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Abstract 
Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through 
time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. 
While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known 
about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 
11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in 
the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different 
GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data 
synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased 
and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent 
effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual 
precipitation and temperature as well as plant community evenness. For example, decreases in temporal 
variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community 
evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to 
interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the 
magnitude more than the reliability over time of ecosystem production in the future. 

Introduction 
Aboveground net primary production (ANPP) is the principal energy source for higher trophic levels, and 
production of upper trophic levels depends on the amount and variability of ANPP over time (McNaughton et 
al. 1989). Therefore, understanding what regulates variation in ANPP through time is critical for predicting long-
term patterns of ecosystem functioning and services (Daily et al. 2009). As such, identifying drivers of ANPP and 
its variability through time has been a central goal in ecology for decades (Clements 1916; MacArthur 1955; 
May 1973). This goal takes on greater urgency with predicted global change as ecologists seek to forecast future 
ecosystem function (Clark et al. 2001). 

Global change drivers (GCDs), such as land-use change, nitrogen deposition, elevated CO2 and more extreme 
climate regimes (Vitousek et al. 1997; Sala et al. 2000), can directly impact average and temporal variability of 
ANPP in herbaceous systems (Morgan et al. 2004; Ladwig et al. 2012; Natali et al. 2012; Tilman et al. 2012; Borer 
et al. 2014; Avolio et al. 2014; Hautier et al. 2015; Koerner et al. 2016; Wilcox et al. 2016; Song et al. 2019). 
Depending on the type and direction of GCD, ANPP may increase, decrease, or exhibit no change (Smith et 
al. 2015; Andresen et al. 2016; Song et al. 2019). Generally, GCDs that increase limiting resources, such as CO2, 
nutrient, and water additions, increase ANPP (Morgan et al. 2004; Nowak et al. 2004; Wu et al. 2011; Wilcox et 
al. 2017; Song et al. 2019) as do warmer temperatures, particularly in cold environments (Rustad et al. 2001; Wu 
et al. 2011). In contrast, GCDs that decrease resources, such as drought, reduce ANPP (Wu et al. 2011; Hoover et 
al. 2014; Song et al. 2019). A recent meta-analysis notes that in addition to studying GCDs in isolation, there is a 
need for more research of the interacting effects of GCDs on ANPP (Song et al. 2019). GCDs also can affect 
temporal variability of ANPP, which may be correlated with how a particular GCD impacts mean ANPP. For 
example, nutrient additions have been shown to increase inter-annual variability of ANPP (Hautier et al. 2015; 
Koerner et al. 2016), whereas water additions decrease inter-annual variability of ANPP (Knapp et al. 2001). It 
remains unclear, however, whether these results are generalizable across ecosystems, especially to those where 
ANPP is more limited by water, less limited by nutrients, or both. Meta-analyses of temporal variability of ANPP 
are limited because multiple years of data are needed. Factors limiting productivity vary across ecosystems 
(Schimel et al. 1997; Knapp et al. 2017), and accordingly the effects of GCDs on mean and temporal variability of 
ANPP may vary. Thus, synthesis is needed to infer generality (Ives and Carpenter 2007). 



Generally, temporal dynamics of ANPP in herbaceous systems depend upon annual precipitation (Sala et 
al. 1988, 1996, 2012; Knapp and Smith 2001; La Pierre et al. 2016; Knapp et al. 2017; Rudgers et al. 2018). Here, 
we define temporal dynamics as interannual variation. Sensitivity of ANPP to precipitation (i.e., change in ANPP 
per mm change in rainfall) varies with mean annual precipitation (MAP). For example, drier sites are more 
sensitive to inter-annual variability in precipitation than wetter sites (Huxman et al. 2004; Sala et al. 2012). 
Varying sensitivity across a gradient of water limitation has been attributed to co-limitation by nutrients in more 
mesic sites (Huxman et al. 2004), which has been supported experimentally (Ladwig et al. 2012). Thus, certain 
global change drivers (GCDs), such as increased nutrient inputs, may increase the sensitivity of ANPP to 
precipitation in mesic ecosystems if nutrient limitation becomes alleviated, but responses may be less in more 
xeric ecosystems (Noy-Meir 1973; Collins et al. 2014). Consequently, altered sensitivity to precipitation under 
GCDs would modulate the degree of temporal variability of ANPP across ecosystems. 

In addition to interannual precipitation variability, a number of other biotic and abiotic factors also affect 
temporal variability in ANPP (Niu et al. 2017a, b). Many studies have shown that biodiversity affects variation in 
ANPP (Hector et al. 2010; Isbell et al. 2015). Across grasslands globally, temporal variability of ANPP decreases as 
species richness increases (Tilman and Downing 1994; Hector et al. 1999, 2010; Tilman et al. 2006; Gross et 
al. 2014; Hautier et al. 2014, 2015; Isbell et al. 2015). Moreover, Seddon et al. (2016) showed that global 
productivity is also limited by sunlight and temperature. Because many factors impact ANPP, we need to better 
understand how GCDs will affect the mean and variability of ANPP in the future across a broad array of 
ecosystems. 

We performed a data synthesis using the CoRRE (Community Responses to Resource Experiments; 
corredata.weebly.com) database to investigate whether different global change manipulations affect both mean 
and temporal variability of ANPP in herbaceous ecosystems. The CoRRE database is a collection of multi-year 
GCD experiments where at least one resource is experimentally manipulated. Manipulations include increases in 
water and CO2, single or multiple resources (e.g., nitrogen, phosphorus) as well as changes in temperature 
(heat), precipitation regimes, and altered disturbance regimes, such as burning and tilling. While it is informative 
to study effects of different GCDs in isolation, their interactive effects can produce non-intuitive responses (Elser 
et al. 2007; Darling and Côté 2008; Leuzinger et al. 2011; Morgan et al. 2011). To reveal general patterns of the 
effects of GCD manipulations on ecosystem productivity, we examined both changes in the mean ANPP over the 
course of each experiment and temporal variability of ANPP as measured by coefficient of variation, and 
investigated what may be affecting patterns of GCD treatment effects on temporal variability of ANPP. 
Specifically, we hypothesized: (1) that GCD treatments that alleviate a limiting resource will increase mean and 
temporal variability in ANPP, (2) that GCD treatment effects on temporal variability of ANPP will vary depending 
on abiotic (e.g., temperature, precipitation) and biotic (i.e., richness, evenness) site characteristics, where drier 
sites will become more variable with GCDs and sites with more plant species will be less variable with GCDs, and 
(3) that nutrient additions will increase sensitivity to precipitation. 

Methods 
ANPP data 
To be included in the CoRRE database, an experiment had to manipulate at least one plant resource, but not all 
treatments in the experiment had to be resource manipulations; thus, we have treatments, such as warming 
and herbivory. All datasets include a measure of abundance for each species recorded in a plot, and 58% also 
include ANPP data. We used a subset of the CoRRE datasets that had six or more years of ANPP data. To date, 
analyses of GCD effects on variability of ANPP are limited to one site, Cedar Creek LTER (Hautier et al. 2014) or 
span several sites but are only three years in duration using data from the nutrient network (Hautier et al. 2015). 
Our data synthesis is both long-term and includes 11 sites to provide necessary insight into the effects of GCDs 



on ANPP and variability of ANPP. This resulted in 27 datasets at 11 sites and 95 treatment-to-control 
comparisons (see Table S1 in Supporting Information for details) including 13 different GCD treatments that 
were included in 2 to 35 experiments each (Table 1). Importantly, the overall effect of these treatments on ANPP 
varied over time allowing us to examine temporal dynamics of ANPP (ESM Figure S1). 

Table 1 Global change driver (GCD) treatments used across the 27 experiments included in this analysis 

Treatment Number of 
experiments 

Number of 
sites 

Notes 

CO2 5 2  
Water* 7 5 All experiments were water additions 
Nitrogen* 11 8   
Phosphorus 5 2 

 

Heat 4 3 
 

Non-Resource 7 4 Includes fungicide, soil depth, altered 
precipitation patterns, burning, and tilling 

Nitrogen + CO2** 2 2   
Nitrogen + Water** 3 3 

 

Nitrogen + Heat** 2 2 
 

Water + Heat** 2 2 
 

Multiple Nutrients* 33 5 Includes all treatments with more than one 
nutrient (e.g. N + P, N + P + K) 

Nitrogen + Water + Heat** 2 2  
Nutrients + Non-Resource 12 4  

We note the number of experiments in which that treatment occurred, which is the sample size for each 
individual GCD treatment in the analyses, and the number of sites where a treatment was manipulated. An 
asterisk denotes those treatments that were performed at five or more locations. Two asterisks denote those 
treatments were included in interacting drivers treatment category, which has 11 control-treatment 
comparisons. In total there were 95 control-treatment comparisons. See Table S1 for more details on the 
treatments and experiments 
 

Stability (mean/standard deviation) and coefficient of variability (CV, standard deviation/mean) are both 
measures of the temporal variability of ANPP (Knapp and Smith 2001; Hautier et al. 2015). Stability is roughly the 
inverse of variability (Lehman and Tilman 2000) and we will refer to both as measures of variability. Here, we 
used CV as our measure of variability, but results using stability were qualitatively similar. For each plot in an 
experiment, we calculated the mean (ANPPµ) and standard deviation (ANPPSD; shown in ESM Figure S2) of ANPP 
over the number years of the experiment, and from this calculated the CV (ANPPcv = ANPPSD/ANPPµ) for each 
replicate in an experiment. We used these values to calculate percent difference between the treatment and 
control plots. First, we averaged ANPPµ and ANPPcv of all replicates in a treatment or control and then 
calculated percent difference as ((treatment–control)/control)*100. Percent difference values near 0 indicate no 
change, positive values indicate that the treatment had increased the response variable relative the controls, 
and negative values indicate the treatments had reduced the response variable relative to the controls. 

Site abiotic and biotic descriptors 
Because precipitation data were not included in the CoRRE database, we obtained local annual precipitation 
data for each of the experimental sites for each year of an experiment. For the five sites where there was a local 
station (ANG, CDR, KNZ, MAERC, NWT), we used the Global Historical Climatology Network to access daily 
observations from the closest weather station using the rnoaa R library (Chamberlain 2018). For Global 



Historical Climatology Network data, we excluded years missing more than 10% of the data. For one site (KLU), 
we used monthly precipitation data from Environment Canada, as this datum was not in Global Historical 
Climatology Network. For three sites that did not have local weather stations with reliable data, we used data 
collected from weather stations located at the site (SEV: hourly data; SERC: a combination of hourly and daily 
data; KBS: daily data). For two sites (DL and IMGERS), we could only obtain yearly totals that were provided by 
site investigators. In addition, mean annual precipitation (MAP) and mean annual temperature (MAT) were 
obtained from the WorldCLIM database (https://www.worldclim.org) for all sites. 

To calculate evenness at a site, we used the average evenness of control plots over all time points using the 
community_structure() function in the library(“codyn”) R package (Hallett et al. 2019). We used Evar as our 
measure of evenness (Smith and Wilson 1996). To remove bias in sampling area and effort, we calculated 
rarefied species richness using poolaccum() function in the vegan package (Oksanen et al. 2019) in R and drew 
estimates for the lowest sampling effort in our database across all sites. See Komatsu et al. (2019) for more 
details. 

Statistical analyses 
All statistical analyses were conducted in R version 3.6.0 (R Core Team 2019) with an alpha set to 0.05 and all 
code can be found at the github repository mavolio/ANPP_Variability_Oecologia. Treatment was not included as 
a fixed effect in our models because treatment types were not well replicated across experiments (Table 1). 
Multi-nutrient additions, nitrogen addition, water, and interacting drivers (e.g. nitrogen and water addition) 
were well-replicated across sites, so we examined their effects separately, otherwise all treatments were 
grouped together. 

To assess how GCDs affect ANPP and the temporal variability of ANPP, we performed two complementary 
analyses. First, for each treatment in an experiment, we performed two-tailed t tests between control and 
treated replicates to determine whether mean or temporal variability of ANPP differed and then tallied these 
results. Next, to assess the magnitude of treatment effects, we performed one-tailed t tests of the percent 
difference between treatment and controls for mean and temporal variability of ANPP to see if they differed 
from zero across all experimental treatments as well as for each of the three well-replicated treatment types 
and interacting drivers. 

We performed three additional analyses to further investigate GCD treatment effects on temporal variability of 
ANPP. We examined the effect of site characteristics on GCD treatment effects on temporal variability of ANPP. 
To do so, we used Pearson’s correlations and stepwise multiple regression [stepAIC() function in the 
library(“MASS”) package (Venables and Ripley 2002)] to investigate which site characteristics (MAT, MAP, 
rarefied site species richness, and site evenness) correlated with percent difference temporal variability of 
ANPP. Partial R2 values were determined with the rsq.partial() function in the library(“rsq”) package 
(Zhang 2018). Next, we determined if GCD treatments affected the sensitivity of ANPP to environmental 
variation. We calculated the difference (treatment control) of the slopes from a linear regression between yearly 
ANPP and precipitation for each treatment in each experiment. A positive number indicated that treatment 
plots are more responsive to precipitation than the control plots. To test whether each GCD treatment affected 
ANPP sensitivity to precipitation, we ran a one-tailed t test to determine if the change in sensitivity (difference in 
slopes) differed from zero. 

Results 
Do GCDs affect mean and temporal variability of ANPP? 
In 56% of the GCD treatments, ANPP of treated plots was not significantly different than controls (Fig. 1a), and 
for 76% of GCD treatments, temporal variability of ANPP of treated plots did not differ from controls (Fig. 1b). 



When treatment differed from control, mean ANPP increased in 38 out of 42 comparisons (Fig. 1a), whereas, 
temporal variability of ANPP increased in eight and decreased in 15 comparisons (Fig. 1b). Multiple nutrients and 
water addition increased ANPP more often than nitrogen alone and when several interacting drivers were 
simultaneously manipulated (Fig. 1a). In > 75% of comparisons, multiple nutrients, water and nitrogen addition 
and interacting drivers had no effect on the temporal variability of ANPP (Fig. 1b). 

 
Fig. 1 Proportion of treatments with no change (based on a t test between control and treated plots), an 
increase, or decrease in a) mean ANPP and b) temporal variability (CV) of ANPP. Percent difference between 
treated and control plots for c) mean ANPP and d) temporal variability (CV) of ANPP. Shown are means ± S.E. An 
asterisk denotes significant difference from zero at p < 0.05. n = 95 for all treatments, 33 for multiple nutrients, 
11 for nitrogen, 7 for water, 11 for interacting drivers, and 33 for other GCDs 
 

Across all treatment–control comparisons, GCDs increased mean ANPP by 28% (t = 7.014; p < 0.001; Fig. 1c) but 
did not affect the temporal variability of ANPP (t = − 1.669; p = 0.099; Fig. 1d). Multiple nutrient additions 
increased ANPP by 47% (t = 6.54; p < 0.001; Fig. 1c) but had no effect on temporal variability of ANPP 
(t = 1.59; p = 1.121; Fig. 1d). Similarly, nitrogen and water additions both increased ANPP by 25% and 35%, 
respectively, (nitrogen: t = 3.35; p = 0.007; water: t = 3.44; p = 0.014; Fig. 1c), but neither affected the temporal 
variability of ANPP (nitrogen: t = − 0.872; p = 0.400; water: t = − 1.23, p = 0.264; Fig. 1d). Interacting drivers 
increased ANPP by 26% (t = 3.30; p = 0.008), but had no effect on the temporal variability of ANPP 
(t = 1.51; p = 0.162). We found no effect of the amount of nitrogen or water added on mean ANPP and temporal 
variability ANPP, however, there was greater production response with higher amounts of multiple nutrients 
added, but no effect on CV of ANPP (ESM Figure S3). 

Do abiotic and biotic characteristics alter the effect of GCDs on temporal variability of 
ANPP? 
We found that, together, site MAT, MAP, and evenness explained 45% of the variation in percent difference of 
temporal variability of ANPP (adj. R2 = 0.446; p < 0.001). GCD treatments increased temporal variability of ANPP 

https://link.springer.com/article/10.1007/s00442-020-04787-6/figures/1


in ecosystems that were drier (partial R2 = 0.086; p < 0.05: Fig. 2c) and colder (partial R2 = 0.108; p < 0.001; 
Fig. 2d). Removing the coldest site did not change the relationship between MAT and temporal variability of 
ANPP (data not shown). In contrast, GCD treatments decreased temporal variability in ANPP at less even sites 
(partial R2 = 0.101; p < 0.05; Fig. 2b). 

 
Fig. 2 Correlations of percent differences between treated and control plots temporal variability of ANPP with 
different biotic a Sp. richness b species evenness (measured using Evar), and abiotic c MAP (mm), d MAT (°C) 
variables (see text for details). The correlation coefficient, r, is shown in the top right, and smoothed lines were 
included when correlations were significant (p < 0.05). Blue points indicate that treatment plots differed 
significantly from controls. Points above the zero line indicate that treated plots had higher values than the 
controls and vice versa. Please note two sites have MAT of 12 °C and two sites have very similar MAP and are 
difficult to tease apart (369–386). n = 95 
 

Do GCDs affect sensitivity of ANPP to annual precipitation? 
Overall, GCDs increased sensitivity of ANPP to precipitation (Fig. 3; t value = 4.12; p value < 0.001). The multi-
nutrient additions increased sensitivity of ANPP to precipitation (t value = 2.95, p = 0.006), but nitrogen 
(t value = 1.27, p = 0.232), water additions (t value = − 1.89, p = 0.107) and interacting drivers 
(t value = 1.18; p = 0.265; Fig. 3) had no effect. 

 

https://link.springer.com/article/10.1007/s00442-020-04787-6/figures/2
https://link.springer.com/article/10.1007/s00442-020-04787-6/figures/3


Fig. 3 Effect of GCDs on the sensitivity of ANPP to precipitation (differences in slopes of treated and control plots 
of the relationship between annual precipitation and ANPP) for all treatments, three different GCDs, and 
interacting GCDs. An asterisk denotes significant difference from zero at p < 0.05). n = 95 for all trts, 33 for 
multiple nutrients, 11 for nitrogen, 7 for water, and 11 for interacting drivers 

Discussion 
The analysis of GCD treatment effects on mean and variability of ANPP across several herbaceous ecosystems 
revealed that mean ANPP was affected by GCD treatments more often than temporal variability of ANPP. 
Overall, the GCD treatments studied here increased mean ANPP, but there were no consistent effects of GCD 
treatments on temporal variability of ANPP. While we found examples of temporal variability increasing and 
decreasing, most often it did not change. Differential effects of GCDs on temporal variability of ANPP could be 
explained by several factors. First, sites that were wetter, warmer and had lower evenness became less variable. 
Second, our results also showed that GCD treatments increased ANPP sensitivity to precipitation. We also found 
that when studying interacting drivers (e.g. elevated CO2 and nitrogen), their effects were similar to single 
drivers suggesting multiple drivers are not diminishing nor amplifying one another. Overall, these results 
demonstrate that site differences, both biotic and abiotic, are important determinants of responses of temporal 
variability of ANPP to GCDs across ecosystems. 

We found general support for our hypothesis that GCD treatments investigated here would increase ANPP. This 
is not too surprising given that many of the treatments in these experiments were resource additions and mirror 
other findings (Nowak et al. 2004; Wu et al. 2011; Wilcox et al. 2017; Song et al. 2019). However, although GCD 
treatments increased ANPP overall, ANPP significantly differed between control and treatment in only 44% of 
the comparisons. Treatments that had two or more interacting factors did not result in augmented or 
diminished effects on ANPP compared with single drivers, which is possible evidence that predicting the effects 
of multiple interacting GCDs together might be difficult using data from single GCD manipulations alone 
(Leuzinger et al. 2011). 

Contrary to our first hypothesis, we found no overall effect of GCD treatments on temporal variability of ANPP 
as measured by the coefficient of variation. This result was consistent for the analysis of all GCD treatments and 
for the multiple nutrient, nitrogen, water, and interacting driver treatments when analyzed separately. This 
contrasts with findings from some single site studies where temporal variability was influenced by treatments. 
For example, at Cedar Creek, Minnesota, Hautier et al. (2015) found that GCD treatments increased temporal 
variability of ANPP and attributed this to species loss. In contrast, at the Kellogg Biological Station, Michigan, 
Grman et al. (2010) found nitrogen and disturbance decreased variability, which they attributed to species 
compositional differences. At Lanzhou, China, Niu et al. (2017a, b) reported that greater amounts of N addition 
resulted in greater variability of ANPP. In a cross-site study of grassland responses to three years of nutrient 
additions, temporal variability of ANPP increased (Hautier et al. 2014), which was attributed to nutrient 
additions weakening biodiversity effects. While we did find examples of temporal variability of ANPP increasing 
and decreasing in some experiments, overall, we found no systematic response, and overwhelmingly the 
majority of treatments had no effect on variability. A caveat of our findings is that the majority of our GCD 
treatments were resource increases and resource reductions may have yielded different results, which 
demonstrate the need for more long-term resource-reduction experiments, especially drought. 

We found evidence for our second hypothesis that biotic site characteristics underlie differential responses of 
temporal variability of ANPP. Contrary to our hypothesis that sites with more species would have less variable 
production in response to GCDs, we found higher species richness did not buffer against year-to-year 
fluctuations of production. Previous studies found that more diverse areas (higher species richness) have more 
stable production over time (Tilman et al. 2006) and GCD treatments that cause declines in species richness also 



have reduced stability of production over time (Hautier et al. 2015). However, we did find that in less even 
ecosystems GCD treatments reduced temporal variability of ANPP, highlighting dominance as a potential 
mechanism of stability (Hallett et al. 2014). GCD treatments, especially nutrient additions, can decrease 
evenness (Houseman et al. 2008; Avolio et al. 2014) and when evenness is low, production is most likely driven 
by a few species and perhaps these species are less responsive to GCDs (Lepš et al. 1982; MacGillivray and 
Grime 1995; Yu et al. 2015). 

In addition to evenness, we found abiotic site characteristics drive differential responses of temporal variability 
of ANPP, further supporting our second hypothesis. Treatments increased temporal variability of ANPP in colder 
and drier ecosystems and decreased temporal variability of ANPP in wetter and warmer ecosystems. Maximum 
plant growth rate often limits ANPP, which is evidenced by saturating non-linear relationships between 
resources and primary productivity (Knapp et al. 2017; Wilcox et al. 2017). In high-resource years at wetter and 
warmer ecosystems, GCD treatments that increase resources may have minimal impacts on ANPP. This would 
effectively reduce the year-to-year variability in ANPP in more mesic systems, as we observed here. Alternately, 
resource-poor ecosystems are often below their productivity potential so that responses in wet years to GCDs 
are often large. For example, Ladwig et al. (2012) showed that nitrogen addition in a Chihuahuan Desert 
grassland greatly increased ANPP responses in wet years, but not in dry years, leading to increased variability of 
ANPP in nitrogen addition plots. 

Finally, we found support for our third hypothesis that sensitivity of ANPP to precipitation was increased by GCD 
treatments, and further, that multiple nutrient additions caused ANPP to be more sensitive to precipitation. 
Multiple nutrient additions would alleviate many co-limitations on ANPP (Fay et al. 2015), thus making the 
productivity of an ecosystem more dependent on water as a limiting resource (Huxman et al. 2004; Ladwig et 
al. 2012). However, we found that water addition had no overall effect on sensitivity to precipitation. The fact 
that nitrogen additions alone did not affect sensitivity, but multiple nutrients did support prior work indicating 
that many ecosystems are co-limited by multiple resources (Harpole et al. 2016). 

Conclusion 
Understanding variability of ANPP through time is important for the maintaining consistency of ecosystem 
services, as well as informing about the probability of ecosystems crossing catastrophic thresholds, such as the 
1930′s Dust Bowl. We found no significant differences in temporal variability of ANPP for 76% of control-
treatment comparisons, and when differences were found, both increases and decreases occurred resulting in 
no overall effect. Several factors contribute to the contrasting effects of GCDs on temporal variability of ANPP 
including site differences in biotic and abiotic characteristics as well as altered sensitivity to precipitation. Our 
results suggest GCDs are more likely to increase temporal variability of ANPP in dry and cool ecosystems and in 
communities with high evenness that lack a strong dominant species. We suggest that these ecosystems should 
be a priority for future research and conservation efforts to mitigate increased variability under various global 
change drivers. Our finding that multiple nutrient additions increased the sensitivity of ANPP to precipitation 
highlights the need to closely monitor eutrophication rates and their effects, especially when multiple types of 
nutrient enrichment may occur, such as simultaneous N and P fertilization. We conclude that GCDs that increase 
resources are more likely to affect mean than temporal variability in ANPP, and thus, the impacts of GCDs on 
reliability of ecosystem production are expected to be minimal relative to the magnitude of change in 
production. 
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