow to the most frequent in blue, the green color corresponding 
to a term present in half of the patients. Human readable shortened ontological term names were used (where 
possible). Data as of June 8, 2020.
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particularly wide. We carried out the separate study of these two populations by showing the frequency of phe-
notypes and removing terms simply linking two terms together to focus the reading on informative phenotypes 
(Fig. 4): patients reported with an isolated or predominant optic neuropathy almost exclusively have a structural 
anomaly of the globe of the eye (Abnormal eye morphology; HPO# HP:0012372), in a predominantly dominant 
but also recessive mode of transmission, with an onset throughout life (Fig. 4a); the other patients reported with 
a syndromic form have rather a functional anomaly of the eye (Abnormal eye physiology; HPO# HP:0012373), in 
an exclusively recessive mode of transmission, with a beginning in the first years of life (Fig. 4b).

Overall, the extensive annotation using the phenotype ontology shows that the “isolated” versus “syndromic” 
separation is actually very relative: it is more likely to be a clinical spectrum with a continuum of symptoms. 
Figures 3 and 4 show that several cases reported as isolated are, in fact, affected by other symptoms; for the 
non-recurring symptoms, it is difficult to decide whether they are due to ACO2 variants or whether they are just 
associated comorbidities. These figures also reveal that certain syndromic patients do not have optic neuropathy, 
which is therefore not compulsory in the ACO2 phenotype as is the case for the OPA1 gene, with only one excep-
tion published42.

Usage Notes
The databases recording pathogenic variations, i.e. the so-called LSDBs, have proven to be the most complete 
because they rely on a curator who is a referent specialist for the gene or disease considered43. However, they 
are often based on isolated initiatives which use various interfaces, to the detriment of intuitiveness, and which 
are hosted on local servers, preventing their interoperability, unlike other types of databases which are central, 
i.e. encompassing all the genes of an organism, as in sequence databases44,45 or in databases oriented towards 
non-pathogenic variations36,46. With the aim to overcome this, the Human Variome Project currently favors the 
centralisation of LSDBs8,47.

Our current objective with the work reported here is to achieve a cluster of LOVD databases integrating the 
main genes responsible for optic neuropathies, whether isolated or syndromic, and with recessive or dominant 
transmission. Interoperability between these databases will be useful for molecular biologists analysing such pan-
els of genes with, in particular, the possibility of detecting digenism. The ACO2-dataset, which is, to our knowl-
edge, the only clinicobiological dataset dedicated to ACO2, interfaces molecular biology with medicine thanks to 
a common vocabulary, making it possible to link the phenotypic profiles of ACO2 patients with those involving 
mutations in other genes or clinical presentations.

It will also allow a better understanding of the complex and overlapping relationships between isolated optic 
neuropathies and neurological syndromes involving optic neuropathy. Thus, this open-access dataset should 
prove useful for molecular biologists, researchers and clinicians.

Code availability
The source codes written in R programming language are available on the Code Ocean cloud-based 
computational reproducibility platform as a Code Ocean “compute capsule,” together with the dataset analysed 
in this article31: snapshot of the ACO2 dataset as of June 8, 2020, /data/LOVD_full_download_ACO2_2020-06-
21_18.03.52.txt (LOVD flat file format); the Human Phenotype Ontology data-version hp/releases/2020-06-08, /
data/hp.obo.2020-06-08.txt (OBO flat file format). Thus, readers can reproduce and verify the results of this article 
without having to download or install anything. All the content is available under MIT License.
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