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A B S T R A C T   

Aging is a multifactorial process likely stemming from damage accumulation and/or a decline in maintenance 
and repair mechanisms in the organisms that eventually determine their lifespan. In our review, we focus on the 
morphological and functional alterations that the aging brain undergoes affecting sleep and the circadian clock in 
both human and rodent models. Although both species share mammalian features, differences have been 
identified on several experimental levels, which we outline in this review. Additionally, we delineate some 
challenges on the preferred analysis and we suggest that a uniform route is followed so that findings can be 
smoothly compared. We conclude by discussing potential interventions and highlight the influence of physical 
exercise as a beneficial lifestyle intervention, and its effect on healthy aging and longevity. We emphasize that 
even moderate age-matched exercise is able to ameliorate several aging characteristics as far as sleep and 
circadian rhythms are concerned, independent of the species studied.   

1. Aging theories and the aging brain 

The previous century was associated with great scientific advances in 
the fields of medicine and biology leading to a significant increase of our 
life expectancy [1] however these advances were accompanied by sig
nificant open questions which remain an enigma even nowadays and are 
still under investigation. One such enigma is the process of aging. As it is 
shared in the current review, aging can be viewed as a point in life closer 
to the end where the variations in biological functions exceed the 
physiological range. Owing thus to this complicated nature of aging, 
several theories have been proposed over the years to shed light upon 
this matter. 

According to the error theories environmental factors affect the or
ganisms at various levels, inducing damage that eventually leads to 
death [2–5] the free radical theory supporting the accumulation of 
damage due to the augmented release of active free radicals comprises 
one of the protagonists of this group of theories. Furthermore, it is 
believed that aging is in a sense genetically programmed such as 
morphogenesis leading to another cluster of theories, the programmed 
ones [2–5]. In contrast to the other two blocks of theories, the evolu
tionary aging theories have been developed, suggesting that following the 
reproductive age there is a decline in maintenance and repair mecha
nisms in the organisms that ultimately leads them into their end [2–5]. 

During the last decades, experiments on the fruit fly Drosophila 
melanogaster have been extensively performed in several fields, 

including aging research, and it was proposed for the first time that life 
span may also be an inherited trait [6–7]. The heritability of human 
longevity has been estimated to be interestingly low (~15–30%), since 
life span generally integrates several aspects of health but also envi
ronment [8]. 

Irrespective to which aging theory is the prevailing one, aging is 
characterized by an age-dependent functional deterioration of cells and 
their products and pathways, tissues and whole organ systems which 
contributes to the end of life. 

Like all organs, our brain is also not spared from the effects of aging 
even though it has a remarkable resilience and plasticity. During the 
normal aging process across species, brain alterations are found at 
several organizational levels, starting from single molecules and 
extending up to brain morphology and size. These alterations reflect the 
normal aging process and are not necessarily associated with any 
pathological issues. 

In this review, in addition to human studies, we pay particular 
attention to rodent studies, since rodents have been extensively used as 
animal models in neuroscientific research contributing to remarkable 
advances. However, this facilitation comes at a cost, namely the trans
lation process from animals to humans. One evident difference between 
the rodent and human brain is the increased cortical dimension as well 
as the formation of a more elaborate cortical architecture in primates as 
compared to rodents [9]. It should be therefore noted that data from 
rodent studies ought to be treated with caution and albeit being helpful 
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they are not always sufficient to decipher the aging process in the human 
brain. 

In humans, it has been demonstrated that total brain volume declines 
as a function of age [10] at a rate of approximately 5% per decade 
following the age of 40 [11]. Likewise, albeit having simpler cortical 
structure as aforementioned, reduced cortical grey matter volume and 
enlargement of the brain ventricles has been observed in the mouse 
brain [12]. Aging likely affects white matter density, as findings across 
species including humans have indicated great reductions in the pre
frontal cortex as well as the anterior corpus callosum [13–14]. Notably, 
white matter volume changes in aging have been shown to be nonlinear, 
with a more rapid change with advancing age in humans, whereas gray 
matter has shown a smaller and more linear decrease [15]. In addition to 
the prefrontal cortex, one of the mostly affected areas in healthy aging, 
the hippocampus comprises another greatly affected area [16–18]. 
Advanced age has been additionally associated with widespread thin
ning of the cerebral cortex [19]. During the last decades it became 
apparent that in both rodents and humans, the age-related cognitive 
decline [20–21] is not a result of a loss of neurons, but most likely a 
diminishment in functional synapses in areas such as the cerebral cortex 
and hippocampus [16,22]. The aging brain is additionally characterized 
by a selective disruption of myelinated fibers that connect neurons in 
different cortical regions, which suggests a disruption of integrated 
function correlating with poor cognitive performance [23]. 

Overall, we see that even during healthy aging the brain does not 
come out unscathed and this is not pertaining to humans. In the 
following section, we delve into the sleep process and the brain mech
anisms that contribute to age-related sleep alterations in both humans 
and animal models. 

2. Sleep and the aging brain 

2.1. Universal sleep: Brain mechanisms 

Sleep, albeit being an almost universal component throughout the 
animal kingdom, remains one of the most puzzling behaviors and in
volves several pathways linked to brain activity. As several of these 
pathways together with their components and the brain itself begin to 
degenerate with time, the most logical view is that sleep will be also 
altered as a function of age likely due to this damage accumulation. 

Sleep in the course of aging is associated with a disrupted physiology 
possibly due to interrupted pathways and brain atrophy [24]. Elabo
rating, sleep quality gradually decreases in older humans, owing to 
reduced capacity to initiate and/or maintain sleep. Studies have shown 
that the amount of sleep is reduced in the elderly, with sleep complaints, 
frequent awakenings and superficial stage 1 sleep being common as a 
function of age [25–27]. Regarding the sleep electroencephalogram 
(EEG) lower slow-wave activity (SWA, EEG power density 
between ~ 0.75–4.0 Hz) in non-rapid eye movement (NREM) sleep is 
found, reflecting a less deep sleep, and reduced sigma activity (around 
13 Hz) during NREM sleep, beginning as early as the middle age 
[28–30]. 

Although sleep and its function are highly affected with age, the 
brain mechanisms contributing to age-related sleep alterations are not 
fully understood to date. The prefrontal cortex has been demonstrated to 
be impaired with age, possibly intervening with the sleep process [24]. 
In the medial prefrontal cortex, which is an area where NREM sleep slow 
waves show a dominance in origin and density over EEG derivations, 
gray matter is reduced in older subjects [24,31]. Notably, older subjects 
show lower slow-wave amplitude and density, as compared to young 
adults specifically in prefrontal and frontal brain areas [32]. 

The brain mechanisms that regulate sleep and wakefulness have 
been extensively discussed throughout literature [33]. Many brain areas 
involved in sleep-wake regulation can be found in the pons and the 
hypothalamus [34–36]. Two ascending pathways promote waking. The 
first pathway is active during waking and REM sleep, but less during 

NREM sleep [37] and runs from the pons to the thalamus and activates 
thalamic relay neurons. This pathway mainly consists of acetylcholine- 
producing neurons from the pedunculopontine and laterodorsal tech
mental nucleus [38]. The second pathway originates from multiple 
groups of monoaminergic neurons, including the serotonergic raphe 
nucleus, the noradrenergic locus coeruleus, the histaminergic tuber
omammillary neurons and the dopaminergic ventral periaqueductal 
grey matter [34–36]. These monoaminergic pathways project to the 
lateral hypothalamus as well as the entire cortex [39] and are most 
active during waking, less active during NREM sleep and virtually silent 
during REM sleep [19,40–41]. Together the two pathways are called the 
ascending reticular arousal system (ARAS). On the opposite side is the 
ventrolateral preoptic area (VLPO) which is thought to induce NREM 
sleep [42]. The VLPO is mainly active during sleep inhibiting ARAS by 
GABAergic projections with galanin as neuropeptide co-transmitter, the 
latter can also act as a neurotrophic factor. Besides the VLPO, additional 
sleep-inducing brain centers have been unveiled, such as the NREM and 
REM sleep promotion through the control of inhibitory reticular nucleus 
neurons by melanin concentrating hormone (MCH) neurons of the 
lateral hypothalamus [43–44]. 

Notably, alterations in the output of these pathways may contribute 
to age-related cognitive impairments. Increased concentrations of neu
rotrophic factors are able to restore cognitive function in aged animals 
[45], whereas the decreased expression of brain-derived neurotrophic 
factor (BDNF) in the hippocampus may contribute to age-related 
cognitive impairments [46]. Both BDNF and serotonin, likely acting in 
concert, in order to regulate aspects of neural plasticity in several brain 
regions, have been shown to be compromised in aging and age-related 
neurodegenerative disorders [47]. Moreover, recent research in both 
rats and humans points towards an imbalance in the cerebral dopami
nergic neuronal system in aging [48–49]. The cholinergic and mono
aminergic systems have also been demonstrated to be functionally 
impaired in the course of aging, with the metabolites of acetylcholine, 
dopamine, and noradrenaline being generally depleted in the cerebral 
cortex of aged rats and monkeys and humans [50–54]. Serotonin also 
plays an important role in several neural functions together with sleep 
regulation [55] diminished populations of serotonin receptors with age 
have been demonstrated in rat and human brains, therefore serotonin is 
also likely to contribute to age-related sleep alterations [56]. Although 
the translational aspect of the plethora of existing animal research 
studies is significant, additional future human studies, that are scarce 
regarding the aforementioned sleep and wake brain pathways and 
associated neurotransmitters, are needed to have a more complete 
picture. 

We can, therefore, conclude that several age-related changes occur, 
affecting brain pathways implicated in sleep. Future research based on 
human subjects will likely clarify this notion. 

2.2. Rodent as an aging model for sleep 

Mouse models have been proven to be an important laboratory tool 
into the investigation of fundamental research questions that concern 
humans. Although both species share mammalian features, differences 
have been identified on several experimental levels. Regarding the field 
of sleep, an overall different pattern has notably been observed between 
mice and humans. 

In particular, it is not until recently that the whole spectrum of age- 
related sleep alterations, including EEG spectral changes and cortical 
electrophysiology was fully documented [57–59]. It was found that 
older mice differed in their sleep architecture and the sleep EEG char
acteristics compared to young mice. We demonstrated that during the 
night, the older mice were less awake and showed an increase in NREM 
sleep due to elevated numbers of long NREM sleep episodes as well as 
fewer long waking episodes. At the end of their rest period the older 
mice also showed decreased REM sleep [57]. These findings were in 
agreement with other studies conducted in mice [58,60–64]. Regarding 

M. Panagiotou et al.                                                                                                                                                                                                                            



Biochemical Pharmacology 191 (2021) 114563

3

the sleep EEG features, older mice showed higher EEG SWA in NREM 
sleep (see text box) in addition to a generally altered slow-wave 
morphology compared to young mice, including altered slow-wave 
slopes, decreased sigma activity (activity between 9 and 13 Hz) during 
the down state of the slow-wave, and a decrease in the number of 
multipeak waves [57]. The finding on SWA in NREM sleep suggests that 
elderly mice are likely to live under higher sleep pressure conditions, 
while the ensemble of the morphological differences in slow-wave at
tributes indicates altered brain network properties in the elderly mice. 
Augmented SWA in the NREM sleep EEG was also found in older mice in 
two subsequent studies [58–59]. Interestingly, it was shown that the 
local cortical neural dynamics and local sleep homeostatic mechanisms 
were not impaired during healthy senescence in mice [58]. 

Summarizing the existing data, we can conclude that aging affects 
sleep in humans and mice in different, somewhat opposing ways. More 
specifically, regarding aged humans, in addition to complaints falling 
asleep, their sleep is characterized by fragmentation, being overall 
attenuated in its amount and less efficient together with a decrease in 
the SWA in NREM sleep [28,65–67]. In contrast, older mice sleep more 
and show higher EEG SWA in NREM sleep [57–59]. 

Although these differences remarkably emerge in sleep, aged circa
dian rhythms coincide between humans and mice, both showing a clear 
attenuated fashion as it is discussed in the following paragraphs. 

2.3. Aging and the circadian clock 

Virtually all organisms have developed a biological circadian clock 
to adapt the daily scheduling of physiological processes in the body to 
daily environmental changes caused by the rotation of the earth. In 
mammals the central circadian pacemaker is located in the suprachias
matic nucleus (SCN) of the anterior hypothalamus [68]. The SCN gen
erates a circadian rhythm in electrical activity which is controlled by the 
action of molecular oscillations. Changes in the SCN, as well as other 
parts of the circadian timing system are thought to underlie sleep dis
turbances in elderly people [69–70]. Even in healthy aging the signal of 
this endogenous clock seems to weaken, resulting in (among others) 
altered timing of sleep and less consolidated sleep phases, diminished 
rhythms of body temperature and hormones [71]. This attenuation of 
the central timing signal leads to increased variability in the phases of 
peripheral oscillators controlling physiological functions outside the 
SCN. It has been suggested that this can cause or aggravate health 
problems, like metabolic syndrome, neurodegenerative disorders and 
cardiovascular disease [72]. Recently several age-related changes in 
physiology in the SCN in mammals have been identified. 

2.4. Circadian rhythms in aging 

With aging the daily timing of processes in our body changes. The 
most noticeable change is a phase advance in several rhythms, such as 
the daily decrease in body temperature and the onset of sleep in the 
evening [73], which has also been described in nonhuman primates [74] 
and rodents [75], and the reduction in circadian amplitude of physio
logical and behavioral rhythms [60,71]. However, the effect of age on 
the intrinsic circadian period length seems to depend on species and 
genetic background. The endogenous circadian period of locomotor 
activity shortens in aging hamsters [76–77], primates [74] and rats [78], 
whereas the period lengthens in inbred mice [60,79]. In contrast in 
humans no significant change in period was found [80]. 

The SCN consists of a network of approximately 20.000 neurons in 
mice. Molecular clocks in each SCN neuron interact to accomplish a 
circadian modulation in cell physiology as they control a variety of ionic 
conductances. This results in circadian changes in neuronal excitability 
and a circadian rhythm in electrical activity which peaks in the middle 
of the day [81]. In individual SCN neurons the peak in activity lasts for 
approximately 4 h and a major task of the SCN network is to construct an 
ensemble waveform that encodes dusk, dawn and daylength [82–83]. 

Many age-related deficits in the circadian system are likely based on 
changes in physiology and function within the SCN neuronal network 
[84]. 

For the SCN to function as a reliable circadian parameter, it needs to 
synchronize to the environmental light–dark cycles. For this, non-visual 
light information is processed by photosensitive retinal ganglion cells 
and relayed to the SCN through retinal hypothalamic fibers containing 
glutamate as their main neurotransmitter [85]. Most retinorecipient 
SCN neurons are then activated through their glutamate receptors, 
which leads to an increase in intracellular calcium and a subsequent 
change in the expression of clock genes initiating phase shifts [86–87]. 
The possibility of phase shifting by light is relatively reduced during the 
day and resets the SCN to correct for differences between the phase of 
the internal clock with the phase of the external light–dark cycle. In the 
course of aging, the ability to synchronize or reset the internal clock 
phase is hampered in humans [88] and in rodents [60,89–91]. This 
reduction is reflected in the increased light intensities required to ach
ieve similar entrainment in the elderly compared to young subjects [92] 
and in non-human primates [93]. This can be caused by a reduction in 
light transmission of lens and pupil [92], and an aging induced decline 
in photosensitive ganglion cells as was observed in rodents [94]. Also in 
the SCN age-associated changes occur in glutamate receptor function 
[95] and modulation [96] that can contribute to this. 

As mentioned, one of the clearest features in aged circadian rhythms 
is the reduction in circadian amplitude. Recordings in the SCN of aged 
mice found that this feature is reflected in a significant reduction in 
amplitude of the electrical activity rhythm [60,97]. This is probably not 
due to a loss of SCN neurons in the course of aging, as cell counts of SCN 
neurons in aged mice and rats did not find a significant change with age 
[98–99]. Aging does lead to a decrease in SCN neurons expressing VIP 
and AVP [99–102]. Also GABA-ergic signaling is reduced in aged ani
mals [60,103–104]. Together the data suggest that the reduction in SCN 
output amplitude may be caused by age-dependent changes in neuro
transmitter signaling, which then results in reduced synchronization 
between SCN neurons causing a reduction in amplitude [105]. 

Analogous to this, the reduction in phase resetting capacity in the 
course of aging may also be related to the reduction in SCN amplitude. 
This decrease in amplitude is probably caused by an increase in phase 
dispersal of the individual neurons. This situation is very similar to 
animals adapted to a long photoperiod where the increase in phase 
dispersal is paralleled by a decrease in phase shifting capacity 
[106–107]. 

Both the decrease in peak activity in single neurons and the activity 
of neurons at the wrong time of day (i.e. more active neurons during the 
night) result in a dampened amplitude in the whole SCN ensemble. 
Remarkably, this age depended dampening in neuronal activity rhythm 
was greater on the cellular level compared to the whole SCN [60,97] 
suggesting compensation of SCN functioning on the network level. 
Nevertheless, some of the changes seen in sleep in the course of aging are 
probably caused by changes in circadian regulation. In particular the 
fragmentation of waking in the dark period observed in aged mice [57] 
and the fragmentation of sleep in the same circadian phase in humans 
[71] can be a consequence of the increase in improper night time elec
trical activity of SCN neurons. 

Considering the effects of aging, from the circadian SCN mechanis
tics perspective (from light input information to SCN behavioral output) 
mice and humans are strikingly similar, but when taking into account 
their sleep and sleep EEG, striking differences emerge. In addition, most 
laboratory rodent models used to date are nocturnal and mostly devoid 
of melatonin, a key signal of the circadian system [108]. Generally, 
melatonin can produce phase shifts when applied at pharmacological 
doses, so it is used as a chronotherapeutic “drug”. More importantly, 
endogenous melatonin seems to stabilize synchronization and enhance 
light-induced entrainment in old hamsters [109–110]. However, despite 
the fact that melatonin-deficient nocturnal animals are used in research, 
they are able to phase shift after melatonin application and interestingly 
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the response curve is almost identical to the day-active animal [111]. 
Indeed, the grass rat that can be either nocturnal or diurnal has the same 
melatonin profile in both behavioral subtypes, even though the activity 
of the paraventricular nucleus of the hypothalamus (PVN) is 180 degrees 
out of phase [112]. Discussing, therefore, the nocturnal laboratory ro
dent models, tt is not surprising that differences in sleep patterns are 
found and future studies including diurnal animal models may show 
more similarities to human studies. However, exploring through various 
environmental factors that are shown to influence both human and 
mice, we are able to test whether despite the prior differences these 
factors converge into any improvements in sleep. For example, physical 
activity, known already for it beneficial effects, including cognition, 
mood, general body and brain health across ages, is able to ameliorate 
sleep as well in both humans and mice, as it will be discussed in the 
following section. 

3. Exercise and brain age 

Aging is a physiological process that occurs asynchronously in 
different brain areas while the rate of that process is dependent on the 
lifestyle of the individuals. As stated in the beginning of the current 
review, life span largely depends on environmental factors in addition to 
having a small hereditary component [8]. Many factors are likely to 
intervene in aging, leading to either detrimental or beneficial effects, 
which in turn could accelerate or decelerate parts or the whole aging 
process. 

Two salient lifestyle interventions, able to promote healthy aging 
and longevity, are caloric restriction (e.g. intermittent fasting) and 
physical activity [113–114]. Extensive studies on the cellular and mo
lecular hallmarks of aging and lifestyle interventions have been reported 
earlier [84,115–116]. In the present review we focus on exercise which 
constitutes a factor that has gained a lot of attention the last decades 
regarding general health. Specifically aerobic exercise has been shown 
to improve cognition, memory and mental health, as well as to promote 
structural and functional plasticity in the brain, mimicking the action of 
antidepressants [114,117–121]. Physical activity, such as wheel 
running, is able to phase shift and entrain the circadian rhythms in ro
dent species [122–124] and it has been assessed as a phase-resetting cue 
in humans, especially useful for totally blind and elderly people 
[125–127]. As far as the elderly are concerned, even moderate exercise 
can still be beneficial, since cognitive functioning is particularly 
enhanced [128–129]. Hippocampal volume loss commonly found in 
aged humans has been shown to be restored after solely one-year 
walking training [130]. Notably, exercise has been proposed as an 
alternative treatment in order to ameliorate potential sleep disturbances 
in both young and aged humans [117,131–134]. 

The effect of prolonged physical activity has recently been pro
foundly investigated on sleep, the sleep EEG and circadian behavior in 
mice [135]. Elaborating, in that study, a running wheel was available in 
the cages of the mice for up to three months for voluntary use on a daily 
basis. This was followed by sleep recordings, which were performed 
with an absence of the running wheel [135]. It was demonstrated that 
aging reduced significantly the strength of the 24-h rhythm. Further
more, young mice provided with a wheel were more awake and slept less 
in the dark period compared to young controls, resembling sleep pat
terns from mice recorded concomitantly with a running wheel 
[136–137]. This effect was attenuated in the aged mice [135]. However, 
the aforementioned age-related increase in the EEG SWA levels in NREM 
sleep in mice [57–59], was markedly counteracted by long-term exercise 
in mice towards levels similar to young sedentary mice [135]. The 
running wheel was introduced much later in the life of the aged mice, 
and these aged mice ran overall less compared to the young ones; 
however even this moderate exercise was able to induce significant 
changes towards a younger brain phenotype [135]. Additionally, by 
conducting machine-learning analysis based merely on the SWA in 
NREM sleep, the different groups could be classified and accurately 

distinguished, showing that characteristic information regarding age 
and exercise was actually enclosed in SWA, pointing towards a younger 
brain age after exercise [135]. In a similar way, it was demonstrated that 
in the elderly, after short- and long-term exercise, SWA levels and slow- 
wave-sleep were altered, reaching levels closer to younger subjects 
[132,138,139,140]. 

As it has been discussed across literature, individuals having the 
same chronological age may vary in health, disease and disability, and 
hence, although coeval they may differ in biological age, which in turn 
can be influenced by parameters such as genetic background, disease 
and lifestyle [141–145]. Several EEG features have been successfully 
used in brain age prediction, and age group classifications, since they are 
found to be altered in the course of aging [146–147]. There is mounting 
evidence that also the sleep EEG could provide information to success
fully predict brain age and therefore to be a very useful tool for research 
and medicine [132,135,138–140]. 

A prominent role of physical activity in general body and brain 
health enhancement has therefore emerged, which may improve the 
quality of life even in advanced age. Concluding, we suggest that, first, 
even moderate age-matched exercise is likely to ameliorate several 
aging characteristics while attenuating the effects of sedentary behav
iors, such as the elevated sleep slow waves that we portrayed and sec
ond, that it could be prescribed as a first-order “medication” for general 
body as well as brain health augmentation throughout the whole age 
spectrum. 

4. Textbox 

4.1. EEG slow-wave activity: Plots and challenges 

The result of an EEG spectral analysis or power density analysis and 
in particular the hourly time course of slow-wave activity (SWA), also 
called delta power or delta activity, is usually plotted in relative values. 
The advantage of using relative values is that the interindividual dif
ferences in (baseline) power are eliminated. This approach is appro
priate in cases where an analysis is performed on a particular 
experimental intervention within the same animal. It is also more 
needed in animal research as there is less standardisation of the 
recording conditions when it comes to electrode placement and elec
trical properties of the recording conditions, like for instance a standard 
impedance over the electrode. However, when different groups of ani
mals need to be compared, as is for instance the case in aging, this choice 
can be challenging. In human sleep and aging research, when comparing 
EEG variables like power density or slow-wave amplitudes, this is done 
by expressing these in absolute µV’s instead of relative values 
[28,28,66,71]. Here, the general conclusion in human research is that in 
the course of aging SWA in NREM sleep is decreasing. However, a 
different approach has been used in animal research, where mainly 
relative values have been chosen to compare SWA between age groups 
[63,148] with the results obtained suggesting that also in mice SWA 
decreases in the course of aging. As described in the main text, this is not 
exactly the case [57–59]. Below, we discuss the ways that the daily time 
course of SWA values have been plotted across literature. 

First, in Fig. 1A every 2 h-data point is plotted relative to the average 
SWA over the 24 h baseline day. This 24-h reference is used in many 
animal sleep publications analysing the time course of SWA over time. 
Differences between the two age groups are not very large, but during 
the baseline day, particularly in the middle part it seems as if the older 
group has a higher SWA compared to the younger group. Second, in 
Fig. 1B the data are plotted relative to the level of SWA in the first hour, 
a method less often used. Here the differences between young and old 
become a little larger and again we find that the older group shows a 
higher slow-wave activity compared to the young. Third, Fig. 1C shows a 
relatively new way of plotting SWA [149]. The idea is that during the 
last 4 h of the baseline rest period (here in the mice the end of the light 
period) animals are producing the lowest SWA over the entire day. It is 
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assumed that this is for all groups compared a similar condition and 
therefore plotting SWA relative to the SWA produced during this period 
should allow a fair comparison between different groups of animals. 
When plotted like this, we see the opposite result compared to the 
methods in Fig. 1A and B. Particularly during the first part of the rest 

phase and the end of the active phase the older group has a lower SWA 
compared to the young group (See also [63,148]). These three types of 
standardization therefore result in two opposite conclusions. 

In Fig. 1D, SWA is plotted in µV2’s, as is done in human sleep research 
on aging. This is possible here because the EEG recording system used is 
regularly calibrated by sending a known signal (here 10 Hz, 300 µV 
peak-to-peak) through the system, so it is known what signal enters the 
setup on the side of the animal and what amplitude and frequency comes 
out on the side of the recording system. The variability in SWA increases 
here, and in the older group this increase is even rather large. However, 
what is clear is that the older group shows levels of absolute SWA which 
are higher compared to the young and in some intervals this difference is 
significant. We have shown previously that this increase is specific for 
SWA in NREM sleep and that the difference over 24 h is significant [57] 
and [135], and this result was confirmed independently by two other 
groups [58–59]. The first conclusion is that in the course of aging in mice 
the change in absolute SWA shows an opposite direction (increase) 
compared to humans (decrease). Second, without forcing a specific 
methodological approach, we suggest that a uniform route is cautiously 
followed so that findings can be smoothly compared. 
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