Marquette University

e-Publications@Marquette

Electrical and Computer Engineering Faculty Electrical and Computer Engineering,
Research and Publications Department of
2021

A Surrogate Weather Generator for Estimating Natural Gas Design
Day Conditions

David J. Kaftan
George Corliss
Richard J. Povinelli

Ronald H. Brown

Follow this and additional works at: https://epublications.marquette.edu/electric_fac

b Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons


https://epublications.marquette.edu/
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric_fac?utm_source=epublications.marquette.edu%2Felectric_fac%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=epublications.marquette.edu%2Felectric_fac%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=epublications.marquette.edu%2Felectric_fac%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages

energies

Article

A Surrogate Weather Generator for Estimating Natural Gas
Design Day Conditions

David Kaftan *, George F. Corliss, Richard J. Povinelli and Ronald H. Brown

check for

updates
Citation: Kaftan, D.; Corliss, G.EF,;
Povinelli, R.J.; Brown, RH. A
Surrogate Weather Generator for
Estimating Natural Gas Design Day
Conditions. Energies 2021, 14, 7118.
https:/ /doi.org/10.3390/en14217118

Academic Editor: Carlos Guedes

Soares

Received: 1 September 2021
Accepted: 25 October 2021
Published: 1 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Marquette Energy Analytics, Marquette University, Milwaukee, WI 53202, USA;
george.corliss@marquetteenergyanalytics.com (G.EC.); richard.povinelli@marquettte.edu (R.J.P.);
ronald.brown@marquetteenergyanalytics.com (R.H.B.)

* Correspondence: david. kaftan@marquetteenergyanalytics.com

Abstract: Natural gas customers rely upon utilities to provide gas for heating in the coldest parts
of winter. Heating capacity is expensive, so utilities and end users (represented by commissions)
must agree on the coldest day on which a utility is expected to meet demand. The return period of
such a day is long relative to the amount of weather data that are typically available. This paper
develops a weather resampling method called the Surrogate Weather Resampler, which creates a
large dataset to support analysis of extremely infrequent events. While most current methods for
generating weather data are based on simulation, this method resamples the deviations from typical
weather. The paper also shows how extreme temperatures are strongly correlated to the demand for
natural gas. The Surrogate Weather Resampler was compared in-sample and out-of-sample to the
WeaGETS weather generator using both the Kolmogorov-Smirnov test and an exceedance-based test
for cold weather generation. A naive benchmark was also examined. These methods studied weather
data from the National Oceanic and Atmospheric Administration and AccuWeather. Weather data
were collected for 33 weather stations across North America, with 69 years of data from each weather
station. We show that the Surrogate Weather Resampler can reproduce the cold tail of distribution
better than the naive benchmark and WeaGETS.

Keywords: weather generator; design day conditions; extreme cold temperatures

1. Introduction

This manuscript presents a novel extreme weather generator. Our Surrogate Weather
Resampler (SWR) provides substantially more examples of very cold days by a translation
method that transforms near extreme cold days to have a similar statistical distribution as
the coldest days. This is performed by examining weather conditions during the whole
of winter. We compared our SWR against a naive benchmark that estimates the coldest
days without examining the entire winter and against the WeaGETS weather simulator [1].
The results show that the new SWR outperforms both. The contributions of this manuscript
are the novel SWR, a comparison of the three weather generators on 33 weather stations
each with 69 years of data, and a description of how such weather is used by natural
gas utilities in determining design day conditions, which is the coldest day on which a
utility is obligated to meet demand [2]. While weather generators are commonly tested
in their ability to reproduce extremes, this is, to the best of our knowledge, the first work
comparing methods for determining 1-in-N conditions for the natural gas industry.

As a motivation for this work, we need only recall the cold wave of early 2019 that
broke temperature records across the American Midwest. This resulted in record-breaking
natural gas demand [3] that put stress on the gas utility infrastructure, i.e., their ability to
provide enough gas to their customers during such extreme weather conditions. In the
winter of 2021, some utilities in Texas were unable to provide enough gas during another
cold event resulting in electric utilities losing their ability to run their natural gas-fired
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plants [4]. Being able to have the appropriate infrastructure requires accurate estimates of
design day conditions.

The gas supply planning organization within a utility is responsible for ensuring
that sufficient natural gas can be delivered to meet the customers’ demands, especially
critical on extremely cold days when the customers’ needs are high. Utilities and regulatory
commissions must agree on the weather characteristics of the design day—known as
the design day conditions. Natural gas infrastructure is expensive, so determining the
extremity of weather for which a utility must prepare requires balancing the cost of the
infrastructure and risk of demand exceeding capacity. Once a level of risk is agreed upon,
utilities must determine the design day conditions that correspond to that risk. Determining
the design day conditions is difficult because the likelihood of them occurring (i.e., once
in 30 years) is very small compared to the amount of data available. The SWR generates
data that accurately represents the extremely cold weather of an area allowing for better
estimates of design day conditions.

To that end, the paper defines design day conditions and describes the current methods
for determining the likelihood of such days. It continues to propose a novel method for
creating larger weather datasets and evaluates our method’s impact on choosing the
extreme weather used for the design day.

The remainder of the paper is organized as follows. The next section provides back-
ground on weather generators and design day conditions. Section 3 describes the Surrogate
Weather Resampler (SWR) method. In Section 4, we present the dataset, discuss preprocess-
ing, and compare the SWR method against the naive approach and WeaGETS. Section 5
discusses the results for both in-sample and out-of-sample experiments, and Section 6
provides a conclusion.

2. Background
2.1. Generating Extreme Weather

There are several ways to generate larger weather datasets. In Navigant’s design day
study for Enbridge Gas Distribution [5], they modeled wind speed and heating degree day
(HDD), which is a nonlinear transformation of temperature. Let T be the temperature and
Ty be the reference temperature, then

HDD"f = max (0, Tre — T) )

Typically, T, is set to 65° F, which is the approximate temperature at which natural
gas customers will turn on their furnaces. Navigant built three parameter linear models
for wind speed and HDD. Each model had an intercept term, an autoregressive term,
and a monthly dummy variable. They fit a log-normal distribution to the error of these
models then sampled from the error distribution using Oracle’s Crystal Ball Monte Carlo
simulation software [6]. Using the Monte Carlo error samples, they generated HDD and
wind speed distributions using their linear models.

Semenov uses a stochastic weather generator (LARS-WG) to build 300-year datasets
to which he fit the generalized extreme value distribution [7]. Semenov examines the 10-
and 20-year return periods for three weather conditions: maximum temperature, heatwave
duration, and rainfall. He looks at 20 weather stations of various climate zones in Europe
(10), North America (8), Australia (1), and New Zealand (1). His method fit the average
maximum temperature, rainfall, and heatwave duration well. The 10 and 20 returns fit
reasonably well but with greater variance.

Tebaldi et al. use nine atmosphere-ocean generalized circulation models to simulate
weather data [8]. They identified five indicators of temperature-related extremes and five
indicators of precipitation extremes. They examined the trends from 1960 to 2000 and then
used the generalized circulation models to simulate weather for the 21st century predicting
that extreme cold events would increase.
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Chen et al. simulated minimum and maximum temperatures and daily precipitation
using linear autoregressive models [1]. Their weather generator (WeaGETS) outperforms
popular WGEN and CLIGEN weather generators in reproducing temperature data. How-
ever, WeaGETS inaccurately recreates cold quantiles of temperature datasets and struggles
to reproduce the minimum temperature of a 60-year dataset. In an experiment with two
weather stations, WeaGETS simulated extreme cold temperatures that were much colder
than occurred.

WeaGETS is one of the methods to which we compare our SWR approach. To that end,
we next describe in detail how WeaGETS generates temperatures. The WeaGETS algorithm
uses a linear autoregression model to generate daily minimum and daily maximum tem-
perature. First, residual temperature time series were created by subtracting daily mean
temperature from the maximum and minimum temperature time series and dividing by
the standard deviation of the temperature. A linear autoregressive model was fit to the
residual time series.

The minimum and maximum temperatures are generated using the following equa-
tions. Let Tmax and Tin be the generated maximum and minimum temperatures, respec-
tively. Let pmin and o'min be the mean and standard deviation of the minimum temperatures.
Similarly, let pimax and omax be the mean and standard deviation of the maximum tem-
peratures. Finally, let 7in and rmax be the residual minimum and maximum temperature
generated from the linear autoregressive model, respectively. If 0 max > Omin, then

Tmin = Hmin T Omin"min (2)
Tmax = Tmin + (ﬂmax - ﬂmin) + Ur%nax - Uﬁﬁn X Tmax 3)
If omax < Omin then
Tmax = Hmax T Omax’max (4)
Tmin = Tmax — (,umax - ,umin) —\[O2  — 02 X Fmi 5)
min max min

Next, low-frequency variability is modeled and removed using a power spectral
approach. For more details on the WeaGETS method, refer to [1].

2.2. Design Day Conditions

Oliver et al. [9] set out three ways that utilities define design day conditions: the quan-
tifiable metric of extreme weather (i.e., temperature); the odds of the event occurring (i.e.,
1-in-30 years); and the period over which the extreme weather occurs (i.e., day, week).

The metric used for design day conditions must be predictive of gas demand and
understandable by a utility’s customer base. A predictive metric gives utilities an idea
of how much gas will be demanded on design day conditions. On the other hand, an
understandable metric allows utilities to make transparent obligations to their customers
about how much demand they will be able to fill. Temperature is such a metric with both
predictive and understandable properties. The relationship between temperature and gas
demand is well documented [10-12], and the public understands the utility’s commitment
to heat their homes down to a certain temperature.

In [10], Sarak and Satman calculated HDD with reference temperatures of 15,17, and
18.3 °C to estimate the natural gas demand needed for residential heating in Turkey. The
temperature of 18.3 °C corresponds to 65 °F. Let U be the heat transfer coefficient, H the
fuel heating value, 7 the heating system efficiency, HDY be the heating degree year, which
is the sum of the heating degree days for a year, and #n the number of residences. They
modeled the energy consumption, Q, for heating as

Q= n}l};HDY (6)
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Assuming 100% saturation of natural gas use, their forecast for total residential natural
gas use in Turkey was 14.9 Gm? in 2023.

Aras and Aras build monthly natural gas demand models using a heating degree
month (HDM), which is calculated as the sum of heating degree days in a month [11]. They
used different nonlinear models for the heating season and non-heating seasons. Let d; be
the demand for month ¢, R; a residual component then they model heating season as

dt — eﬁOeﬁlteﬁZHDMteRt (7)
For the non-heating season, they model demand as
d; = BotPr HDMY2R: ®)

They achieved a yearly MAPE of 0.16% using the two nonlinear models.

In [12], Vitullo et al. showed the relationship between temperature and natural gas
demand. They built both neural network and linear models for forecasting natural gas
demand using temperature as an input. Their linear model includes terms for HDD at
reference temperatures of 55 °F and 65 °F, cooling degree days, and change in HDD between
days. Let T} be the temperature at time £, T, be the reference temperature, then the cooling
degree day is defined as

DD, = max(Ty = Tyef, 0) ©)
Let H DDtTrEf be the HDD at T, then the change in HDD is

AHDD," = HDD," — HDD," (10)
Let d; be the daily demand for day £; then, Vitullo et al. proposed a five-parameter model.
d; = Bo + B2HDD® + BoHDD;” + BsAHDD{® + p,CDD{° (11)

Additional components of more complicated versions of their model include wind
adjusted HDD, day of the week indicators, and sine and cosine of the day of the week.
Their neural network is ensembled with the linear model to produce the final forecasts.

Temperature can also be adjusted to be more predictive of gas demand. HDD, see
Equation (1) above, is a temperature adjustment that takes advantage of the linear rela-
tionship of gas demand and temperatures below 65 °F. Temperature is highly correlated
with natural gas consumption below 65 °F, as illustrated in Figure 1 below. The portion of
the graph with temperatures less than 65 °F represents the effects of space heating or the
heat load. The portion of the graph greater than 65 °F represents the baseload, where the
baseload includes water heating and industrial use of natural gas. The use of natural gas
for heating above 65 °F is minimal. For temperatures below 65 °F, there is a linear trend
with an r? of —0.98, which indicates that as temperature decreases, natural gas consump-
tion increases. Other weather variables such as wind do not have as high a correlation
with natural gas consumption with an r? of 0.22. However, the wind can be used as an
adjustment for temperature [12], as can prior day temperature [13], and solar radiation [9].
Figure 2 below illustrates the lack of data at extremely low temperatures and flows, as seen
on the right-hand side of the figure. This dearth of data at the extremes, which is exactly
where the design day conditions occur, further indicates the need for weather generators
such as our SWR.
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Figure 1. The blue dots represent the temperature at a particular flow. The 65-Temperature (°F) is
related to the HDD but without the maximization term.
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Figure 2. The number of occurrences at a given flow and temperature.

The probability of design day conditions occurring is characterized in one of two ways.
Some utilities consider an event that has a 1/N probability of being below a given tem-
perature (one or more times) in a given year [14]. Other utilities consider an event that
is expected to be exceeded one time in N years [15]. Due to autocorrelation in weather
temperature, these two probabilities yield different results. Table 1, below, describes the
1-in-N year probability used by different utilities according to four surveys. The Oliver
survey counts the number of European countries using each range of N [9]. The other
three surveys account for utilities in the United States. Integrated Resource Plans (IRPs)
are utility reports of their design day conditions [14-18]. The American Gas Association
(AGA) survey notes that eight additional utilities chose values of N between 25 and 100
but did not specify the exact values [19].
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Table 1. The 1-in-N year probability that defines an extreme event varies from utility to utility. Below
is the choice of N across several surveys of utilities.

Survey N<16 16 <=N <26 26 <=N <36 N >=36
Oliver [9] 0 2 0 3
Navigant [5] 3 3 2 1
AGA [19] 5 10 27 0
IRPs [14-18] 1 0 2 2
Total 9 15 31 6

Finally, design day conditions are defined by their duration. Five days of cold weather
stress a utility differently from one day of extreme cold. For the sake of simplicity, this
paper focuses on single-day events.

2.3. Methods for Determining Design Day Conditions

The methods utilities use for determining design day conditions can be categorized
into three approaches with increasing complexity: (1) choose the coldest day in the last N
years; (2) fit a distribution to historical temperature and calculate the temperature with the
return period of N years; and (3) generate a large weather dataset, then repeat (2).

The first approach is to set the design day conditions as the coldest recorded day
in the last N years [16,17,19]. Not only does this lack statistical rigor, but it causes a
serious logistical problem for utilities. When the coldest historic day falls out of the
previous N years” window, the design day conditions can change dramatically. Since these
conditions are used for long-term planning, a large change in conditions from one year to
the next can have serious consequences. Some utilities simply choose the coldest day on
record [15,18,19]. This avoids the aforementioned logistic problem. However, the likelihood
of such a day occurring is no longer linked to a likelihood factor-such as once in N years.
Rather it is arbitrarily tied to the length of the available weather dataset.

The second approach fits a distribution to historical weather [9,14,15]. These methods
can use the entire history of recorded weather to determine the design day conditions.
These methods are often derived from Extreme Value Theory [20], which has precedence as
a tool for modeling meteorological extremes [7,21]. However, the datasets that are used to
fit these distributions are limited—the National Oceanic and Atmospheric Administration
(NOAA) has data back to 1973 for many weather stations [22]. Therefore, the extreme
quantiles-such as 1-in-30 years-are being estimated from relatively small datasets.

The final approach is to use a weather simulator to create a large dataset of extreme
events. The second approach is then applied to this larger dataset to fit a distribution
to it. Section 2.1 discusses example weather generators. This manuscript presents a
novel alternative to simulation methods called the Surrogate Weather Resampler (SWR).
In contrast to the previously mentioned methods, the SWR focuses on reproducing the
extreme cold tail of temperature to best aid in determining design day conditions.

3. Surrogate Weather Resampler Method

The SWR is inspired by the question: what if an autumn cold snap occurred in the
winter? To answer this question, the SWR removes the seasonality of the autumn weather
from the cold snap and applies the seasonality of winter weather. To that end, the SWR
is split into two steps. First, a model is fit to temperature data with respect to the season.
Second, the residuals from the model are resampled. The resampled residuals are input
into the temperature model to generate surrogate temperatures.
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3.1. Modeling Temperature

The SWR uses the time (t) dependent temperature model published by Breinl et al. [23].
Let T; be the temperature, N; be the normal temperature (the average temperature for that
day in the year), and o} be the standard deviation for the normal temperature.

T; = N; + 014 (12)

Ny and o} are deterministic, seasonal, and repeated annually. The scaled deviation
from normal temperature, ¢, is the stochastic component of the model that is resampled,
as explained below in Section 3.2. N; and o; are calculated from a temperature time
series. Given a long temperature time series, generally exceeding 50 years, the mean
temperature for each day of the year (i.e., 30 December) is calculated as shown in Figure 3
below. This mean temperature is smoothed using a fifth-order Fourier series as a low pass
filter to produce N;. Such Fourier series smoothing of mean temperature to yield normal
temperature is a common technique [23-25].

100 \

Temperature Range
= Smoothed Mean
Mean Temperature

80

60

N
(e}

[\
(=)

Temperature (°F)

1

-40
July 1 Dec 30 June 30

Day of Year

Figure 3. The light grey color, which shows temperature range, illustrates all the temperatures on a
given day of the year. The thin black line is the mean temperature for each day of year. The thick
grey line is the smoothed mean or normal temperature. The illustration is centered around December
30th, as the winter in the northern hemisphere contains the extreme cold temperatures in which we

are interested.

The term o is analogous to the daily temperature standard deviation but has three
important transformations from the daily temperature standard deviation. First, the mean
for each day of the year is replaced by N;, which is the smoothed mean. Second, only
temperatures colder than N; are used in the calculation. As the temperature range in
Figure 3 demonstrates, the variance of colder-than-normal temperatures is not necessarily
equal to the variance of warmer-than-normal temperatures, which is particularly true in
the winter. Moreover, the design day must occur on a day colder than normal, so the
“lower” deviations are of primary interest. Let T; be the temperatures on the ¢ day of the
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year, T; be those temperatures less than Ny, T; be the mean of 1;, and #n; be the number of
temperatures from the # day of the year, then

Y (u-— ft)z
TfE(T[<Nf)

Ot raw = " (13)

Third, as performed in previous temperature generation studies [23], we smoothed
the raw standard deviations (0, r4w) using a fifth-order Fourier series as a low pass filter to
produce o¢. This process is illustrated in Figure 4.

45

[Deviation Below Normal| Range

40 - _O't

Standard Deviation of Temperature

(6]
Temperature (" F)
—_ [y} [\ W W
()} S W (e W
T T T T T

—_
(=

0
July 1 Dec 30 June 30

Day of Year

Figure 4. The process of calculating o is illustrated above. The absolute value of the temperatures
less than N; (the smoothed mean or normal temperature) is plotted in light grey. Typically, as seen
in this example, cold deviations from normal have higher variability in the winter. The standard
deviations (0 qw) of these temperatures are plotted in black. The o7} 4, are smoothed to yield oy
illustrated by the thick grey line.

3.2. Resampling the Scaled Deviation from Normal Temperature

In a typical simulation method, the scaled deviation from normal temperature (g;)
would be modeled and sampled. Instead, this paper proposes resampling ¢; from the
empirical distribution. The SWR takes advantage of the non-seasonality of ¢; by introducing
a time lag. The new model becomes

Tt = Nt + O-tetflag (14)

Lagging ¢ answers the following question: what if the weather patterns driving &
occur later in the year? By solving T; with lag set to 1, a surrogate temperature dataset is
created. Many surrogate datasets can be created by introducing different lags. By using
every integer between —45 and 45 as lags, 90 surrogate datasets are created, increasing the
amount of data by a factor of 90. This form of resampling preserves the autocorrelation
of Et.
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4. Experiments—Comparison of SWR, Naive Benchmark, and WeaGETS

This section compares the SWR approach to a naive resampling method and WeaGETS [1].
The naive benchmark method is equivalent to the SWR method but without lags. We analyzed
the SWR'’s ability to produce sensible 1-in-N conditions across several weather stations in
the United States and Canada. We compared the SWR and WeaGETS to using raw weather
data in determining 1-in-N conditions. We performed an in-sample test and an out-of-sample
cross-validation test, and we considered these methods in the context of design day planning.

4.1. Dataset

Thirty-three stations across the United States and Canada were examined for testing
the performance of the weather generators (see Table 2 and Figure 5). The stations were
chosen for geographic diversity and dataset length. All stations recorded data from
1950 to 2018. Station data are acquired primarily through NOAA [21] and is available
publicly. The NOAA data are supplemented with data from AccuWeather, where NOAA
lacks history.

Table 2. The 33 stations used in this study span across North America, Alaska, and Hawaii. They are
identifiable in NOAA datasets by their callsign.

Station Location Callsign Station Location Callsign
Ottawa, ON CYOW Kansas City, MO KMCI
Regina, SK CYQR Memphis, TN KMEM
Vancouver, BC CYVR Miami, FL KMIA
Winnipeg, MB CYWG Minneapolis, MN KMSP
Calgary, AB CYYC New Orleans, LA KMSY
Amarillo, TX KAMA New York, NY KNYC
Aspen, CO KASE Pittsburg, PA KPIT
Bakersfield, CA KBFL Pueblo, CO KPUB
Nashville, TN KBNA Raleigh/Durham, NC KRDU
Boston, MA KBOS San Antonio, TX KSAT
Brownsville, TX KBRO Louisville, KY KSDF
Corpus Christi, TX KCRP Seattle, WA KSEA
Dallas-Fort Worth, TX KDFW Salt Lake City, UT KSLC
Evansville, IN KEVV Tulsa, OK KTUL
Fort Smith, AR KFSM King Salmon, AK PAKN
Hays, KS KHYS Honolulu, HI PHNL
Jackson, MS KJAN

The weather variable of interest is the average daily temperature. Ideally, this could be
calculated by the average of hourly temperature readings—this method correlates best with
natural gas demand [26] However, WeaGETS simulates daily minimum and maximum
temperatures. Therefore, the average daily temperature is calculated by the average of the
minimum and maximum for the purpose of comparison.

4.2. Data Preprocessing

Data are originally obtained in NOAA’s ISH format. In general, NOAA’s ISH data are
recorded at an hourly frequency, close to on-the-hour. For ease in data processing, the data
are normalized to always be at an hourly frequency, occurring on the hour. The ISH data are
prepared by rounding each data point to the nearest hour. For example, a meteorological
measurement made at 6:05 PM is moved to 6:00 PM. In cases where there are several
records made within an hour, the record closest to the hour is chosen. For example, if two
meteorological measurements were made at 6:05 PM and 6:10 PM, respectively, the 6:05
PM measurement is moved to 6:00 PM, and the measurement at 6:10 PM is discarded.
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Figure 5. The stations were chosen with the intent of evenly spanning North America under the constraint of data availability.
Not shown are PAKN in King Salmon, Alaska and PHNL in Honolulu, Hawaii.

After the dataset is normalized to hourly, daily summary statistics are calculated.
In particular, the daily minimum and maximum are taken by choosing the minimum and
maximum hourly temperature in a day. Ideally, the average daily temperature would be
calculated by averaging all the hourly temperatures for a day. However, because WeaGETS
generates minimum and maximum daily temperatures, daily average temperatures are
estimated using the average of the daily maximum and minimum temperatures.

Rather than cleaning bad data points, station datasets were chosen based on their data
quality. Station temperature data were graphed, and stations with obvious data quality
issues were not included. The stations listed in Table 2 are the stations with acceptable
quality. Special attention was paid to cold temperature data. If a cold outlier was found in
the graph, that day’s hourly temperature was analyzed; often, a cause of cold outliers is
missing temperature data imputed as zero. Stations with this characteristic are not used.

In general, data are sourced as much as possible from NOAA ISH files, as they are
publicly available. However, most NOAA ISH datasets do not have history back to 1950.
In cases where an NOAA ISH dataset is otherwise usable but does not have history back to
1950, the data are supplemented by AccuWeather. This was an important compromise to
achieve the geographic diversity shown in Figure 5, while maintaining a consistent time
frame across stations.

4.3. In-Sample Experiment

It is common in weather generation studies to analyze the generated weather in-
sample. In other words, the generated temperature is compared to the original temperature
data used to train the generator. An in-sample study provides an important sanity check;
the generated weather comes from the same distribution as the original weather.

Using the SWR for each station, 90 sets of surrogate daily average temperature data
are generated (using time lags from —45 to +45). This amounts to roughly 6000 years of
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weather data per station: 90 sets of surrogate weather x 69 years of weather + the original
dataset. By using WeaGETS, the equivalent number of years is generated. WeaGETS
generates daily high and low temperatures. Each day’s high and low temperatures are
averaged, resulting in roughly 6000 years of daily average temperatures for each station.

The order statistic “coldest daily average temperature of each winter” was first cal-
culated for each of the generated datasets by taking the minimum temperature of each
of the generated winters. This was compared to the raw, measured order statistic using
a two-sample Kolmogorov—Smirnov test (KS-test). The KS-test is a common tool in test-
ing the validity of generated temperature datasets in-sample [27,28]. Hy for the KS-test
states that the generated order statistic and the original order statistic come from the
same distribution-it is ideal not to reject Hy. Conveniently, using the annual minimum
temperatures addresses Semenov’s concerns for using the KS-test for generated weather
data, as there is no annual periodicity nor daily autocorrelation represented in the annual
minima [29].

1-in-N conditions are estimated by fitting a kernel density function to the gener-
ated weather for each station. The inverse cumulative density function was evaluated at
1/(30 years x 365) to determine the 1-in-30 condition; according to Table 1, 30 is a common
choice of N. We compared the actual exceedances of the 1-in-30 condition to the expected
exceedances (69 years in sample/ (30 years ) = 2.3 exceedances).

4.4. Out-of-Sample Experiment

In practice, the 1-in-N condition is used as a basis for planning for the next several
years. It is therefore important to evaluate techniques for determining 1-in-N conditions
out-of-sample. To this end, we conducted an experiment where we generated weather
based on a subset of temperature data and compared that weather to the actual weather in
the held-out years.

For each station, a 50-fold Monte Carlo cross-validation was performed [30]. Each
fold randomly samples 30 years (without replacement) for the test set. The remaining
years were used for the training set. An example of how the train and test data might be
split for the first four folds is shown in Figure 6. Ideally, we would be able to perform
cross-validation using a causal schema (the test set is chronologically after the training set).
However, due to the small amount of data present relative to the extreme conditions being
estimated, we used Monte Carlo cross-validation; it allowed us to perform enough folds to
achieve a statistically significant result.

Fold 4

Fold 3

Fold 2

Fold |

I ] L Ll I L]

1950 1960 1970 1980 1990 2000 2010

Figure 6. Example train-test splits of the cross-validation scheme are shown above. The blue bars
represent years of data used for training. The red bars represent the years used for the testing set.
The folds are chosen randomly; the figure above shows examples of what they might look like.
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WeaGETS and the SWR were used to generate weather data from the training dataset.
For each fold, 3367 years of weather are generated. The out-of-sample experiment allows an
additional, naive weather generator: resample the raw training data to have 3367 equivalent
years of data. This can also be thought of as the SWR with 0 lags (as opposed to the 90 used
for the SWR). Therefore, comparing the SWR to this naive model asks the question: what
impact does the novel resampling have on the 1-in-N conditions? This method is referred
to as the naive benchmark.

In the out-of-sample experiment, the same tests were performed: KS-test and ex-
ceedance test. The only difference is the data on which the weather generators were trained
and tested. For the KS-test, all methods generate weather data using only information from
the training set. The coldest annual temperatures of those generated sets were compared
to the coldest annual temperatures from the held-out set, asking the question: how well
do the generated datasets represent out-of-sample cold temperatures? For the exceedance
test, we again generated weather using only information from the training set. We fit a
kernel density function to the generated data, and from the kernel density function, we
determined the temperature threshold expected to be exceeded once every 30 years. We
counted how many times in the test set the threshold is exceeded.

5. Results

The results section is split into two parts. First, we analyze the in-sample experiment.
Second, the out-of-sample experiment is examined.

5.1. In-Sample Results

The in-sample results are analyzed in two parts. First, we examined how well
WeaGETS and the SWR reproduce the coldest annual temperatures. This provides a
sanity check to show if the generated weather comes from the same distribution as the
actual weather. Second, we performed a practitioner-based test, observing how frequently
the 1-in-N temperatures estimated from each generated dataset exceeded.

5.1.1. Comparing Distributions of Cold Temperatures

At p < 0.05, SWR correctly did not reject Hy (the generated and original datasets
come from the same distribution) 33 out of 33 times on the weather stations shown in
Table 2. This shows that SWR accurately recreates the distribution of the coldest annual
temperatures. On the other hand, WeaGETS correctly accepts the Hy only 1 out of 33 times.
This result shows that our novel SWR method generates cold tails in better agreement
with the empirical distributions than WeaGETS. In other words, the coldest temperatures
generated by SWR align with what has happened over the past 69 years. Since the design
day conditions are estimated from the generated datasets, it is essential the SWR generates
cold weather in line with reality.

As previously described, the two-sample KS-test compares the cumulative density
functions (cdf) of different empirical distributions. Figure 7, below, shows the cumulative
density plots for the generated and measured data for the KFSM weather stations, which
was chosen because it illustrates typical results. For the KFSM weather station, the cdf of
the SWR (black) sits on top of the cdf of the measured temperature data (grey). The KS-test
between the SWR and the measured temperature data was accepted for the KFSM weather
station. However, the cdf generated by WeaGETS (gold) differs significantly from the
measured temperature data for KFSM. The corresponding KS-test was rejected. Figure 8
illustrates weather station KMIA, which is the sole occurrence where the WeaGETS (gold)
cdf does not differ significantly from the measured data (grey).
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Figure 7. CDF of the annual coldest temperatures for station KFSM. The measured annual coldest
temperature cdf (grey) is compared to the coldest annual temperatures generated by SWR (black)
and WeaGETS (gold). For SWR, the KS-Test accepts that the measured and generated distributions
are the same. This is observed by the close correspondence between measured coldest temperature
cdf (grey) and the coldest annual temperatures generated by SWR (black). WeaGETS (gold) fails to
capture the coldest temperature cdf, and the KS-Test Hj) is rejected for WeaGETS. i.e., the generated
data do not match the measured distribution.

KMIA
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Figure 8. CDF plot of annual coldest temperatures for station KMIA. The measured annual coldest
temperature cdf (grey) is compared to the coldest annual temperatures generated by SWR (black)
and WeaGETS (gold). KMIA is the only station for which the KS-Test is accepted by both methods,
i.e., the generated data are not significantly different from the empirical.

5.1.2. Frequency of Exceedance Test

While the KS-Test is a standard method for evaluating the performance of generated
weather, it might mean little to a utility planning their design day conditions. A utility
would ask the question, “what is my design day temperature, and how many times has it
been exceeded in history?” Table 3 answers this question.

With 69 years of data, the threshold should be exceeded around two times per station.
In general, our SWR method produces a temperature that is exceeded as often as expected,
while WeaGETS does not. When aggregated across all stations, the proposed method is
exceeded 17 fewer times than expected; the estimated conditions are slightly biased cold.



Energies 2021, 14, 7118

14 of 19

In comparison, the temperature estimated from the WeaGETS dataset is exceeded 48 fewer
times than expected—the estimated conditions are consistently biased cold.

Table 3. The number of times a threshold generated by either the SWR or WeaGETS is exceeded. This
is compared to the expected number of exceedances and summarized across stations.

Station  Expected SWR WeaGETS Station  Expected SWR  WeaGETS

CYOW 23 3 0 KMCI 23 2 0
CYQR 2.3 0 0 KMEM 23 2 0
CYVR 23 2 6 KMIA 23 2 1
CYWG 23 1 0 KMSP 23 0 0
CYYC 2.3 0 0 KMSY 23 5 0
KAMA 23 1 0 KNYC 2.3 2 0
KASE 23 2 3 KPIT 23 3 0
KBFL 2.3 2 0 KPUB 2.3 0 0
KBNA 23 1 1 KRDU 2.3 3 0
KBOS 23 1 0 KSAT 23 3 0
KBRO 2.3 2 0 KSDF 2.3 2 1
KCRP 23 2 0 KSEA 2.3 0 12
KDFW 23 1 0 KSLC 23 1 3
KEVV 2.3 1 0 KTUL 2.3 1 0
KFSM 23 3 0 PAKN 2.3 3 0
KHYS 23 1 0 PHNL 23 2 0
KJAN 2.3 4 0 Sum 749 58 27

While this test lacks precedence in the literature, it is important for communication to
the public. If a utility can say, for example, that the estimated 1-in-30 condition has been
exceeded twice in the past 60 years, even people without statistical backgrounds probably
would consider such a design day condition to be reasonable.

5.2. Out of Sample Results
5.2.1. Out of Sample KS-Test

For the out-of-sample test, we analyzed the conditions generated by the SWR, WeaGETS,
and a naive benchmark. In contrast to the KS-Tests used in the in-sample experiment, 50
KS-Tests were performed per station: one for each fold. The count of those tests for which
Hj was not rejected is shown in Table 4. The SWR rejects fewer KS-Tests than any other
method-in 1392 out of 1650 tests, Hy was correctly not rejected. The naive benchmark rejects
Hj 92 more times than the SWR. This difference is significant in a one-tailed proportions test
(p < 0.0001); the naive baseline is significantly more likely to reject the KS-Test. WeaGETS
consistently rejects Hy. It is worth noting that the KS-Tests fail more frequently in the
out-of-sample test than the in-sample test. Where the in-sample test acted as a sanity check,
the out-of-sample test evaluated each method’s ability to generalize data the generators had
not yet seen; this makes it a more difficult test.

5.2.2. Out of Sample Frequency of Exceedance Test

Table 5 below shows the average number of exceedances for each station across all
50 folds. The expected number of exceedances for each station is 1. Therefore, across all
33 stations, there should be an average of 33 exceedances per fold. Across all stations and
folds, the naive benchmark performs best, averaging 39.42 exceedances per fold—6.42 more
exceedances than expected, meaning the actual weather in the test set is colder than the
naive baseline expects. The SWR performed slightly worse, averaging 40.26 exceedances
per fold. Again, the weather in the test set is colder than expected by the SWR. However,
the difference in the total count of exceedances between the SWR and naive benchmark is
not significant (one-tailed proportions test with p = 0.25). WeaGETS performs poorly on
this task by consistently setting thresholds too cold, consistent with its original paper’s
findings [1].
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Table 4. KS-Test results for out-of-sample tests. The values in the table represent the number of
folds for which Hj is not rejected. The SWR failed the KS-Test 258 out of 1650 times, compared to
350 failures for the naive benchmark. These proportions are significantly different in a one-tailed

proportions test (p < 0.0001). WeaGETS fails the KS-Test in every fold.

Station Naive SWR WeaGETS Station Naive SWR WeaGETS
CYOW 40 37 0 KMCI 42 40 0
CYQR 40 44 0 KMEM 38 40 0
CYVR 40 45 0 KMIA 43 44 0
CYWG 42 45 0 KMSP 32 39 0
CYYC 39 40 0 KMSY 40 39 0
KAMA 39 42 0 KNYC 40 39 0
KASE 42 43 0 KPIT 41 43 0
KBFL 42 44 0 KPUB 41 46 0
KBNA 40 42 0 KRDU 40 42 0
KBOS 44 48 0 KSAT 39 39 0
KBRO 38 46 0 KSDF 40 40 0
KCRP 37 42 0 KSEA 41 42 0
KDFW 43 44 0 KSLC 41 44 0
KEVV 37 40 0 KTUL 35 42 0
KFSM 36 38 0 PAKN 37 44 0
KHYS 36 46 0 PHNL 39 41 0
KJAN 36 42 0 Sum 1300 1392 0

Table 5. Average number of exceedances for each station. This table is the out-of-sample analog to

Table 3. For each station, the average number of exceedances across all folds was generated.

Station Naive SWR WeaGETS Station Naive SWR WeaGETS
CYOW 1.02 1.08 0.00 KMCI 1.50 1.20 0.00
CYQR 0.04 0.10 0.00 KMEM 0.92 1.64 0.00
CYVR 3.38 1.56 3.40 KMIA 0.80 1.22 0.50
CYWG 0.78 0.52 0.00 KMSP 0.32 0.08 0.00
CYYC 0.36 0.00 0.00 KMSY 1.40 2.46 0.10
KAMA 0.84 1.00 0.00 KNYC 1.00 0.94 0.00
KASE 1.46 1.32 1.44 KPIT 1.42 1.86 0.00
KBFL 1.46 1.04 0.00 KPUB 1.02 0.40 0.58
KBNA 1.42 1.90 0.54 KRDU 0.56 1.48 0.00
KBOS 1.10 1.02 0.00 KSAT 0.90 1.44 0.18
KBRO 1.46 1.80 0.18 KSDF 1.22 1.20 0.30
KCRP 0.92 1.52 0.08 KSEA 1.62 0.52 4.64
KDFW 1.78 1.80 0.00 KSLC 1.98 1.48 1.48
KEVV 0.92 1.00 0.14 KTUL 0.64 0.66 0.00
KFSM 1.02 1.86 0.00 PAKN 1.22 1.28 0.00
KHYS 1.40 0.78 0.00 PHNL 1.90 1.74 0.06
KJAN 1.64 2.36 0.00 Sum 39.42 40.26 13.62

One of the motivations for the out-of-sample test is to demonstrate the difference
between the naive benchmark and the SWR. In other words, what is the impact that the
SWR has on the 1-in-N temperature? To this end, the differences between the 1-in-N
temperatures generated by the SWR and the naive benchmark were calculated for all folds
and all stations. The histogram of these differences is displayed in Figure 9. The standard
deviation is 1.9 °F, which can make a large difference in design day planning. For example,
the naive benchmark and the SWR estimated 1-in-30 conditions with an average difference
of 1.4 °F for KSAT. This roughly corresponds to a 3% difference in heat load. Therefore,
estimating the 1-in-30 conditions using temperatures generated by the SWR does make a

substantial difference.
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Figure 9. Difference between conditions generated by naive benchmark and SWR.

It is important for 1-in-N conditions to be relatively stable over time—it is difficult to
make long-term plans based on conditions that frequently change. Because each fold deter-
mines the 1-in-30 threshold based on a random subset of data, the variance of thresholds
across difference folds represents each method’s sensitivity to changing data. In practice,
one year of data are added to the training set each year—this test will exaggerate the
volatility of threshold estimation compared to how thresholds will change in practice.

Figure 10 shows the spread of variances across different stations. WeaGETS varies the
least over time, indicating it is not overly sensitive to new data. The naive benchmark and
the SWR vary more over time, indicating they are more sensitive to new data.

(o]
& 10 4
3 [o]
[=]
|9
2 S
o
S
e
2
2
S 6
2 o
5
[
=
£
2
o
e
o T
() 2 4
S 2
o -1
T I |
o 1

Naive SWR WeaGETS

Figure 10. Variance of 1-in-30 temperatures across folds. For each station, the variance of the 1-in-30
temperatures is calculated. Variance represents sensitivity to new data. The naive benchmark and
the SWR have the largest spread with a mean variance of 2.4 °F2. WeaGETS has the lowest variance
at 1.3 °F2,
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6. Conclusions

The SWR accurately reproduces the cold tail of the temperature distribution. The two
sample KS-test shows that the SWR generates temperature data that have the same annual
minima characteristics as the measured temperature data. For the in-sample test, the
KS-test is not rejected for any weather station data generated by the SWR, demonstrating
the method’s effectiveness across different climates in North America in comparison to
WeaGETS. For the out-of-sample test, the SWR fails the KS-test significantly less frequently
than WeaGETS and the naive benchmark, indicating the weather generated by the SWR
generalizes well to out-of-sample data. This is important as the SWR is used in design day
studies. These studies determine the necessary infrastructure needed to deliver natural gas
to customers on extreme temperature days. The out-of-sample tests give a good indication
of how the estimated design day conditions will perform in the future.

The SWR reasonably estimates design day conditions as shown by the KS-test. Both
the SWR and the naive benchmark perform equivalently well on the exceedance test. The
purpose of generating validated weather data is to use the generated dataset to determine
the design day conditions with a return value of 1-in-N. Design day conditions estimated
from the SWR and the data more closely agree with historical data than conditions esti-
mated from the WeaGETS. The fact that the naive benchmark also outperforms WeaGETS in
estimating 1-in-30 conditions demonstrates the care that needs to be taken when generating
weather. It is possible using the little data available might be better than an abundance of
non-representative generated data.

The SWR allows for interpretable results with respect to the definition of odds oc-
curring. As discussed in Section 2.2, utilities define the odds of occurring in one of two
ways. (Case 1) Some utilities want to estimate the annual minimum temperature that
will be exceeded, on average, in one out of N years. (Case 2) Other utilities want to
estimate the temperature that is expected to be exceeded once every N years. Due to
autocorrelation in temperatures, the 1-in-N temperature in Case 2 will likely be colder
than that of Case 1. Our results provide validation for both cases. Case 1 is addressed
in Sections 5.1.1 and 5.2.1 by comparing the distributions of the annual minima. Case 2
is addressed in Sections 5.1.2 and 5.2.2 by comparing the total number of exceedances,
including multiple exceedances per year, to the expected number of exceedances under the
Case 2 definition of likelihood.

WeaGETS performed poorly across all metrics except for its variance of thresholds
across folds. This metric is important to practitioners who use design day conditions.
It is important that design day condition estimates are stable; if they change much over
time, it would be difficult to make long-term plans. Future analysis of WeaGETS could
provide useful insights about why it is a more stable estimator than the SWR and the naive
benchmark.

The SWR can be applied to future work in energy forecasting. For example, Hong
discusses different forms of temperature scenario generation for probabilistic peak load
forecasting in electricity [31]. In fact, the shifted-date method evaluated by Hong is similar
to the SWR without any treatment of seasonality. The SWR is, therefore, a straightforward
improvement on current methods in this area.

Accurate design day condition estimates are essential for utilities. This paper aids
utilities with two contributions. First, this paper details different methods for characterizing
design day conditions. Second, the SWR generates data that aligns with historical cold
weather outperforming both the naive benchmark and the WeaGETS method. Utilities
can use the generated data to estimate design day conditions that can be justified by the
frequency at which those conditions have historically been exceeded. Accurately estimated
design day conditions allow utilities to balance the risk of not meeting extreme demand
with the cost of capacity.
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