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Mitochondria are the main bioenergetic organelles of cells. Exposure to chemicals
targeting mitochondria therefore generally results in the development of toxicity. The
cellular response to perturbations in cellular energy production is a balance between
adaptation, by reorganisation and organelle biogenesis, and sacrifice, in the form of cell
death. In homeostatic conditions, aerobic mitochondrial energy production requires the
maintenance of a mitochondrial membrane potential (MMP). Chemicals can perturb this
MMP, and the extent of this perturbation depends both on the pharmacokinetics of the
chemicals and on downstream MMP dynamics. Here we obtain a quantitative
understanding of mitochondrial adaptation upon exposure to various mitochondrial
respiration inhibitors by applying mathematical modeling to partially published high-
content imaging time-lapse confocal imaging data, focusing on MMP dynamics in
HepG2 cells over a period of 24 h. The MMP was perturbed using a set of 24
compounds, either acting as uncoupler or as mitochondrial complex inhibitor targeting
complex I, II, III or V. To characterize the effect of chemical exposure onMMP dynamics, we
adapted an existing differential equation model and fitted this model to the observed MMP
dynamics. Complex III inhibitor data were better described by the model than complex I
data. Incorporation of pharmacokinetic decay into the model was required to obtain a
proper fit for the uncoupler FCCP. Furthermore, oligomycin (complex V inhibitor) model fits
were improved by either combining pharmacokinetic (PK) decay and ion leakage or a
concentration-dependent decay. Subsequent mass spectrometrymeasurements showed
that FCCP had a significant decay in its PK profile as predicted by themodel. Moreover, the
measured oligomycin PK profile exhibited only a limited decay at high concentration,
whereas at low concentrations the compound remained below the detection limit within
cells. This is consistent with the hypothesis that oligomycin exhibits a concentration-
dependent decay, yet awaits further experimental verification with more sensitive detection
methods. Overall, we show that there is a complex interplay between PK and MMP
dynamics within mitochondria and that data-driven modeling is a powerful combination to
unravel such complexity.

Keywords: mitochondrial respiration, mitochondrial membrane potential, dynamic modeling, parameter
identifiability, high-throughput microscopy imaging, uncertainty quantification

Edited by:
Albert P. Li,

In Vitro ADMET Laboratories,
United States

Reviewed by:
Niamh M C Connolly,

Royal College of Surgeons in Ireland,
Ireland

Mohsen Rezaei,
Tarbiat Modares University, Iran

*Correspondence:
Joost B. Beltman

j.b.beltman@lacdr.leidenuniv.nl

Specialty section:
This article was submitted to

Predictive Toxicology,
a section of the journal

Frontiers in Pharmacology

Received: 11 March 2021
Accepted: 05 August 2021
Published: 19 August 2021

Citation:
Yang H, van der Stel W, Lee R,
Bauch C, Bevan S, Walker P,

van de Water B, Danen EHJ and
Beltman JB (2021) Dynamic Modeling
of Mitochondrial Membrane Potential

Upon Exposure to
Mitochondrial Inhibitors.

Front. Pharmacol. 12:679407.
doi: 10.3389/fphar.2021.679407

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 6794071

ORIGINAL RESEARCH
published: 19 August 2021

doi: 10.3389/fphar.2021.679407

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.679407&domain=pdf&date_stamp=2021-08-19
https://www.frontiersin.org/articles/10.3389/fphar.2021.679407/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.679407/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.679407/full
http://creativecommons.org/licenses/by/4.0/
mailto:j.b.beltman@lacdr.leidenuniv.nl
https://doi.org/10.3389/fphar.2021.679407
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.679407


1 INTRODUCTION

Mitochondria are essential for the regulation of cellular processes
including apoptosis, calcium and lipid homeostasis, biogenesis
and energy generation (Wojtczak and Zabłocki, 2008). Energy
generation in the form of ATP is crucial to support proper
functioning of the cell, including active transport, cellular
communication and transcription. The process of energy
generation is a combination of cytosolic and mitochondrial
processes. Within the cytosol, glucose is converted through
glycolysis into (net) two ATP molecules, two NADH
molecules and two pyruvate molecules. Within mitochondria,
pyruvate is the starting material for the tricarboxylic acid (TCA)
cycle: Its electrons are used to produce two ATP molecules and to
reduce NAD to NADH (8 molecules) and FADH to FADH2 (two
molecules). The electrons stored in NADH and FADH2 are
transferred via a series of mitochondrial membrane complexes
[together termed the electron transport chain (ETC)] to oxygen.
This process is called oxidative phosphorylation (OXPHOS). The
energy released during the electron transfer over the first four
complexes (Complex I, II, III and IV) is utilized to create a proton
gradient over the membrane separating the mitochondrial
intermembrane space from the mitochondrial matrix. This
mitochondrial membrane potential (MMP) is then utilized by
the fifth complex, an ATP synthase, to generate 32 ATP
molecules.

Mitochondrial dysfunction can severely hamper proper cell
functioning as it is often accompanied by a reduced ETC
efficiency and lowered ATP synthesis (Nicolson, 2014).
Inhibition of the mitochondrial complexes and uncoupling of
the ETC from the ATP synthase have been observed upon
exposure to various drug classes (Dykens et al., 2007; Xia
et al., 2018). Mitochondrial malfunctioning resulting from
exposure to chemicals will induce cellular signaling pathways
involved in adaptation and protection of the cell (Yuan and
Kaplowitz, 2013; Atienzar et al., 2016). When the induction of
these stress adaptation pathways is insufficient to alleviate the
mitochondrial stress, massive mitochondrial failure can occur,
resulting in cell death followed by organ failure as can be observed
for acute liver failure (ALF) (Yuan and Kaplowitz, 2013).

Four well-known classes of chemicals causing mitochondrial
dysfunction, through interference with OXPHOS, are
mitochondrial complex I, III and V inhibitors, and uncouplers.
Complex I and III inhibitors block electron transfer at the
respective ETC complexes, which impedes MMP buildup and
thus impairs subsequent ATP generation (Li et al., 2003; Balaban
et al., 2005). Uncouplers do not inhibit one of the mitochondrial
membrane complexes, but dissipate the MMP by transporting
protons from themitochondrial intermembrane space back to the
mitochondrial matrix (Benz and McLaughlin, 1983). As a result,
OXPHOS is uncoupled from the ETC leading to low ATP
generation. The complex V inhibitor oligomycin binds to the
Fo subunit of the mitochondrial F1-Fo ATP synthase (Symersky
et al., 2012). As a consequence, the protons necessary to power
ATP synthesis during OXPHOS cannot flow through complex V
anymore which causes a reduction of mitochondrial ATP
production.

A multitude of compounds with different targets such as the
above-mentioned chemical classes can hamper mitochondrial
functioning. Currently, a knowledge gap exists for the exact
mechanisms of mitochondrial dysfunction on a molecular level
as well as subsequent adaptation upon such dysfunction. A
promising way forward is to utilize high-throughput
measurement techniques to collect dynamic data on the
mitochondrial membrane potential (Wink et al., 2017).
Moreover, obtaining a quantitative, mechanistic understanding
of such in vitro experiments is desirable (National Research
Council, 2007), which can be achieved through application of
dynamic modeling in the form of ordinary differential equation
(ODE) models to describe experimental measurements (Kuijper
et al., 2017; van Riel, 2006; Yang et al., 2020). Such mechanistic
models can be utilized to generate hypotheses and to formally test
whether a data set is consistent with these hypotheses (van Riel,
2006; Brodland, 2015). Ideally, this leads to specifically designed
follow-up experiments, thus continuing a loop between
experimental and in silico work.

Two categories of mechanistic models have previously been
established with respect to mitochondrial functioning:
biophysical (Cortassa et al., 2003; Beard, 2005; Wu et al.,
2007) and holistic models (Ainscow and Brand, 1999; Yang
et al., 2015; Bois et al., 2017). Biophysical models are highly
detailed and offer the possibility to generate hypotheses on
specific biophysical processes taking place in mitochondria.
For example, the model by Beard (2005) provides a powerful
description of the ETC, as well as of the transport of cations and
other substrates. As such, this offers mechanistic insight at the
level of individual complexes and of the process of OXPHOS. A
downside of this biophysical model is its complexity (17 state
variables), which lowers the potential for accurate estimation of
the involved parameters. This precludes application of the model
to high-throughput toxicity screens where a lot of compounds are
evaluated at once. In practice, biophysical models have therefore
been optimized for isolated mitochondria, whereas toxicity
screens are typically performed with live cells (Wink et al.,
2017). Extrapolating the MMP behaviour observed for isolated
mitochondria to that of entire cells would be a difficult task for
which large amounts of data and many validation steps are
required.

Holistic models describing the mitochondrial membrane
potential are typically simpler than biophysical models and are
focused on in vitro to in vivo extrapolation (IVIVE). To
investigate the role of mitochondrial functioning for energy
metabolism in rat hepatocytes, Ainscow and Brand (1999)
performed top-down control analysis by investigating fluxes of
important mitochondrial processes. Another recently proposed
holistic ODE model, termed MITOsym (Yang et al., 2015),
focused on mitochondrial bioenergetics rather than on the
molecular level. The model has seven state variables and
contains the most important elements of mitochondrial
functioning, including MMP, ATP, glucose and oxygen levels.
MITOsym was calibrated using real-time experimental data
obtained from a human hepatoma cell line (HepG2).

Here, we develop a flexible model of low complexity that offers
mechanistic insight in the cellular adaptations upon exposure to
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various OXPHOS inhibitors. We first simplified the previously
published MITOsym model (Yang et al., 2015) by focusing
primarily on modeling of the MMP. We calibrated our model
to live-cell microscopy data on MMP dynamics upon exposure to
a partially published set of 24 mitochondrial inhibitors (van der
Stel et al., 2020) including the classical inhibitors rotenone
(complex I inhibitor), antimycin A (complex III inhibitor),
oligomycin (complex V inhibitor) and FCCP (uncoupler). The
model described the data from ETC complex inhibitors
reasonably well, but model extension with intracellular decay
was required to describe the MMP response to FCCP and
oligomycin. For oligomycin, addition of ion leakage from the
mitochondrial intermembrane space to themitochondrial matrix,
or introduction of a concentration-dependent compound decay
further improved the fit. We performed mass spectrometry
measurements, which confirmed the presence of such decay
for FCCP, yet we measured only limited oligomycin decay at
high concentrations. At low oligomycin concentrations,
compound recovery was below the detection limit. These
findings are consistent with a concentration-dependent
oligomycin decay explaining the complicated temporal pattern
of the MMP for this compound, although more sensitive
compound detection methods will be required to
experimentally test this hypothesis.

2 METHODS

2.1 Cell Culture
The HepG2 cell line was obtained from ATCC (American Type
Culture Collection, Wesel, Germany). We cultivated the cell line
in Dulbecco’s modified Eagle’s medium (DMEM) (cat. No.
11504496, Fisher Scientific) supplemented with 10% (v/v) fetal
bovine serum (cat. No. S181L-500, South American, Fisher
Scientific), 25 U/ml penicillin and 25 μg/ml streptomycin (cat.
No. 15070-063, Fisher Scientific). Cells were split every 3–5 days
and kept at 37°C and 5% CO2.

2.2 Chemicals
All chemicals were purchased from Sigma Aldrich, including
FCCP (cas no. 370-86-5, order no. C2920) and oligomycin (cas
no. 1404-19-9, order no. O4876). Other chemicals used for the
assessment of various ETC inhibitors were also obtained from
Sigma Aldrich, but redistributed by the JRC (Ispra, Italy). This
included capsaicin (cas no. 404-86-4, order no. M2028), deguelin
(cas no. 522-17-8, order no. D0817), fenazaquin (cas no. 120928-
09-8, order no. 31635), fenpyroximate (cas no. 134098-61-6,
order no. 31684), pyridaben (cas no. 96489-71-3, order no.
46047), pyrimidifen (cas no. 105779-78-0, order no. 35999),
rotenone (cas no. 83-79-4, order no. R8875), tebufenpyrad
(cas no. 119168-77-3, order no. 46438), carboxin (cas no.
5234-68-4, order no. 45371), fenfuram (cas no. 24691-80-3,
order no. 45486), flutolanil (cas no. 66332-96-5, order no.
N12004), mepronil (cas no. 55814-41-0, order no. 33361),
thifluzamide (cas no. 130000-40-7, order no. 49792),
antimycin A (cas no. 1397-94-0, order no. A8674),
azoxystrobin (cas no. 215934-32-0, order no. 3167),

cyazofamid (cas no. 120116-88-3, order no. 33874),
fenamidone (cas no. 161326-34-7, order no. 33965),
hydramethylnon (cas. No 67485-29-4, order 35373), kresoxim-
methyl (cas. No 143390-89-0, order no. 37899), picoxystrobin
(cas no. 117428-22-5, order no. 33568), pyraclostrobin (cas no.
175013-18-0, order no. 33696), trifloxystrobin (cas no. 141517-
21-7, order no. 46477). The chemicals were dissolved in dimethyl-
sulfoxide (DMSO, Biosolve) and stored at −80°C for long-term
storage and −20°C for short-term usage. In all experiments the
maximal solvent end concentration was 0.2% (v/v). The MMP,
Hoechst and PI measurements were previously published for 21
mitochondrial inhibitors (van der Stel et al., 2020), and these were
supplemented with measurements for hydramethylnon, FCCP
and oligomycin.

2.3 Confocal Imaging
Cells were seeded at a density of 10.000 cells/well in black μClear
384 well plates (Greiner Bio-One). Two days after seeding, the
cells were stained with Hoechst33342 (final conc � 200 ng/ml)
(cat. no. H1399, Life technologies) and Rhodamine123
(final conc � 1 μM) (cat no. R8004-5 MG, Sigma Aldrich) for
75 min. After 75 min the medium (for exact composition see
Supplementary Table S1) was refreshed into medium containing
Rhodamine123 at a concentration of 0.2 μM in order to
compensate for minor dye loss, yet keeping the dye
concentration low to prevent potential toxicity. In addition, at
this moment we added Propidium iodide (conc. � 100 nM) (cat.
No. P4170, Sigma Aldrich) and the test chemical in the desired
concentration. A Nikon TiE2000 with perfect Focus System, xy-
stage and incubator (Nikon, Amsterdam, Netherlands) with 20x
objective was used to capture the Hoechst, (408 nm), Rho123
(488 nm) and PI (561 nm) signals every hour.

2.4 Image Analysis
The segmentation of nuclear objects was performed based on
Hoechst staining using a WMC segmentation workflow (Di et al.,
2012) implemented in ImageJ (version 1.51 h). Segmentation
quality depended strongly on the Hoechst intensity and
therefore the utilized parameters (Gaussian filter, rolling ball
filter and noise filter) were chosen based on visual inspection
(see Supplementary Table S2 for chosen values). Further image
processing was performed using CellProfiler (version 2.2.0, broad
institute, Cambridge United States). The cytoplasm was identified
as the area up to five pixels away from the segmented nuclei,
excluding the nuclear pixels themselves. Cells were identified as
dead when more than 10% of the segmented pixels of a nucleus
were also PI positive. Pixels were identified as PI positive or not
using automated thresholding with the maximum correlation
threshold (MCT) algorithm applied on the complete image
(Padmanabhan et al., 2010). The CellProfiler output was
subsequently exported as an HDF5 file and further processed
using the R package rhdf5 (see https://bioconductor.org/
packages/release/bioc/html/rhdf5.html).

2.5 Quantification of MMP Dynamics
For each segmented cell, we quantified the intensity of the MMP
by calculating the integrated intensity of the Rho123 intensity
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over the entire cytoplasmic domain. The cytoplasmic integrated
intensities for all segmented cells within an image (typically
hundreds of cells) approximately follows a log-normal
distribution (Supplementary Figure S1). Therefore, we
extracted the geometric mean of the integrated Rho123
intensities as a representative measure for each biological
replicate from one plate, and we repeated this for each time
point after exposure to the mitochondrial inhibitors. As
reported by Perry et al. (2011), quenching of the Rho123 dye
may occur. Indeed, we observed a gradual decay of Rho123
dynamics for DMSO control conditions (Supplementary Figure
S2, black lines), yet there was also frequently a temporary increase
in Rho123 which was presumably due to unpredictable dye uptake
dynamics. Because both effects on Rho123 (i.e., quenching and
uptake) were plate-dependent, we normalized the Rho123
geometric mean with the DMSO controls on the same plate,
i.e., we divided the geometric mean from the treatment
condition by the DMSO condition from the same plate for each
time point separately, thus largely correcting for these experimental
artefacts. Among the biological replicates (N � 3 for oligomycin
and N � 4 for all other compounds), we took the arithmetic mean
and standard error of the mean.

2.6 Mass Spectrometry Sample Preparation
Cells were seeded with a density of 20.000 cells/well in black
μClear 96 wells plates (Greiner Bio-One, 655090). The cells
were stained with Hoechst33342 for 75 min before chemical
exposure. Cells were exposed for 2, 8 or 24 h to oligomycin
(0.005, 0.05, and 0.5 μM) and FCCP (0.1, 1 and 10 μM).
30 min before the end of the exposure period the Hoechst
intensity was captured using epi-fluorescence on a Nikon
TiE2000 confocal microscope with perfect Focus System, xy-
stage and incubator (10x objective, 6 × 7 montage). Imaging
was followed by collection of the supernatant and fixation of
the cells using MeOH after 1x PBS wash. Parallel solution
plates with the exposure medium without cells were stored
simultaneously with the supernatant at −80°C. The methanol
was allowed to evaporate from the fixated cells for
approximately 2 h. Subsequently, the cells were dissolved
in water and the cell lysate was stored at −80°C.

2.7 Quantification of Compounds in
Samples by LC-MS/MS
Samples exposed to FCCP and oligomycin were analysed on a
system consisting of an Acquity™ Binary Solvent Manager
(BSM), Acquity™ four position heated column manager, 2,777
Ultra High Pressure Autosampler and a Xevo TQ MS Triple
Quadrupole mass spectrometer (Waters Ltd., Herts,
United Kingdom). The analysis was performed using an
Acquity™ HSS T3 column (1.8 μm) 2.1 × 30 mm (Waters
Ltd., Herts, United Kingdom) fitted with Security™ ULTRA
Fully Porous Polar C18 cartridge (Phenomenex, Cheshire,
United Kingdom). The column was maintained at 40°C and
the injection volume was 4 μL. The mobile phases for FCCP
and oligomycin were 10 mM ammonium acetate (mobile phase
A) andmethanol (mobile phase B). Amobile phase gradient from

0 to 95% mobile phase B was employed over 39 s. The MS source
temperature was 150°C and the desolvation temperature was
650°C. For FCCP the cone voltage was 28 V, the collision
energy was 20 eV, the MRM was 253.06 > 201.01 and negative
ionisation mode was used. For oligomycin the cone voltage was
21 V, the collision energy was 10 eV, the MRM was 789.54 >
789.64 and negative ionisation mode was used.

To determine a chromatogram, under certain LC system
conditions the compound of interest (analyte) will be separated
and elute from the column at a specific retention time. Using the
same conditions, if an unknown sample containing the same
analyte is injected into the LC system, a peak that corresponds
to the analyte would be present with the same retention time. In
order to determine the compound quantity present in the sample,
the chromatogram is analysed by quantifying the area under the
peak, which is directly proportional to the total amount of analyte
in the sample. In order to give an absolute quantification a standard
curve of the analyte is required.

Separate standard curves were created for FCCP and
oligomycin by spiking in known concentrations of these
compounds into samples containing water (as was done for
the cell lysate samples). For oligomycin, the standard curve
showed that at low spike-in concentrations a detection
threshold occurred. Therefore, for the cell lysate samples we
only incorporated measurements over time for the highest
concentration. Because the standard curve was linear above
this detection threshold, we directly utilized the measured
peak areas for further analysis. The peak areas were adjusted
by dividing the values by a machine internal standard value that
was determined for each data point separately, and by dividing by
the estimated volume of all cells, resulting in a value proportional
to the concentration within individual cells. The nuclear count
needed to estimate the cell volume was based on the epi-
fluorescent images collected 1 h before sample collection,
which were analyzed using an in-house macro for ImagePro
software version 7.01 (Media Cybernetics). The macro performed
intensity segmentation based on a watershed method (filtering on
size and shape) after background correction (flatten function and
edgefilter). The used parameters for the watershed method
included: Intensity threshold � 1,000, Meanintensity � 0.1,
Edgefilter � 3, RemoveNarrowObjects � TRUE, Minarea � 15
pixels, Maxarea � 4,000 pixels). Subsequently, the total volume of
the cells was determined based on the nuclear count and a
diameter of 30 μm. The resulting values were representative
for the relative concentration at different time points after
exposure. In order to compare experimental measurements to
model predictions, we transformed the measurements within
cell lysate samples at three time points (2, 8 and 24 h) into
ratios relative to earlier time points. For this we considered all
possible pairings, i.e., the three ratios 8 vs. 2 h, 24 vs. 8 h, and
24 vs. 2 h.

2.8 Dynamic Model of Oxidative
Phosphorylation
We constructed an ODE model to describe the experimentally
observed MMP dynamics by refining the previously published
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MITOsym model (Yang et al., 2015). Our model has two state
variables: oxygen level ([O]) and MMP (Ψ). Compared to the
seven variables in the original MITOsym model, we omitted the
variables related to glycolysis, because we did not acquire data
related to this process. The variables [O] and Ψ were retained
because our experiments aimed to measure the MMP, which
strongly depends on the oxygen level due to oxygen consumption
by complex IV during its oxidation of cytochrome C.

To describe the dynamic changes in the oxygen level, we
considered the oxygen supply into mitochondria to take place at a
constant rate during our in vitro MMP measurements (set to a
value of 0.6, following Yang et al. (2015)). Moreover, in the
absence of perturbations, oxygen is consumed at a constant rate
that linearly depends on the oxygen level itself by activity of ETC
complex IV. In the presence of a complex IV inhibitor, the
consumption rate is decreased, which we model with
Michaelis-Menten kinetics as

d[O]
dt

� 0.6 − KE [O] KEi

KEi + [DE]. (1)

Here, the second term is the total oxygen consumption rate
(OCR), with KE representing the maximal rate of oxygen
consumption, [DE] representing the effective concentration of
the applied inhibitor and KEi representing the inhibitor
concentration at which the OCR is half-maximal. Note that
our data set did not consist of complex IV inhibitors, but
inhibitors of complex I, II and III are considered to also affect
the second term in Equation 1.

The MMP is built up by proton flow, which occurs in two
directions in our model. First, protons are pumped from the
mitochondrial matrix into the intermembrane space by
complexes I, III and IV, which depends on pyruvate as a main
source for the TCA cycle and on oxygen. We describe this by
considering the proton flux into the intermembrane space as
proportional to the OCR. Second, depletion of the MMP occurs
due to ATP synthesis which occurs by complex V along with
proton flux back into the matrix. MMP depletion can also occur
due to the presence of an uncoupling agent that transports
protons into the matrix. Proton depletion due to ATP
synthesis and uncoupler activity both follow Michaelis-Menten
kinetics in our model. Exposure to an inhibitor of ATP synthesis
leads to a decreased MMP depletion rate, which we also describe
with Michaelis-Menten kinetics. We incorporate these processes
into the equation for Ψ as follows:

dΨ
dt

� Cf KE [O] KEi

KEi + [DE] −
VA Ψ
KA + Ψ

KAi

KAi + [DA]
− VU [DU ]
KU + [DU ] Ψ. (2)

Here, Cf is a coefficient that scales the OCR to the rate at which
the proton gradient is established, VA is the maximal ATP
synthesis rate, KA is the MMP for which the ATP synthesis
rate is half-maximal, KAi is the concentration at which the
inhibition of ATP synthesis is half-maximal for a particular
inhibitor, [DA] is the effective concentration of that ATP
synthesis inhibitor, VU is the maximal proton flux towards the

matrix due to uncoupler activity, KU is the concentration at which
uncoupler-mediated proton flux is half-maximal, and [DU] is the
effective concentration of uncoupler. Note that we set VU � 1 and
KU � 1, which together with the free parameters for time scaling
(see below) and [DU] was sufficient to describe uncoupler effects.

Although in the current model we consider a fixed relation
between the OCR and the rate at which the proton gradient is
established (Cf), this relation may in reality differ between
mitochondrial inhibitors or vary over time. Moreover, the Cf

parameter, along with other parameters, likely depends on the
exact composition of the medium because that could affect
cellular respiration processes, such as those relying on NADH.
Note that changes in medium composition over time due to
uptake of medium components by cells could therefore result in
time-varying parameters such as Cf. However, the goal of our
study was not to study the relation between OCR and MMP in
such detail, and would require structured evaluation of the effect
of different medium compositions.

2.9 Scaling Parameters
The cells are considered to maintain homeostasis before exposure
to any compound. Therefore, we determine the steady state by
setting the right hand sides of the ODEs equal to zeros and solving
analytically (Supplementary Text). Because the experimentally
obtained data are based on image intensity and microscopy
settings are such that we are not in the saturating regime for
the detectors, the intensity readouts should have a linear
relationship with the MMP. Therefore, we introduce two
scaling parameters c1 and c0 to map the MMP to the
normalized Rho123 intensity (which is measured in arbitrary
units):

y � c1 Ψ + c0. (3)

Quenching of the Rho123 dye over time as well as differential dye
uptake dynamics between plates led to somewhat unpredictable
Rho123 dynamics in DMSO control conditions (also see
subsection on “quantification of MMP dynamics” and black
lines in Supplementary Figure S2). To prevent this
unpredictability from affecting the scaling parameters c1 and
c2, we normalized the experimental data for the mitotoxicant-
induced Rho123 intensities by the intensities when treated with
DMSO (by dividing by the latter). The normalized intensities
were subsequently utilized during model calibration to determine
the optimal model parameters, including the scaling parameters.
Note that only the experimental data and not the simulation data
were thus normalized; the scaling parameters were utilized for the
latter purpose.

After such normalization of Rho123 intensities, we expected
the c1 and c0 parameter values to be the same for all compounds.
Therefore, for the exposures at the lowest concentrations for
which an MMP response typically does not occur yet, the MMP
response normalized to the response to DMSO should be close to
1.0, and the MMP response to the lowest two concentrations
should typically be uncorrelated. Indeed, these normalized
values were on average around 1.0, but their values ranged
from 0.8–1.2, i.e., the variability was relatively large
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(Supplementary Figure S3). Importantly, contrary to the
expectation, there was a clear correlation between the
normalized MMP values at the lowest two concentrations (R2 �
0.59). Thus, the early Rho123 intensity at the lowest two
concentrations is compound specific, which could for instance
arise from the specific locations of the wells within the plates.
Because of this observation, we included separate scaling
parameters (c1 and c0) as free parameters for each compound,
rather than selecting common scaling parameters across compounds.

In addition to the scaling parameters c1 and c2, we introduced a
parameter r to scale time for both [O] and Ψ, thus controlling the
relative rates of change (Supplementary Text), and implying that
the rate parameters are expressed in arbitrary units.

2.10 Model Extensions
Because for the compound oligomycin (complex V inhibitor) the
above model could not qualitatively describe the MMP data, we
extended the model with potential-dependent proton leakage for
oligomycin only. There is evidence for such leakage for very high
MMPs such as those occurring in the presence of oligomycin
(Porter and Brand, 1995). Moreover, Berthiaume et al. (2003)
reported an overshoot of the MMP upon staining with the dye
JC1, and proposed an empirical linear ODE model for the MMP
while incorporating proton channel leakiness. Their model-based
analysis showed a good fit to the observed MMP during the first
2 h of increased MMP dynamics. Although proton leakage may
depend on the MMP in a non-linear fashion, for slight MMP
perturbations a linear relation is a reasonable approximation.
Therefore, and inspired by the flux equation for leakage of proton
and potassium described by Beard (2005) (Supplementary Text),
we added leakage to the equation for the MMP in the form of the
product term α(Ψ − Ψo)H(t):

dΨ
dt

� 0.6Cf − VA Ψ
KA + Ψ

KAi

KAi + [DA] − α(Ψ − Ψo)H(t). (4)

Here, α is the leakage rate and Ψo denotes the MMP steady state,
ensuring that the steady state is the same as in the original ODE
model without leakage.H(·) is a Heaviside function, ensuring that
the leakage term is only relevant upon exposure.

For the compounds FCCP and oligomycin, we also studied
whether explicit description of the in vitro pharmacokinetics (PK)
of the compounds (i.e., a decrease of effective concentrations over
time) improves the model fits to the data. To extend the model
(Eq. 2) with such pharmacokinetic decay, we introduced the
following function with decay rate c:

[DX]i �[Do
X]i exp(−c t)H(t). (5)

Here, [Do
X]i represents the effective concentration in the

mitochondrial compartment for one of the inhibitor types (in
this case only applied for uncouplers ([DU]) and for ATP
synthesis inhibitors [DA]) and index i denotes the applied
concentration of the compound in an ascending order. By
default we consider a constant decay rate (c) that is valid for
all concentrations from one compound. For oligomycin, we also
consider a model extension in which the compound decay rate is
concentration-dependent (Supplementary Text).

2.11 Model Calibration
In order to determine suitable model parameters that can explain
the dynamics observed from our imaging experiments, parameter
selection was done based on MMP measurements. The
parameters chosen for optimization included the Michaelis-
Menten parameters for ATP synthesis, i.e., VA and KA, the
effective concentrations of inhibitors DX and the scaling
parameters c1, c0, and r. We also consider the case where the
parameters VA, KA and r are shared across complex I, II and III
inhibitors and only the effective concentrations and c1 and c0 are
chemical dependent.

Per condition (one single concentration for one compound),
the weighted residuals (denoted by R) are defined by the weighted
difference between the simulation and the data. Then the sum of
R2 quantifies the match between model prediction and
observation as follows:

R2 � ∑
nt

i�1

(yMi (θ) − yDi )2
σ2
i

. (6)

Here, σ denotes the standard error amongst the replicates, yD and
yM(θ) represent experimental observation and model output
evaluated with free parameters θ, respectively. We use i to
index the time points; in total we have nt � 23 time points per
compound concentration.

To fit the data for an entire set of applied treatment conditions,
we minimized the following cost function (i.e., the negative log-
likelihood function):

logL(θ) � ∑m
j R

2
j

2
, (7)

where the subscript j indexes the treatment condition in a group
of m conditions in total.

To estimate the values of the model parameters (θ), we
employed a least squares approach with a Trust Region
Reflective algorithm and sensitivity equations (Raue et al.,
2013). We employed a multi-start approach to find the global
minimum of Eq. 7 (Raue et al., 2013), by randomly generating a
set of 100 starting values for each free parameter within a broad
range. The maximum likelihood estimate was found by ranking
the output cost function values amongst all parameter starting
values. Best-fitting parameter estimates are provided in
Supplementary Table S3 (for the basic model with separate
fitting for the compounds), Supplementary Table S4 (for the
basic model with joint fitting for the compounds),
Supplementary Table S5 (for the model with compound
degradation), Supplementary Table S6 (for the model with
compound degradation and ion leakage) and Supplementary
Table S7 (for the model with concentration-dependent
compound degradation). Code to simulate the parameterized
models is available at https://zenodo.org/record/5171300.

2.12 Statistical Tests
We applied the non-parametric Kolmogorov–Smirnov (KS) test
(Massey, 1951) to study which type of ETC complex inhibitor is
better described by our model. We performed a KS test for three
inhibitor type pairs: I vs. II, II vs. III, I vs. III.
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2.13 Profile Likelihood and Bootstrapping
In order to identify the limitations of our models with respect to
parameter estimation, we inspected the uncertainties in the
estimated parameters (Fröhlich et al., 2014). Specifically, we
focused on the leakage rate (α; applied for oligomycin) and
compound decay rate (c; applied for FCCP and oligomycin).
To this purpose, we applied both a profile likelihood (PL)
approach and bootstrapping.

In a PL approach one calculates a confidence interval, yet it
also helps to identify parameters that are structurally non-
identifiable (Raue et al., 2009; Yang et al., 2016). The
confidence interval for a parameter is determined by
computing the dependence of the maximum likelihood
(i.e., the two-fold logL, or NPL) on the parameter that is being
profiled (i.e., fixed at different values). Subsequently, this ‘NPL
curve’ is cut at a threshold of min(NPL) + χ2(αCI, df � 1), i.e., using
an underlying χ2 distribution at confidence level αCIwith 1 degree
of freedom (Raue et al., 2009). Note that the invariant property of
the maximum likelihood estimate guarantees that the 95%
confidence interval of a quantity depending on system
parameters can be directly profiled (Moser, 1996). We applied
the PL approach and also mathematically analyzed our equations
to potentially increase parameter identifiability in refined models
(Supplementary Text).

Besides the PL approach, we also applied bootstrapping to
determine confidence intervals. To achieve this, we generated
realistic artificial replicates from the biological replicates as
follows: First, we performed “interplate bootstrapping” by
selecting the same number of biological replicates with
replacement as in the original data (note that each biological
replicate was on a separate plate). Thus, we sampled four
biological replicates at interplate level for FCCP, and three
biological replicates for oligomycin. Second, we applied
“intraplate bootstrapping” to each selected biological
replicate. We achieved this by pooling all single-nuclei
objects coming from two technical replicates measured from
the same well and measured at the same time point. We then
sampled from this pool of single-cell data with replacement until
we had selected the same number of objects as in the original
data. This subset was handled in the same way as the original
data, i.e., we calculated the geometric mean for all objects within
the subset and applied normalization based on the fluorescence
intensities observed for DMSO treatments. As a final step, the
mean and standard error (SE) was calculated for the artificially
generated replicates at all time points. Afterwards we performed
parameter estimation to re-fit our model to the bootstrapped
data, using the previously obtained optimal parameter values as
starting values. In total, we generated 200 bootstrap samples and
calculated 95 and 99% confidence intervals based on sample
quantiles. This was achieved by utilizing the parameter values
obtained at the quantiles (95 and 99%) to conduct ODE
simulations that predict the pharmacokinetics of FCCP and
oligomycin and thus obtained a 95% confidence interval at each
time point.

The model predictions for the relative change in compound
level between the time points for which we had experimental
measurements can be directly calculated from the estimated value

for c because the effective concentration decays exponentially in
our model:

RT2/T1 � exp(−c(T2 − T1)). (8)

Here, T1 and T2 are the two time points where compound levels
are measured. We computed RT2/T1 for the three pairs of
comparison (T1 � 2, T1 � 8), (T1 � 2, T2 � 24), and (T1 � 8,
T2 � 24). Moreover, the 95 and 99% confidence intervals for these
ratios were determined either by filling in the PL-based upper and
lower values for the estimated c range, or by filling in the
quantile-based estimates resulting from bootstrapping.

3 RESULTS

3.1 Construction of an MMP Model Based
on Live-Cell Imaging Data
To study the impact of mitochondrial complex inhibitors on the
dynamics of the MMP in a live-cell imaging setting, we utilized
our previously published data in which HepG2 cells were exposed
to a panel of different mitochondrial complex I, II and III
inhibitors (van der Stel et al., 2020), and supplemented this
with newly generated data for the complex III inhibitor
Hydramethylnon, the complex V inhibitor oligomycin and the
uncoupler FCCP (Figure 1). The MMP was monitored every
hour for 24 h on the basis of the intensity of the dye Rho123,
which is sensitive for the membrane potential. We also assessed
the effect of chemical exposure on cellular health based on co-
staining of Hoechst and the cell death marker Propidium iodide
(see Section 2). Exposure scenarios which affected the MMP
typically did not induce cell death in the studied period
(Supplementary Figures S4A, B). Complex III inhibitor
Hydramethylnon was an exception; application of this
compound at high concentrations did lead to cell death
(Supplementary Figure S4C).

Based on the experimentally observed MMP dynamics, we
next aimed to develop a mathematical model to quantitatively
describe the MMP response (Figure 2). We adapted the
previously published MITOsym model (Yang et al., 2015) to a
two-state model (oxygen and the MMP; white boxes in Figure 2)
because we mainly had data on the membrane potential Ψ. In the
absence of measurements on other characteristics such as glucose
or pyruvate level, we considered those states to be constant,
i.e., the flux from pyruvate into OXPHOS (dark grey box in
Figure 2) was considered constant rather than dynamic.

3.2 Basic Model Describes Exposure to
Classical ETC Inhibitors
We first applied our basic two-state MMP model on the MMP
data obtained upon exposure to the classical mitochondrial
inhibitors rotenone and antimycin A to test whether it can
quantitatively describe the MMP dynamics. We employed
maximum likelihood estimation in order to determine the
parameters that optimally describe the MMP dynamic data
(Figure 3A). For antimycin A (Figure 3B; symbols) and
rotenone (Figure 3C; symbols), the data exhibit a gradual
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decrease of the MMP for low concentrations (e.g., 0.016 μM
rotenone), whereas a steep decrease is observed for high
concentrations (e.g., 2.0 μM rotenone). Our basic model fitted
the MMP dynamics for these inhibitors quite well despite
mismatches at some concentrations (Figures 3B,C, cyan lines).
Note that at the lowest concentration of antimycin A (Figure 3B),
a substantial deviation of the model fit to the mean Rho123
intensity of the four replicates occurred, which we attribute to the
relatively high variability among these replicates.

We next asked whether the model could also describe the
MMP dynamics for an extensive set of ETC inhibitors affecting
either complex I, II or III activity. Inhibitors of complex I and III
typically had a large effect on the MMP, whereas complex II
inhibitors had only a limited effect. We fitted the data for all
compounds either separately, i.e., with all model parameters
calibrated per compound (as in (Figures 3B,C), or for all

compounds at once, i.e., with only the parameters c1 and c0
that mapΨ to the observable y (see Eq. 3) allowed to vary between
the compounds and all other parameters to have the same value
across the compounds. In both cases this led to good fits, as
illustrated by the examples of deguelin, a complex I inhibitor
(Figure 4A) and azoxystrobin, a complex III inhibitor
(Figure 4B), which shows the generality of our model with
respect to the effect of different ETC inhibitors.

We further evaluated the fitting performance amongst classes
of ETC inhibitors by comparing the cost function values for the
different classes (Figures 4C,D). We did this both by
minimizing the cost function values considering the data sets
for each single ETC inhibitor separately (Figure 4C), and
considering the joint data set resulting from all 22 ETC
inhibitors jointly (Figure 4D). As expected because of a
lower amount of parameters for the more restricted case of

FIGURE 1 | Image-based measurements over time in HepG2 cells. (A) Schematic representation of the experimental set-up. HepG2 cells were imaged for 24 h to
track Rho123 (MMP), Hoechst (cell nuclei) and PI (necrosis) abundance following 2 days of cell seeding. (B) Representative images showing original image dimensions
and a cropped image. (C, D) Images of Hoechst, Rho123 and PI staining (top panels) and the resulting segmentation from CellProfiler (bottom panels). Images
originate from a vehicle treated condition with 0.2%DMSO for 1 h (C) or a toxic condition with 10 μM Hydramethylnon exposure for 24 h (D). (E) Representative
Rho123 images over time upon exposure to 0.2% DMSO, or to rotenone, antimycin A or oligomycin at the indicated concentrations for 1, 6, 12, and 18 h.
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fitting all inhibitors jointly, for that fitting approach the cost
function values for the same compounds either stay the same or
are increased compared to the fits of single ETC inhibitors.
There was substantial variability in mean cost function value
between compounds, especially for complex I inhibitors. The
cost function value was typically lowest for complex II
inhibitors, which is likely due to the consistently minimal
effects on MMP by such inhibitors. Cost function values for
complex I inhibitors were larger than for complex III inhibitors
(Figures 4C,D, with p-values of 0.0287 and 0.0925,
respectively), suggesting that there is a qualitative difference
in the MMP response between these classes of compounds. Note
that even for the compound with the highest cost function value,
i.e., pyridaben, the fit was still reasonably good (Supplementary
Figure S5A). The relatively high cost function values for some
compounds (e.g., for pyridaben, rotenone, and antimycin A)
resulted from overall deviations at all time points and
concentrations, although perhaps the largest contributions

were from the weighted residuals at early time points for
high concentrations (Supplementary Figure S5B).

For the ETC inhibitors, the model-predicted MMP decrease is
expected to coincide with a decreased OCR, for which the model
can also generate a prediction that can be compared qualitatively
to experimental OCR measurements. To test whether there is
indeed such a qualitative match between OCR measurement and
simulation, we utilized the parameter estimates for the ETC
inhibitors (Supplementary Table S3) to simulate the OCR,
i.e., the second term in Eq. 1. We plotted the simulated OCR
at 30 min for all 22 ETC inhibitors (Supplementary Figure S6,
blue), following the exposure duration utilized by van der Stel
et al. (2020). For most ETC inhibitors, the simulated OCR either
decreased with applied concentration or remained at
approximately the same level, which matches the general
experimental observations (Supplementary Figure S6, black).
However, the concentration at which the strongest decrease in
OCR occurs and the percentage of OCR inhibition are typically

FIGURE 2 | Scheme illustrating mechanistic information on mitochondrial energy generation and modeled components. The state variables that are included in the
model (Oxygen and Ψ) are shown in the white boxes, while fluxes are depicted by black circles. The non-modelled TCA cycle is indicated in dark gray. The sites of action
of four classical mitochondrial inhibitors (FCCP, antimycin A, rotenone and oligomycin) are shown in color.
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not predicted well by the model. Moreover, for some inhibitors
for which the MMP response is almost flat (e.g., fenfuram and
capsaicin; not shown), the dependence of simulated OCR on
compound concentration exhibited unexpected patterns, which
could be due to parameter identifiability issues (see Section 4).

In summary, despite the imperfect nature of the MMP fits and
OCR predictions for some compounds, our basic MMP model
simulates qualitative features of the OCR well. Moreover, the
MMP dynamics upon exposure to all mitochondrial complex
inhibitors are described well.

3.3 Compound Decay Explains MMP
Dynamics Following FCCP and Oligomycin
Exposure
We next asked if our basic MMP model could also describe
changes in MMP dynamics upon exposure to compounds that
disrupt the MMP through alternative means, i.e., the uncoupler
FCCP and the ATP synthase inhibitor oligomycin. Fitting the
basic model to MMP measurements for both FCCP (Figure 5,
cyan lines) and oligomycin (Figure 6, cyan lines) showed that the
data could not be well described for all concentrations.
Specifically, for intermediate and high concentrations of FCCP
(1 μM and higher), the MMP first decreased and then started to
recover at later time points. This phenomenon cannot be
described by our basic model, for which the MMP can only
decrease. As a side note, exposure to low concentrations of FCCP
(e.g., 0.000128 μM) seemed to lead to small initial increases of the
MMP. However, upon revisiting the unnormalized Rho123

intensities this appeared due to a single replicate out of four
replicates in which the MMP response to FCCP exceeded that to
DMSO from time points 3–24 h (Supplementary Figure S2,
replicate 2). Thus, the initial average MMP increase for FCCP
should not be interpreted as evidence for MMP
hyperpolarization.

Such a clear hyperpolarisation did occur for oligomycin, for
which the MMP initially increased and later decreased.
Interestingly, for low concentrations of oligomycin (up to
1.0 μM), the MMP first increased and after 4–6 h started to
decrease, eventually reaching lower values than the initial
MMP. For high concentrations of oligomycin (higher than
1.0 μM), the MMP increased and remained at high levels for
the entire imaging period. Our basic model can describe an
increase of the MMP, which is due to blocking of the proton
channel in the ATP synthase, but it cannot explain the late
decrease at low oligomycin concentrations.

To investigate which factors are required to quantitatively
describe the MMP dynamics observed upon exposure to FCCP
and oligomycin, we implemented several extensions to our basic
MMP model. First, we introduced pharmacokinetic decay into
the model to describe the possibility that compounds either stick
to plastic, are not stable over time or are metabolised (controlled
by the parameter c). Second, we considered the possibility of
concentration-dependent compound decay (by having different c
parameters for low and high concentrations), which could result
from saturation in the processes that lead to such decay. Third, we
introduced ion leakage into our model, because there is evidence
for proton or potassium ion leakage from the mitochondrial

FIGURE 3 |Model fitting to classical mitochondrial inhibitors antimycin A and rotenone. (A) Flowchart illustrating the steps for single-cell analysis, normalization and
model parameter estimation. (B, C) Quantified MMP dynamics and model fits upon exposure of HepG2 cells to antimycin A (B) and rotenone (C) at 10 concentrations.
Gray lines and symbols represent individual experimental replicates, black dots and shading represent the mean and standard deviation of all replicates, and cyan lines
represent best fits with the basic model. Note that all model parameters are kept free during parameter estimation.
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intermembrane space into the mitochondrial matrix when the
MMP is increased above basal level (Beard, 2005) (controlled by
the parameter α).

We incorporated these model extensions sequentially, starting
with an investigation of the effect of pharmacokinetic decay. For
FCCP, model extension with such compound decay was sufficient
to quantitatively describe the partial recovery of the MMP at late
time points (Figure 5, red lines). For oligomycin, model
extension with compound decay was still insufficient to
explain the MMP dynamics (Figure 6, red lines). However, a
model with both compound decay and leakage provided a
reasonable description for most concentrations of oligomycin
(Figure 6, black lines). In order to understand why adding
leakage to the model led to a better fit, we studied the

curvature of the MMP response at its peak and how it
depended on the applied oligomycin concentration
(Supplementary Text). Experimentally, the MMP curvature
clearly changed with increasing concentration (Supplementary
Figure S7A; blue), whereas analytical calculations showed that in
the model with only compound decay, the concentration had no
effect on curvature (Supplementary Figures S7B,C). Addition of
leakage to the model led to a qualitative agreement on the
curvature change with concentration (Supplementary Figures
S7A,D; black). The change in curvature with increasing
oligomycin concentration also suggested that the decay rate of
oligomycin might depend on its concentration. Indeed, addition
of concentration-dependent decay to our basic model further
improved the fit to the data (Figure 6, blue lines). Note that in this

FIGURE 4 | Comparison of model fits for various ETC inhibitors. (A, B) Landscape of simulated (shaded curved planes) and experimentally determined (gray lines
and symbols) concentration-time MMP response following exposure of HepG2 cells to deguelin (A) or azoxystrobin (B). Note that in these model fits several parameters
were required to be the same across all 22 ETC inhibitors used in the experiments (see Section 2). (C, D) Model fitting performance for all 22 ETC inhibitors (symbols)
tackling complex I (red), II (green), or III (blue), [either fitting the data for each inhibitor separately with all model parameters kept free (C), or using the combined data
for fitting with particular parameters in common (D). The p-values in (C, D) are based on a KS test.
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FIGURE 5 |Model extension with compound degradation is required for good fit to FCCP data. MMP data in response to various concentrations of FCCP (gray line
and dots indicate individual replicates; black dots and shading indicates the mean of replicates and 95% confidence intervals of means) are shown along with model
simulations for best-fitting parameters of the basic model (cyan lines) and of the model extended with compound decay (red lines).

FIGURE 6 | Model extension with ion leakage and/or compound decay improves the description of oligomycin data. MMP data in response to various
concentrations of FCCP (gray line and dots indicate individual replicates; black dots and shading indicates the mean of replicates and 95% confidence intervals of means)
are shown along with model simulations for best-fitting parameters of the basic model (cyan lines), of the model extended with concentration-independent compound
decay (red lines), of the model with ion leakage and concentration-independent compound decay (black lines), and of the model with concentration-dependent
compound decay (blue lines).
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latter model, ion leakage is not included and there is a different
decay rate for the four lowest concentrations (cL) and for the four
highest concentrations (cH).

We also analyzed structural model identifiability in order to
study whether model parameters can be determined uniquely, by
performing a profile likelihood analysis (Yang et al., 2016; Raue
et al., 2009) on the parameters c and α (Supplementary Text).
We found that the compound decay parameter c is structurally
identifiable (Supplementary Figure S8), but the ion leakage rate
α is not (Supplementary Figure S9). Our mathematical analysis
further showed that measuring the MMP in an absolute rather
than relative manner would make α structurally identifiable
(Supplementary Text; Supplementary Figures S10 and S11).
In summary, the conclusion with respect to the presence of ion
leakage and its exact quantity awaits further experimental
evidence. Nevertheless, application of our model variants to
the MMP dynamic data strongly suggests that compound
decay takes place both for FCCP and oligomycin, although in
the latter case this decay may be concentration dependent.

3.4 LC-MS/MS Measurements Confirm
Model-Predicted Compound Decay
In order to further quantify the uncertainty of the decay rate
parameters for FCCP and oligomycin (c), we utilized both a
profile likelihood analysis and bootstrapping. For the latter
approach, we generated artificial replicates based on intra- and
inter-plate variability (Methods). We applied this to our extended
model with only compound decay (for FCCP) as well as to the
model with compound decay and ion leakage (for oligomycin).

For FCCP, both our bootstrap (Figures 7A,B) and profile
likelihood (Figure 7C) analysis showed that c is clearly positive.
Thus, themodel-predicted amount of FCCPwithin cells is expected to
be substantially less after 24 h than at the beginning of the experiment
(Figure 7D). Interestingly, the bootstrap approach returned a more
widely distributed c, with wider confidence intervals at 95% or 99%
levels than the profile likelihood approach (compare Figures 7B,C),
presumably because of the variability between replicates. In order to
test the model predictions with respect to FCCP decay as an

FIGURE 7 | Intracellular compound measurements confirms FCCP degradation over time. (A) Scheme illustrating our bootstrapping approach. Data from both
technical and biological replicates were used to generate artificial data with realistic intra- and interplate variability (see Section 2). Artifical data were used for subsequent
model calibration. (B) Empirically determined cumulative distribution function (ECDF) of the estimated c values for bootstrapped data. Red line shows ECDF based on all
200 bootstrap samples, gray lines show 100 resampled bootstrap sets (with replacement), and vertical blue dashed line indicates the estimated MLE of the original
data. (C) Profile likelihood for c, where horizontal dark blue and light blue arrows indicate its 95 and 99% confidence interval. (D)Model-predicted FCCP dynamics within
cells based on 95% (dark blue shading) and 99% confidence interval (light blue shading) of estimated c, with profile-likelihood-based CIs. (E) Ratios between time points
2, 8 and 24 h (all possible combinations) of the LC-MS/MS-based intracellular concentrations of FCCP after exposure to a concentration of 10 μM (dots indicate all
possible values of the ratios based on separate measurements, and bars indicate the mean of all these ratios) and of the model-based CIs for the ratios. The model-
basedCIs either result from bootstrapping (gray) or from the profile likelihood analysis (blue), with the dark colours based on 95%CIs and light colours based on 99%CIs.
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explanation for the behaviour of the MMP over time, we quantified
the amount of remaining compound within HepG2 cells after
exposure to FCCP for 2, 8 and 24 h by LC-MS/MS, comparing the
ratios between these time points (Figure 7E, dots). This analysis
confirmed that substantial FCCP decay occurred on a time scale of
hours. In fact, decay was even stronger than predicted by the model
when taking into account the confidence interval for the ratios based
on the profile likelihood (Figure 7E, black bars), but fell within the
much wider interval resulting from bootstrapping (Figure 7E, blue
bars).

Application of bootstrapping to the oligomycin data led to a
curved ECDF for the leakage parameter α (Figure 8A), suggesting

that this is an identifiable parameter. However, our profile
likelihood analysis demonstrated that the leakage rate was not
identifiable (Supplementary Text; Figure 8B, Supplementary
Figure S9), confirming earlier work showing that confidence
intervals based on bootstrapping cannot be trusted for
structurally non-identifiable models (Fröhlich et al., 2014).
Mathematical analysis-informed fixation of selected parameters
led to an identifiable model (Supplementary Text;
Supplementary Figure S11). Moreover, reparameterization of
the ion leakage parameter (Supplementary Text) rendered a
well-behaved profile likelihood, both for concentration-
independent and -dependent decay c (Figure 8C). These two

FIGURE 8 | Uncertainty quantification and measurements for oligomycin. (A) Empirically determined cumulative distribution function (ECDF) of the estimated α

values for bootstrapped data. Red line shows ECDF based on all 200 bootstrap samples, gray lines show 100 resampled bootstrap sets (with replacement), and vertical
blue dashed line indicates the estimated MLE of the original data. (B) Profile likelihood for the leakage rate (α), for the model with compound decay and ion leakage is
utilized. (C, E) Profile likelihoods for the ensemble of parameters affecting leakage and ion flux via complex V (κ; see Supplementary Text) (C), for the oligomycin
degradation rate (c) (D), and for the ratio of effective concentrations at 24 and 2 h (E). (F) Model-predicted oligomycin dynamics within cells based on 95% (dark
shadings) and 99% confidence interval (light shadings) of estimated c values, with profile-likelihood-based CIs. In (C–F) either the model is utilized in which the structural
unidentifiability of the leakage rate has been solved, with concentration-independent decay c (black), or in which decay does depend on the oligomycin concentration
with c � cH for high concentrations (blue). (G)Ratios between time points 2, 8 and 24 h (all possible combinations) of the LC-MS/MS-based intracellular concentrations of
oligomycin after exposure to a concentration of 0.5 μM (dots indicate all possible values of the ratios based on separate measurements, and bars indicate the mean of all
these ratios) and of the model-based CIs for the ratios. The model-based CIs are based on the profile likelihood analysis for a model with concentration-independent
decay (black) or with concentration-dependent decay (blue), with the dark colours based on 95% CIs and light colours based on 99% CIs.
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model variants led to quantitatively different model predictions
for the oligomycin decay rate (Figure 8D) and thus of the
compound levels over time (Figures 8E,F). Finally, we
measured intracellular concentrations of oligomycin in HepG2
cells by LC-MS/MS after 2, 8 and 24 h of exposure to oligomycin.
At high applied concentrations of 0.5 μM, the ratios calculated
between these time points suggested a relatively low oligomycin
degradation rate with possibly a very limited degradation when
comparing the 8 h with the 2 h time point (Figure 8G, dots; note
that some measurements show a minor increase in oligomycin).
Degradation noticeably increased only at a time scale beyond 8 h.
These data had a large mismatch to predictions for the model
with concentration-independent decay and ion leakage
(Figure 8G, black bars). Therefore, we also compared the
compound ratios over time to the model with concentration-
dependent c, which matched reasonably well (Figure 8G, blue
bars). At low applied concentrations of 0.005 and 0.05 μM,
oligomycin measurements remained below detection levels at
all time points. This finding is consistent with the hypothesis that
oligomycin decay is more rapid at low than at high
concentrations, although more sensitive measurements are
required to demonstrate this experimentally. In summary, our
data and model-based analysis suggests that the complex MMP
dynamics observed upon exposure of HepG2 cells to oligomycin
could be due to compound decay that varies with the applied
concentration. For FCCP, the MMP response is simpler and
recovery of the MMP at late time points likely results from FCCP
degradation over time.

4 DISCUSSION

To quantitatively understand how cells respond to mitochondrial
OXPHOS inhibitors in terms of their MMP, we applied a
combination of live-cell high-content imaging and dynamical
modeling. Here we focused on the MMP resulting from exposure
to three classes of OXPHOS inhibitor, involving multiple ETC
inhibitors, an uncoupler and an ATP synthase inhibitor. After
simplification of a published model describing MMP dynamics
(Yang et al., 2015), we could fit data of exposures to 22
compounds. Furthermore, we showed that a likely explanation
for the observedMMP recovery at late time points upon exposure
to oligomycin and FCCP is that these compounds decay over
time, and possibly in a concentration-dependent manner for
oligomycin. Such instability may be attributed to intracellular
degradation due to the presence of particular enzymes facilitating
degradation. Alternatively, compounds may be chemically
unstable even in the absence of cells, or become trapped by
the plastics of the plate walls. Each of these pharmacokinetic
processes may saturate at high concentrations, in which case the
decay rate would become concentration-dependent, as could be
the case for oligomycin according to our findings. Note that the
fact that no MMP recovery occurred for the 22 complex I, II, and
III inhibitors and that our basic MMP model fitted well to these
data suggests that there is no substantial decay of these
compounds during 24 h. When confronting our set of
dynamic MMP models in the future with data for a new

compound, we advocate to first calibrate our basic model to
these data. Only when clear qualitative mismatches are observed
that might be indicative of early MMP increases or late
restoration of the MMP to baseline levels, model extensions
such as the presented extensions on compound decay should
be applied.

Our model does not consider a scenario in which
mitochondrially active metabolites are formed over time. Such
model extension is straightforward, yet we would advise to apply
this only in case two time scales are observed in MMP dynamic
data. The effect of metabolites that are formed very fast can likely
be described by the current model already, although it will then
not be possible to distinguish between effects of metabolites and
primary chemicals. Ourmodel also does not consider the scenario
where compounds inhibit multiple mitochondrial complexes.
The inhibitors in our current study indeed typically inhibit
only one of the complexes in the ETC (van der Stel et al.,
2020), although outside the employed concentration range the
compounds may inhibit multiple complexes. Other chemicals
that are non-selective with respect to the inhibited mitochondrial
complexes at low applied concentrations exist (Nadanaciva et al.,
2007; Dykens et al., 2008; Felser et al., 2013, 2014; Grünig et al.,
2017), and would be interesting to quantify with our integrated
imaging and dynamic modeling approach. Although it is not yet
clear whether the MMP resulting from such compounds can also
be described with our MMP model, this seems likely because we
showed that inhibitors of single complexes are all described with
reasonable fit quality. Because there are no obvious distinctive
dynamical patterns associated with the different mitochondrial
complex inhibitors, this means that our approach is unlikely to be
helpful in determining the detailed mode of action of ETC
inhibitors. However, for the special case of a compound
inhibiting both ATP synthase and complex I or III, the
interesting situation might arise where both an MMP decrease
and increase might occur. In that case, our models would be
helpful in teasing these competing effects apart.

The model fits to data for complex III inhibitors were overall
slightly better than for complex I inhibitors, which may in part be
due to variability of the MMP measurements. We speculate that
the current model may also miss some elements that are relevant
for some inhibitors to complex I. For example, the rate at which
cells take up particular inhibitors within mitochondria may vary
between the chemicals, which likely influences the dynamics of
the MMP response. Moreover, oxygen is consumed mainly by
complex IV activity, and because complex III is closer to complex
IV within the ETC than complex I is, this might explain the better
fitting result for complex III. Additionally, complex II activity
may become different in case of complex I inhibition compared to
complex III inhibition, and this may depend on components
available in the medium.

Our current model is focused on describing theMMP based on
the OCR (i.e., the right hand side of Eq. 1) and the effect of
various ETC inhibitors. Our model could be extended with ATP
as a third state variable, i.e., by describing its rate of production
and utilization, for instance based on FRET measurements
(Imamura et al., 2009). The production of ATP depends on
complex V activity which dissipates the MMP whilst
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synthesizing ATP. Moreover, cytosolic glycolysis generates ATP
and cells utilize ATP during their regular activity. Furthermore,
there could be feedback from the ATP level back to the oxygen or
MMP level. In the original model that we simplified (Yang et al.,
2015), several feedback loops were implemented, including a loop
from ATP to MMP. Because it is not clear whether the ATP level
indeed affects the MMP, it will be important to investigate this by
a combination of modeling and experimental ATP level
measurements.

With respect to the oxygen level, our model couples an oxygen
increase to an MMP increase. Moreover, a decrease of the oxygen
consumption rate (OCR) is expected upon exposure to ETC
inhibitors, and our model directly implements this (Eq. 2. We
therefore also generated model predictions for the OCR at a single
time point (30 min), which qualitatively matched the
experimental observations for the ETC inhibitors at that time
point. However, given that oxygen is not utilized for all complexes
of the ETC chain, the true relation between OCR and MMP is
likely more complicated than currently implemented. To
establish a quantitative match in the future, more detailed
temporal OCR measurements would be required. Our current
OCR simulations did highlight a potential issue for compounds
that hardly affect the MMP, such as complex II inhibitors:
simulations of the MMP matched the flat experimental data
very well, but the simulated OCR decreased greatly at some
applied concentrations. This could be due to parameter
identifiability issues for c1 and c0 together with other
parameters like the effective concentrations [DX]. For example,
when c1 approaches zero, tuning of c0 alone could be sufficient to
fit to an MMP that remains constant over time. This might be
solved by a combination of fixing the value of particular
parameters (e.g., c1) and using temporal OCR data for model
calibration. Thus, further model refinement is needed to
quantitatively describe the OCR quantitatively, which can best
be achieved by combining it with detailed OCR measurements.
One potential model modification that may be required to
quantitatively describe such data is to alter the mathematical
term describing the OCR. In our current model, this is
implemented as a Michaelis-Menten dependence, but
alternative relations might be required. Also for FCCP and
oligomycin, the relation between OCR and MMP is likely
more complicated than implemented in our current model.
For example, the OCR is known to swiftly increase to a
maximal level upon FCCP administration and subsequently
decreases, while at the same time the MMP primarily decays.
Besides further study of the quantitative relation between OCR
and MMP for different compounds, reaction oxygen species
(ROS) represent an important component to be included in
future modeling work. Oxygen and ETC complexes have an
important role in the generation of ROS (Liu et al., 2002) and
ROS are likewise important for cellular stress responses and
adverse effects (Stowe and Camara, 2009; Pereira et al., 2016).

For the complex V inhibitor oligomycin, our model selection
approach based on the MMP dynamic data suggested that these
dynamics could either be explained by concentration-dependent
oligomycin decay or by concentration-independent oligomycin
decay and ion leakage from the intermembrane space to the

mitochondrial matrix in case the MMP increases to values higher
than the steady state MMP level. Our subsequent LC-MS/MS
quantification showed that the oligomycin decay at high applied
concentrations was much lower than expected based on our
model with concentration-independent decay, and that at low
applied concentrations oligomycin remained below the detection
limit at all time points. This observation could either be explained
by an initial oligomycin concentration that is already very low, or
by fast decay at such low concentrations. Although experimental
measurements with increased sensitivity will be needed to come
to a definite conclusion, we tentatively conclude that the current
measurement results are at least consistent with a concentration-
dependent oligomycin decay. An alternative explanation is that
ion leakage is concentration-dependent. Such leakage at high
MMP levels is consistent with previous experimental
measurements suggesting a non-linear relation between
oligomycin concentration and MMP (Porter and Brand, 1995;
Berthiaume et al., 2003). In the biophysical model by Beard
(2005), leakage is included as a non-linear relationship
between leakage and membrane potential based on the Nernst
Equation (Beard, 2005). Although a non-linear mathematical
term might thus be more suitable than the linear term that we
employed, the model fit is already good with a linear term. Given
the difficulty that both oligomycin decay and proton leakage are
expected to impact MMP dynamics, it is not possible to fully tease
these factors apart based on the current data. Note that other ions
besides protons might also contribute to the leakage process and
we do not distinguish between these in our model. Further
experimental perturbations and integration of such
perturbation data into refined mathematical models are
required to unravel the ion channels contributing to leakage.

The results were substantially simpler for the uncoupling
agent FCCP, where model selection indicated that compound
degradation was a potential explanation for the observed MMP
dynamics. This prediction qualitatively matched the ratios of the
intracellular amount of FCCP experimentally obtained from LC-
MS/MS at different time points, although the measurements
indicated that FCCP decay may even proceed faster than the
model predicted. Therefore, as for oligomycin, a better
quantitative match may result from a concentration-dependent
instead of -independent decay, yet this would come at the cost of a
more complicated model.

Our model is part of a gliding scale of computational models of
cellular bioenergetics, that differ in terms of model complexity
and purpose. The biophysical model by Beard (2005) is quite
detailed, describing the various ETC complexes in mitochondria
separately, aiming to quantitatively understand the contribution
from these complexes and individual ions to the MMP within
individual mitochondria. Themodel by Yang et al. (2015) is much
simpler with respect to MMP, but aims to quantitatively unravel
the contribution of glycolysis and oxidative phosphorylation to
hepatocellular energetics for cells as a whole, focusing on the OCR
and the extracellular acidification rate (ECAR) and how these
vary in the context of different media. In a study aiming to
describe the effect of a small set of compounds on the MMP, Bois
et al. (2017) proposed an even simpler model with only one ODE,
showing that for some compounds this was sufficient to describe
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the effect on single time-point measurements of the MMP. Here,
we designed a model of intermediate complexity, such that it
could be calibrated to time courses of MMP measurements for a
range of compounds. In the absence of data on downstream
effects of the MMP changes such as ATP levels, we did not
include these processes in our model, but this can be done in the
future in a similar fashion as was done by Yang et al. (2015).

Computational approaches are becoming increasingly
important for safety evaluation of chemicals, and dynamical
models represent one of the approaches that will be useful for
that purpose in the future (Kuijper et al., 2017). Such models
represent a so-called quantitative adverse outcome pathway
(qAOP) or part thereof. An AOP is a concept frequently used
in toxicology to describe a sequence of events (a molecular
initiating event and subsequent key events) that is thought to
in the end lead to an adverse outcome (Villeneuve et al., 2014a;
Villeneuve et al., 2014b). Quantitative versions of such AOPs aim
to quantify the links between the events and adverse outcome
(Bois et al., 2017). The relative simplicity of our MMP model will
facilitate further regulatory usage as part of such a qAOP. The
relevant AOP would thus be related to mitochondria, in which
MMP loss contributes to mitochondrial malfunctioning
(Nicolson, 2014; Terron et al., 2018). In general, qAOPs
should be developed in careful consideration of both the
biological plausibility and availability of appropriate data. For
instance, our work suggests that it might be important to take the
potentially complex interplay between PK and early key events
(such as MMP decay) into account in mitotoxicity-related
qAOPs. Further integration of our model into qAOPs would
be useful and could contribute to an integrated tool for exposure-
led next generation risk assessment (NGRA) (Dent et al., 2018).

Such model-based tools help to identify thresholds for key
events and improve the quantification of key event relationships.
In our case, this would for instance involve the relation between
MMP and cellular ATP level. Although the AOP is a useful
concept for thinking about the events leading to toxicity, in reality
an AOP network is likely a more realistic representation (Leist
et al., 2017), which is defined as a set of AOPs sharing one key
element. As our computational model can capture multiple types
of insult to OXPHOS (e.g., inhibition to both complex I and V),
further case studies using our model as a basis could help the
development of AOP networks to be used during risk assessment
(Jarabek and Hines, 2019).

In conclusion, we developed a mathematical model that can be
utilized to study mitochondrial dysfunction and that can be
extended to describe subsequent cellular adaptation. Our
model, which was based on the model by Yang et al. (2015)
achieved good fits of the MMP dynamics for exposure to
mitochondrial ETC inhibitors, yet an extended model taking
into account concentration-independent or -dependent
compound decay was needed to properly describe the response
to the uncoupler FCCP and ATP synthase inhibitor oligomycin.
We also explored the potential role of ion leakage to explain the
concentration response to oligomycin, yet based on the currently
available data we cannot confirm its occurrence. We cannot
exclude that at high concentrations of oligomycin, cellular

toxicity affects the MMP dynamic response, although this was
not visible in terms of PI staining (Supplementary Figure S4).
Moreover, in our models we did not consider a potential
contribution of ATP synthase operating in reverse, during
which ATP would be used to increase the MMP rather than
vice versa. Despite these additional processes that may play a role
in explaining the MMP dynamics upon oligomycin exposure, our
current model-based analysis has generated several hypotheses
that can be tested with new experiments. Moreover, in the future
our model can be extended further with downstream effects of
MMP loss on e.g., cellular ATP levels and cellular adverse
outcome. Nevertheless, as emphasized above, the power of our
current model lies in its simplicity, which allowed for model
calibration to MMP dynamic data. In our opinion model
extension is thus primarily useful when appropriate data are
available with respect to additional pathway components.
Altogether, our work highlights the potential of data-driven
computational modelling to assist in the quantitative
unraveling of mechanisms contributing tomitochondrial toxicity.
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