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Abstract

Background: Failing of intrinsic chondrocyte repair after mechanical stress is known as one of the most important
initiators of osteoarthritis. Nonetheless, insight into these early mechano-pathophysiological processes in age-
related human articular cartilage is still lacking. Such insights are needed to advance clinical development. To
highlight important molecular processes of osteoarthritis mechano-pathology, the transcriptome-wide changes
following injurious mechanical stress on human aged osteochondral explants were characterized.

Methods: Following mechanical stress at a strain of 65% (65%MS) on human osteochondral explants (n65%MS = 14
versus ncontrol = 14), RNA sequencing was performed. Differential expression analysis between control and 65%MS
was performed to determine mechanical stress-specific changes. Enrichment for pathways and protein-protein
interactions was analyzed with Enrichr and STRING.

Results: We identified 156 genes significantly differentially expressed between control and 65%MS human
osteochondral explants. Of note, IGFBP5 (FC = 6.01; FDR = 7.81 × 10−3) and MMP13 (FC = 5.19; FDR = 4.84 × 10−2)
were the highest upregulated genes, while IGFBP6 (FC = 0.19; FDR = 3.07 × 10−4) was the most downregulated
gene. Protein-protein interactions were significantly higher than expected by chance (P = 1.44 × 10−15 with
connections between 116 out of 156 genes). Pathway analysis showed, among others, enrichment for cellular
senescence, insulin-like growth factor (IGF) I and II binding, and focal adhesion.

Conclusions: Our results faithfully represent transcriptomic wide consequences of mechanical stress in human
aged articular cartilage with MMP13, IGF binding proteins, and cellular senescence as the most notable results.
Acquired knowledge on the as such identified initial, osteoarthritis-related, detrimental responses of chondrocytes
may eventually contribute to the development of effective disease-modifying osteoarthritis treatments.
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Introduction
Osteoarthritis (OA) is an age-related joint disease, affect-
ing diarthrodial joints [1, 2]. Despite the fact that OA is
the most prevalent and disabling disease among elderly,
resulting in high social and economic burden, no effect-
ive treatment exists except for lifestyle changes, pain
medication, and eventually a joint replacement surgery
at end-stage disease [3, 4].
To characterize deregulated signaling pathways in OA

cartilage, comprehensive differential expression analyses
have been performed comparing preserved versus end-
stage lesioned OA cartilage [5]. These studies revealed
that OA pathology is marked by recuperation of growth
plate signaling, wound healing, and skeletal system de-
velopment, while also highlighting inherent differences
in OA pathophysiology between patient subtypes based
on gene expression changes [5–7]. Nonetheless, the pre-
served versus lesioned study design by definition cap-
tures end-stage pathophysiological OA disease processes
and gives no information on early initial processes trig-
gering cartilage to become diseased. In contrast, disease-
modifying OA drugs should preferably target early OA
disease triggers when irreversible damage of cartilage
has not yet taken place. Therefore, more knowledge on
the initial response of chondrocytes to OA-relevant
stresses, such as mechanical trauma, should be investi-
gated in an appropriate model.
In this regard, failing of intrinsic chondrocyte repair

after mechanical stress is known to impact the integrity
of articular cartilage via cell apoptosis [8], increased
catabolic gene expression [9], and reduced matrix pro-
duction [10] and is, as such, an important trigger to OA
onset. Nonetheless, little knowledge exists on the inher-
ent dysregulation of signaling pathways initiating repair
responses in human aged articular cartilage upon mech-
anical stress. To gain some insight, several in vivo animal
studies have investigated the effect of joint overuse or
trauma on gene expression in cartilage [11–16]. Some
examples of non-invasive in vivo mechanical loading
studies are Bomer et al. [11], reporting on involvement
of metabolic processes and skeletal system development
pathways upon physiological forced running in 6-month-
old mice; Chang et al. [14], reporting on involvement of
cell proliferation and chondroitin sulfate proteoglycan
metabolic process upon injurious tibial compression in
16-week-old mice; and Sebastian et al. [13], reporting on
single-cell RNA-seq upon tibial compression in 10-week-
old mice. Thus far, one study has investigated genome-
wide expression consequences of an impact injury in por-
cine explants and identified involvement of genes associ-
ated with matrix molecules, protein biosynthesis, skeletal
development, and cell proliferation [17]. Nevertheless,
most studies were performed using relatively young ani-
mal tissues and likely do not cover the biological response

to a trauma in adult (human) tissue [18]. More recently,
global gene expression profiling in 14-month-old mice
subjected to non-invasive injurious tibial compression
identified genes involved in inflammation and matrix
regeneration to be involved in the response of aged
tissue [14].
A more appropriate model to identify which molecular

processes are initiated in response to mechanical stress
in humans would comprise aged human ex vivo osteo-
chondral explants. Injurious compression reaching
strains above 50% induced catabolic processes in cartil-
age and eventually led to cell death [19]. In aged human
osteochondral explants, injurious cyclic mechanical
stress at a strain of 65% (65%MS), mimicking trauma,
was previously shown to induce OA-like damage [20]. In
the current study, we therefore exploited our previously
established ex vivo osteochondral explant model by per-
forming RNA sequencing on explants subjected to in-
jurious mechanical stress in comparison to controls. The
hypothesis-free, transcriptome-wide approach presented
here contributes to further understanding the debilitat-
ing response of aged chondrocytes to mechanical injury
and how this affects their propensity to enter an OA dis-
ease state.

Material and methods
Sample description
To generate osteochondral explants, biopsies (diameter
of 8 mm) were punched from the macroscopically pre-
served load-bearing area of femoral condyles of human
knee joints obtained within the Research in Articular
Osteoarthritis Cartilage (RAAK) biobank containing
patients that undergo a joint replacement surgery as a
consequence of OA [21]. For this study, a total of 60
osteochondral explants were investigated originating
from nineteen independent donors in which multiple ex-
plants were taken from each donor. This difference be-
tween the amount of samples taken per donor was
dependent on several factors. Among them were the size
of knee condyle, size of the preserved area, surgical dam-
age area, and other simultaneous experiments this donor
was used for. RNA sequencing was performed on sam-
ples from nine donors, while the remaining ten donors
were used for replication purposes. All donor character-
istics are given in Table S1 and were equal between
mechanical stressed and control explant donors.

Application of mechanical stress
Explants of nineteen donors were equilibrated in serum-
free chondrogenic differentiation medium (DMEM, sup-
plemented with ascorbic acid (50 μg/ml; Sigma-Aldrich;
Zwijndrecht, The Netherlands), L-proline (40 μg/ml;
Sigma-Aldrich), sodium pyruvate (100 μg/ml; Sigma-
Aldrich), dexamethasone (0.1 μM; Sigma-Aldrich), ITS+,
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and antibiotics (100 U/ml penicillin; 100 μg/ml strepto-
mycin)) in a 5% (v/v) CO2 incubator at 37 °C. As
depicted in Fig. 1A, after a 6-day period, dynamic un-
confined compression was applied to explants (diameter
of 8 mm) using the Mach-1 mechanical testing system
on 4 subsequent days (Biomomentum Inc., Laval, QC,
Canada). In short, osteochondral explants were placed
under an indenter (diameter of 10 mm) attached to a
250-N MACH-1 load cell (Fig. 1A) and unconfined
cyclic compression was applied at a strain of 65% of
cartilage height at a frequency of 1 Hz (1 compression
cycle per second), mimicking walking speed, during 10
min, long enough to be injurious and short enough for
chondrocytes to survive, at strains suggested to be detri-
mental [22]. Dynamic (cyclic) compression means that a
force was applied that varied over time to simulate a
more cyclic compression such as walking. To investigate
lasting effects of mechanical stress, 4 days after mechan-
ical stress, the cartilage and bone were separated, snap-
frozen in liquid nitrogen, and stored at −80 °C.

Determining cartilage integrity
Histology
A sagittal section of the osteochondral explant was fixed
in 4% formaldehyde for 1 week and decalcified using
EDTA (12.5%, pH = 7.4) during 2 weeks, dehydrated
with an automated tissue processing apparatus, and em-
bedded in paraffin. Tissue sections were cut at a thick-
ness of 5 μm, deparaffinized, rehydrated, subsequently
stained for 1 min in a toluidine blue solution with a pH
of 2.5 (Sigma-Aldrich), and mounted with Pertex
(Sigma-Aldrich) to investigate cartilage integrity as
quantified by applying Mankin Score [23].

Sulfated glycosaminoglycan (sGAG) measurement
Sulfated glycosaminoglycan (sGAG) concentrations in
conditioned media collected from osteochondral ex-
plants were measured with the photometric 1.9 dimethy-
lene blue (DMMB; Sigma-Aldrich) dye method [24].
Shark chondroitin sulfate (Sigma-Aldrich) was used as
the reference standard. The concentration of sGAG was

Fig. 1 Study setup of human osteochondral explants receiving 65% MS. A Osteochondral explants were punched from preserved areas of knee joints
and the medium is refreshed on indicated days (T). B Damage in our mechanical stress model was confirmed by degradation of sGAG in cartilage by
toluidine blue staining (histology of two independent donors) and measuring C sGAG release in conditioned media on day 13 (ncontrol = 31 versus
n65%MS = 28). The average ± 95% CI are presented with each dot representing a sample. To adjust for donor variation, P-values were estimated by
performing logistic generalized estimation equations, with sGAG concentration as dependent variable and treatment as covariate: sGAG concentration
∼ Treatment + (1|Donor). **P ≤ 0.01. Legend: 65%MS 65% mechanical stress, DMMB dimethylmethylene blue, sGAG sulfated glycosaminoglycans
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determined in conditioned media collected on day 13, by
measuring absorbance at 525 nm and 595 nm in a mi-
croplate reader (Synergy HT; BioTek, Winooski, USA).

RNA sequencing
RNA from cartilage was extracted by pulverizing the tis-
sue and subsequently homogenizing the powder in TRI-
zol reagent (Invitrogen, San Diego, CA) using a Mixer
mill 200 (Retsch, Germany). RNA was extracted using
chloroform, followed by precipitation using ethanol, and
purified with the RNeasy Mini Kit (Qiagen, Chatsworth,
CA). Genomic DNA was removed by DNase digestion.
Paired-end 2 × 150 base pair RNA sequencing (Illumina
TruSeq mRNA Library Prep Kit, Illumina HiSeq X ten)
was performed. Strand-specific RNA-sequencing librar-
ies were generated which yielded on average 14 million
reads per sample. Data from the Illumina platform was
analyzed with an in-house pipeline as previously de-
scribed [5]. The adapters were clipped using Cutadapt
v1.1. RNA-seq reads were then aligned using GSNAP
against GRCh38 [25]. Read abundances per sample were
estimated using HTSeq count v0.11.1 [26] with Ensembl
gene annotation version 94. Only uniquely mapping
reads were used for estimating expression. The quality
of the raw reads and initial processing for RNA sequen-
cing was checked using MulitQC v1.7 [27]. Samples con-
taining > 50% genes with zero values and average read
count < 10 were removed from further analysis. To iden-
tify outliers, principal component analysis (PCA) was ap-
plied. For further analysis, samples not in the main
cluster were removed, resulting in n = 28 samples from
9 unique donors. In total, 58,735 unique genes were de-
tected by RNA sequencing of which 6509 were protein-
coding genes that were included in further analyses.

Differential expression analysis, protein-protein
interactions, and pathway enrichment
Differential expression analysis was performed in
65%MS cartilage compared to control cartilage obtained
from osteochondral explants using DESeq2 R package
version 1.24 [28] on 6509 protein-coding genes. A gen-
eral linear model assuming a negative binominal distri-
bution was applied and followed by a Wald test between
control and 65%MS samples in which donor number
was added as a random effect to correct for inter-
individual differences. In all analyses, control samples
were set as reference. To correct for multiple testing, the
Benjamini-Hochberg method was used, as indicated by
the false discovery rate (FDR) in which a significant cut-
off value of 0.05 was used. Furthermore, the comprehen-
sive gene set enrichment analysis web tool Enrichr [29]
was used to identify enrichment for gene ontologies
(Cellular Component, Biological Process, Molecular
Function) and pathways (KEGG and Reactome). For

protein-protein interactions, analysis was performed
using the online tool STRING version 11.0 [30].

Real-time quantitative PCR (RT-qPCR) validation
250 ng of RNA was processed into cDNA using the First
Strand cDNA Synthesis Kit (Roche Applied Science, Al-
mere, The Netherlands). RT-qPCR was performed on 10
paired 65%MS samples with matched controls included
in the RNA sequencing (Technical validation) and 10
novel paired 65%MS samples with matched controls
(Biological validation) to determine the expression of six
downregulated (IGFBP6, CNTFR, WISP2, FRZB,
COL9A3, and GADD45A) and four upregulated genes
(IGFBP5, PTGES, TNC, and IGFBP4). Primer sequences
are listed in Table S2. The relative gene expression was
normalized for two endogenous reference genes, SDHA
and YWHAZ, to determine −ΔCT values. To determine
effect sizes, fold changes (FC) were calculated according
to the 2−ΔΔCT method, in which expression of 65%MS
was extracted from controls (−ΔΔCT). These two en-
dogenous reference genes were chosen based on litera-
ture stating the stability of these genes in response to
mechanical stress, which was confirmed by our RNA se-
quencing [31, 32].

Statistical analysis
Analysis on RNA-sequencing data was performed in R
as described above. Statistical analysis for RT-qPCR and
sGAG concentrations were performed using IBM SPSS
statistics 25. The P-values were determined by applying
a linear generalized estimating equation (GEE) to effect-
ively adjust for dependencies among donors of the ex-
plants by adding a random effect for the sample donor
as we did not have perfect pairs for each analysis [33].
The following GEE was fitted in which gene expression
was the dependent variable and treatment the covariate:
Gene expression ~ Treatment + (1|donor). To determine
differences in sGAG concentration on day 13, another
linear GEE model was fitted with sGAG concentration
as dependent variable and treatment as covariate: sGAG
concentration ~ Treatment + (1|donor).

Results
Prior to RNA sequencing, cartilage tissue integrity of hu-
man osteochondral explants was characterized by per-
forming histology and measuring sGAG concentrations
in conditioned media. Mechanical strains at 65% cause
detrimental changes to cartilage integrity as previously
shown [20] (Fig. 1B), and these effects were further ex-
plored in a larger samples size (ncontrol = 31; n65%MS =
28), where an increased sGAG release was measured in
65%MS cartilage when compared to controls (Fig. 1C).
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Differential expression of genes responsive to injurious
mechanical stress
To characterize the response of cartilage to mechanical
stress at a strain of 65% indentation in aged articular
cartilage, we performed RNA sequencing on control (n
= 14 samples) and 65% mechanically stressed (n = 14
samples) articular cartilage samples obtained from
macroscopically preserved osteochondral explants of hu-
man patients that underwent a knee replacement surgery
due to OA. Baseline characteristics of donors of the
RNA-sequencing dataset are depicted in Table S1a. We
found 156 genes to be significantly differentially
expressed (DE) (FDR < 0.05) with absolute fold changes
(FC) ranging between 1.1 and 6.0 (Fig. 2, Table S3).
Among these 156 DE genes, 46 (29%) were upregulated
and 110 (71%) were downregulated. The 20 genes with
the highest absolute FC, and their respective direction of
effect previously identified in OA cartilage [5], are
shown in Table 1. Notable among the upregulated genes
were IGFBP5 (FC = 6.01; FDR = 7.81 × 10−3), MMP13
(FC = 5.19; FDR = 4.84 × 10−2), TNC (FC = 2.80; FDR =
8.51 × 10−3), and PTGES (FC = 2.92; FDR = 8.29 ×
10−3). Notable genes among the downregulated genes

were IGFBP6 (FC = 0.19; FDR = 3.07 × 10−4), CNTFR
(FC = 0.27; FDR = 1.44 × 10−2), WISP2 (FC = 0.31; FDR
= 1.08 × 10−3), and FRZB (FC = 0.32; FDR = 8.51 ×
10−3).

Validation of differentially expressed genes with
mechanical stress
For validation and replication of the differentially
expressed genes identified, a set of samples for technical
(n = ten pairs) and biological (n = ten pairs) replication
was selected for RT-qPCR. Baseline characteristics of
donors in the replication dataset are depicted in Table
S1b. Replication was performed for ten genes (Fig. 3), of
which six were upregulated (IGFBP6, CNTFR, WISP2,
FRZB, COL9A3, and GADD45A) and four were down-
regulated (IGFBP5, PTGES, TNC, and IGFBP4). Tech-
nical replication showed a significant difference for all
ten genes between controls and 65%MS cartilage, with
similar direction and size of effects. Biological replication
also showed the same direction of effects and similar ef-
fect sizes as identified in the RNA-sequencing data. For
GADD45A, however, the difference was not significant
(P-value = 0.12). Taken together, technical and biological

Fig. 2 Volcano plot of differentially expressed genes. Dots represent genes expressed in mechanically stressed cartilage in comparison to control
osteochondral explant cartilage. Red dots represent significantly differentially expressed (DE) genes that have an absolute fold change (FC) of ≥2,
blue dots represent significantly DE genes, green dots represent genes that have an absolute FC of ≥2 but are not significantly DE, and gray dots
represent genes not DE expressed between controls and 65% mechanically stressed cartilage. The FC presented here is the gene expression of
65% mechanically stressed relative to control cartilage
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Table 1 Top 20 genes with the highest absolute FC in 65% mechanically stressed cartilage compared to controls

Ensemble ID Gene name FC FDRa Differential expression
in OA cartilage [5]b

ENSG00000115461 IGFBP5 6.01 7.81 × 10−3

ENSG00000137745 MMP13 5.19 4.84 × 10−2

ENSG00000204103 MAFB 2.97 4.66 × 10−3 ↓

ENSG00000148344 PTGES 2.92 8.29 × 10−3 ↑

ENSG00000041982 TNC 2.80 8.51 × 10−3 ↑

ENSG00000141753 IGFBP4 2.59 3.50 × 10−2 ↑

ENSG00000160111 CPAMD8 0.39 4.98 × 10−2 ↓

ENSG00000166165 CKB 0.38 1.04 × 10−2 ↑

ENSG00000106258 CYP3A5 0.38 3.62 × 10−2

ENSG00000107736 CDH23 0.37 6.88 × 10−3

ENSG00000187720 THSD4 0.35 1.44 × 10−2

ENSG00000144908 ALDH1L1 0.33 2.22 × 10−3 ↓

ENSG00000092758 COL9A3 0.32 4.89 × 10−2

ENSG00000162998 FRZB 0.32 8.51 × 10−3 ↓

ENSG00000170891 CYTL1 0.32 4.11 × 10−2

ENSG00000064205 WISP2 0.31 1.08 × 10−3 ↓

ENSG00000082196 C1QTNF3 0.30 3.64 × 10−2 ↑

ENSG00000122756 CNTFR 0.27 1.44 × 10−2 ↓

ENSG00000165966 PDZRN4 0.26 1.44 × 10−2 ↓

ENSG00000167779 IGFBP6 0.19 3.07 × 10−4

aTo correct for multiple testing, the Benjamini-Hochberg method was applied to P-values and reported as the false discovery rate (FDR). bGene expression
changes measured in RNA-sequencing data between preserved and lesioned OA articular cartilage, with preserved as reference [5]. Legend: FC fold change, FDR
false discovery rate

Fig. 3 Technical and biological validation of the highest up- and downregulated genes was performed using RT-qPCR. Expression of six
downregulated (IGFBP6, CNTFR, WISP2, FRZB, and GADD45A) and four upregulated (IGFBP5, PTGES, TNC, and IGFBP4) genes was measured in n = 10
paired technical and n = 10 paired biological osteochondral explants. Figures show connected paired samples and −ΔCT of each independent
sample is depicted by black dots (control) or squares (65%MS) in the graphs. Statistical differences between gene expression in control and 65%
mechanically stressed were determined with a linear generalized estimation equation (GEE) with mRNA level as the dependent variable. *P ≤
0.05; ***P ≤ 0.001. Legend: 65%MS 65% mechanical stress, RT-qPCR reverse transcriptase-quantitative PCR
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replication confirmed the robustness of our RNA-
sequencing results.

In silico exploration of differentially expressed genes
To explore whether significant DE genes (N = 156
genes) were involved in particular pathways, they were
further analyzed using Enrichr. Gene enrichment was
observed, among others, for insulin-like growth factor I
and II binding (GO:0031995; GO:0031994, Padj = 1.83 ×
10−2; Padj = 2.89 × 10−2, involving IGFBP4, IGFBP5, and
IGFBP6), cellular senescence (hsa04218, Padj = 1.15 ×
10−2, involving 8 genes, e.g., GADD45A, MYC, SER-
PINE1, and FOXO1), and focal adhesion (GO:0005925;
hsa04510, Padj = 2.54 × 10−2; Padj = 1.33 × 10−2, involv-
ing 11 and 6 genes, respectively, e.g., TNC, CAV1, and
TLN2) (Table 2; Table S4a).
To visualize interacting proteins, the online tool

STRING was used. Among the 156 genes, 116 of the
encoded proteins showed significant protein-protein in-
teractions (PPI) (P = 1.44 × 10−15; Fig. 4). Among these
proteins, we found several that have many connections
with other proteins in the DE gene network, such as
GAPDH with 35 connections, IGFBP5 with 12 connec-
tions, and in the cellular senescence involved genes
MYC and FOXO1 with respectively 26 and 13 connec-
tions to other DE genes. Moreover, two clusters of genes
are observed that correspond with two of the pathways
identified. One cluster corresponds with genes found
mainly in the cellular senescence pathway (Fig. 4, dotted
circle), while the other cluster consists of proteins that
are involved in IGF-1 signaling (Fig. 4, black circle).

Comparison between mechanical stress genes and OA-
responsive genes
To investigate to what extend the genes DE with mech-
anical stress (DEMS) coincide with OA pathophysiology,
we next compared the DEMS genes (Table S3) to previ-
ously identified genes DE between preserved and le-
sioned OA cartilage (DEOA) [5]. Of the 156 DEMS genes,
64 were previously identified with OA pathophysiology
and their majority (48 genes, 75%) had the same direc-
tion of effect (Table 1 and Table S5a, Figure S1). Notable
genes coinciding with OA pathophysiology and showing

the same direction of effect are the highly downregulated
FRZB, WISP2, and CNTFR and the upregulated PTGES
and CRLF1.
Next, we selected for exclusive mechanical stress-

responsive genes, i.e., DEMS genes, not overlapping with
previously identified DEOA genes [5]. This resulted in 92
genes that were differentially expressed exclusively in
response to mechanical stress (DEExclusiveMS; Table S6;
Figure S1). Notable DEExclusiveMS genes are the downreg-
ulated IGFBP6, ITGA10, and COL9A3 and the upregu-
lated IGFBP5, MMP13, and GAPDH. Subsequent
pathway analyses showed gene enrichment among genes
involved in focal adhesion (GO:0005925, Padj = 0.02, 9
genes, e.g., CD9, RPL10A, and ENAH) and kinase inhibi-
tor activity (GO:0019210, Padj = 0.01, 5 genes, e.g.,
CDKN1C, SOCS3, and SOCS5) (Table S4b). Upon ex-
ploring protein-protein interactions between the 92
DEExclusiveMS genes using STRING, a highly significant
enrichment for PPI was identified (P = 1.07 × 10−4; Fig-
ure S2), indicating that these genes act together or re-
spond in concert to detrimental mechanical stress.

OA risk genes responding to mechanical stress
Finally, to investigate which OA risk genes are repre-
sented among the mechanically stress-responsive genes
in cartilage, we checked N = 90 genes previously recog-
nized as strong OA risk genes [34] identified in recent
genome-wide association studies (GWAS) [35, 36]. As
shown in Table S7, two of our identified DEMS genes
were also shown to be an OA risk gene in previous stud-
ies. These genes were TNC, encoding for tenascin C,
which was highly increased (FC = 2.80; FDR = 8.5 ×
10−3) upon 65%MS and SCUBE1, encoding for signal
peptide, CUB domain, and EGF-like domain-containing
1, which was decreased (FC = 0.53; FDR = 0.04) upon
65%MS.

Discussion
To our knowledge, we are the first to report genome-
wide differentially expressed mRNAs in articular cartil-
age following repeated exposure to 65% mechanical
stress using a human ex vivo osteochondral explant
model. Since injurious loading is considered a major

Table 2 Gene ontology and pathway enrichment analysis of differentially expressed genes in mechanically stressed cartilage

Term Entry Overlap Adj P-valuea Odds ratio Genes

Cellular senescence hsa04218 8/160 1.15 × 10−2 6.41 GADD45A, MYC, SERPINE1, AKT3, EIF4EBP1, SLC25A5, ETS1, FOXO1

Focal adhesion hsa04510 8/199 1.33 × 10−2 5.15 SHC4, CAV1, ITGA10, AKT3, LAMA3, TNC, COL9A3, TLN2

Insulin-like growth
factor II binding

GO:0031995 3/7 1.83 × 10−2 54.95 IGFBP5, IGFBP4, IGFBP6

Focal adhesion GO:0005925 11/356 2.54 × 10−2 3.96 ENAH, EHD3, GSN, CAV1, TNC, CD9, TLN2, RPL10A, DCAF6, RHOB, ENG

Insulin-like growth
factor I binding

GO:0031994 3/13 2.89 × 10−2 29.59 IGFBP5, IGFBP4, IGFBP6

aEnrichr uses a modified Fisher’s exact test to compute enrichment and this is reported as the adjusted P-value [29]. Legend: Adj P-value, adjusted P-value
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trigger in the initiation of OA onset, the results pre-
sented in our manuscript contribute important insight
into how injurious stress affects the propensity of aged
human articular chondrocytes to lose their steady state
towards a debilitating OA disease state. Notable genes
identified were different members of the insulin-like
growth factor I and II binding family (IGFBP6, IGFBP5,
and IGFBP4) and the catabolic gene MMP13. Gene en-
richment analyses showed that cellular senescence
(GADD45A, MYC, SERPINE1, and FOXO1) and focal
adhesion (ITGA10, TLN2, and CAV1) processes are sig-
nificantly changing in articular cartilage with injurious
loading. Together, identified genes and pathways facili-
tate clinical development by exploring ways to counter-
act these initial unbeneficial responses to injurious
loading by supplementing or inhibiting of key genes.
Moreover, we advocate that here identified specific re-
sponsive genes to injurious loading can function as sen-
sitive markers facilitating the development of
scientifically founded strategies with respect to prevent-
ive or curative exercise OA therapy among elderly.
Among the highest FDR significantly upregulated

genes with 65% mechanical stress, we identified MMP13,
encoding matrix metallopeptidase 13 (FC = 5.19; FDR =
4.84 × 10−2) [20]. MMP13 is involved in the detrimental

breakdown of extracellular matrix in articular cartilage
by cleaving, among others, collagen type II. Despite the
well-known role of MMP13 in collagen type II break-
down, it should be noted that the MMP13 gene is not
found to be responsive with end-stage OA pathophysi-
ology, i.e., not consistent and not among the genes high-
est differentially expressed between preserved and
lesioned OA cartilage (Table 1) [5, 21, 37]. We therefore
advocate that MMP13 expression could specifically mark
initial responses to cartilage damage and not that of a
chronic degenerative OA disease state. Henceforth, abro-
gating the MMP13 signaling shortly after an injurious
cartilage event could prevent the detrimental down-
stream enzymatic breakdown of extracellular matrix pro-
teins. Moreover, and as indicated above, MMP13 may be
a suitable candidate sensitively marking injurious loading
of aged human articular cartilage independent of other
physiological factors such as OA disease state.
Four out of seven members of the insulin growth fac-

tor binding proteins (IGFBP4, IGFBP5, IGFBP6, and
IGFBP7; Table S8) were found to be FDR DE. IGFBP1-6
have an equal or greater affinity for binding IGF-1 when
compared to IGF-1R; hence, most of IGF-1 in the body
is bound to IGFBPs, antagonizing IGF-1 signaling [38–41].
On the other hand, IGFBP7 has a low affinity for IGF and

Fig. 4 Protein-protein interaction network in STRING of proteins encoded by differentially expressed genes. Only connected (N = 116 genes)
genes that were identified to be differentially expressed between mechanically stressed and control cartilage of osteochondral explants are
shown. Two clusters with high interactions were identified upon studying connections within STRING. One cluster corresponds with genes found
in the cellular senescence pathway (dotted circle), while the other cluster consists of proteins that are involved in IGF-1 signaling (black circle)
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therefore more likely affects cell metabolism via binding to
activin A, influencing the growth-suppressing effects of
TGF-β, and antagonizing bone morphogenetic protein
(BMP) signaling [42, 43]. IGFBP4 and IGFBP5 can also
function as a transporter and bring IGF-1 close to its recep-
tor, where IGF-1 is released via cleavage by proteins such
as pregnancy-associated plasma protein-A (PAPPA), HtrA
Serine Peptidase 1 (HTRA1), and disintegrin and
metalloproteinase domain-containing protein 12
(ADAM12) [44–46]. Additionally, notable in this respect is
that three genes, HTRA1, ADAM12, and STC2 [47], in-
volved in IGF-1 cleavage were found among the FDR sig-
nificant upregulated genes in our dataset (Table S3).
IGFBPs can also affect cells via IGF-independent mecha-
nisms. The most noteworthy IGF-independent mechanism
is observed for the highly upregulated IGFBP5, being induc-
tion of cell proliferation and apoptosis [48, 49]. In
summary, our data showed that, despite the fact that the
mechanical stress applied affected cartilage integrity (Fig.
1), the upregulation of IGFBP4 and IGFBP5 in combination
with the upregulation of its cleaving proteins might reflect
an anabolic response of chondrocytes to initiate repair by
increasing bio-availability of IGF-1. Two studies support
our suggestion that IGF-1 signaling might be a beneficial
anabolic response to mechanical stress. In an OA dog
model, increasing intact IGFBP5 proteins resulted in in-
creased IGF-1 levels and reduced destruction of cartilage
[50]. While in a human explant model, addition of IGF-1
after mechanical stress increased COL2A1 gene expression
and slightly increased cell viability [51]. Our results in com-
bination with those previously found suggest that addition
of IGFBP4 and/or IGFBP5 would be an interesting therapy
to further explore in combatting the catabolic response.
To identify upstream processes and to put our results

in a broader perspective, we investigated connections be-
tween genes on the protein level in STRING (Fig. 4) and
determined pathway enrichment (Table 2) of the differ-
entially expressed genes. Based on this pathway analysis,
we identified enrichment for proteins involved in cellular
senescence. DE genes with mechanical stress in this
pathway have already been linked to aging and OA, such
as GADD45A, SERPINE1, MYC, and FOXO1. Notable
are the two transcription factors, MYC and FOXO1,
showing many connections to other proteins (Fig. 4) and
previously shown to be dysregulated in OA chondro-
cytes [52, 53]. FOXO1 is an essential mediator of
cartilage growth and homeostasis and its expression is
decreased in aged and OA cartilage [52]. In addition,
FOXO1 was shown to be an antagonist of MYC and pre-
vents, among others, ROS production [54, 55]. Our re-
sults suggest that reduced expression of FOXO1 could
be one of the reasons for increased expression of MYC.
As one of the known responses of chondrocytes to
mechanical stress is ROS production, this would be a

promising target to follow up on in future research. Next
to genes in this pathway, lookup of our DEMS genes in a
proteomic atlas of senescence-associated secretory
phenotype (SASP) identified 35 of our DEMS genes to
have previously been found in different senescent cells
(Figure S3) [56]. Taken together, the upregulation of
MYC in combination with upregulation of several im-
portant SASP protein markers suggests increased cellu-
lar damage is occurring upon mechanical stress likely
driving cells to go into senescence. As cellular senes-
cence is a factor that is thought to play a significant role
in the OA pathophysiology, our model could provide
more knowledge on how this pathway is involved in the
onset of OA and how therapeutics could be used to
minimize this response [57].
To investigate whether OA risk loci could confer risk

via modifying the response to mechanical stress, we
compared DEMS genes to strong OA risk genes identi-
fied in the most recent GWAS [35, 36]. This resulted in
the identification of two OA risk genes, TNC and
SCUBE1, present in our dataset (Table S7). Based on al-
lelic imbalanced expression and linkage disequilibrium,
the TNC OA risk allele rs1330349-C, in high linkage
disequilibrium with the transcript SNP rs2274836-T, ap-
peared to act via decreasing expression of TNC [58]. For
that matter, the observed high upregulation of TNC ex-
pression with mechanical stress (FC = 2.80; FDR = 8.51
× 10−3) as well as the previously observed upregulation
with OA pathophysiology (FC = 1.41; FDR = 1.09 ×
10−2) [5] is likely a beneficial response to rescue or
maintain articular cartilage integrity. This is further con-
firmed by animal studies showing that the addition of
exogenous TNC reduced cartilage degeneration and
repaired cartilage [59, 60]. In contrast, for the intronic
OA risk SNP located in the vicinity of SCUBE1
(rs528981060), we were not able to determine a tran-
script proxy SNP; hence, potential AEI of SCUBE1 could
not be explored.
With regard to overlap with in vivo animal models, we

compare our DE genes to those found in physiological
[11], surgical destabilization of the medial meniscus
(DMM) [18] and non-invasive tibial compression (TC)
models [12, 14]. The most striking overlap in DE genes
(46 genes) was found between our model and the non-
invasive TC model using gene expression data of 14-
month-old mice 1 week after injury. Among the
overlapping genes, we confirmed the involvement of all
IGFBPs, HTRA1, and ADAM12 and of several OA-
associated genes such as FRZB, TNC, and SCUBE1 in both
models [14]. As also shown by other studies [14, 18], age of
animals used in these models can greatly influence results.
This could also, next to a difference in species, partially
explain why there is little overlap with other injurious
mechanical stress studies.
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A strength of our aged human ex vivo osteochondral
model is that it allowed us to investigate the chondro-
cyte response to an OA-relevant trigger in its natural
environment. In addition, our model comprises aged
cartilage, which is likely more vulnerable to OA onset,
and hence, results are relevant to the population at risk.
Another strong point in our model is that we measure
the changes in gene expression that are measured 4 days
post-injury as such reflecting representative lasting
changes in chondrocyte signaling rather than acute
stress responses only. On the other hand, our data could
facilitate treatment strategies, prior to irreversible dam-
age of OA-affected cartilage. Some limitations of our
study are the relatively low sample size of 14 explants
per condition, hence limiting our power. As a result, we
may have missed subtle gene expression changes in re-
sponse to detrimental mechanical stress. Another point
of our study to address is the heterogeneity of preserved
cartilage collected from OA patients with Mankin scores
ranging from 0 to 7. Although such heterogeneity may
also have affected the power of our study, hence the
total number of differentially expressed genes with in-
jurious loading, we want to highlight that despite the dif-
ferences in Mankin scores, we were able to consistently
detect (at the genome-wide significant level) 156 differ-
entially expressed genes reflecting strong and/or very
consistent mechano-pathological processes triggered
after mechanical stress. Moreover, due to the heterogen-
eity in eligible waste articular cartilage after joint re-
placement surgery (i.e., osteochondral explants), we were
not able to generate a RNA-sequencing dataset of per-
fect control—mechanically stressed sample pairs. Hence-
forth, to adjust for dependencies among control and/or
mechanically stressed samples, we added donor as a
random effect during differential expression analyses.
Adding to the validity of this approach was the fact that
we successfully replicated expression changes for ten
genes in ten novel independent perfectly paired samples.
A final limitation of our study is that we have focused
on exploring gene expression changes following mech-
anical stress and have not studied changes at the protein
level. However, we advocate that chondrocyte signaling
at the gene expression level is a more sensitive measure
of underlying ongoing processes.

Conclusions
To conclude, our results faithfully represent transcrip-
tomic wide consequences of injurious loading in human
aged articular cartilage with MMP13, IGF binding
proteins, and cellular senescence as the most notable
results. Since injurious loading is considered a major trig-
ger of OA onset, these findings provide important insight
into how injurious stress affects the propensity of aged
human articular chondrocytes to lose their steady state

towards a debilitating OA disease state. Exploring ways to
counteract the initial unbeneficial responses to injurious
loading may facilitate clinical development prior to the
onset of irreversible damage. Moreover, we advocate that
the here identified unique responsive genes to injurious
loading, such as MMP13, can function as a sensitive
marker to strategically develop preventive and/or curative
exercise therapy for OA independent of other physio-
logical factors. Preferably such an endeavor would exploit
our established ex vivo osteochondral model while apply-
ing variable mechanical loading regimes.
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