
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Computer Science Faculty Research and 
Publications Computer Science, Department of 

7-2020 

Chance-Constrained Optimization of Energy Storage Capacity for Chance-Constrained Optimization of Energy Storage Capacity for 

Microgrids Microgrids 

Nasim Yahyasoltani 

Adel Nasiri 

Follow this and additional works at: https://epublications.marquette.edu/comp_fac 

https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Computer Science Faculty Research and Publications/College of Arts and 
Sciences 

 

This paper is NOT THE PUBLISHED VERSION.  
Access the published version via the link in the citation below. 

 

IEEE Transactions on Smart Grid, Vol. 11, No. 4 (2020): 2760-2770. DOI. This article is © Institute of 
Electrical and Electronics Engineers (IEEE) and permission has been granted for this version to appear 
in e-Publications@Marquette. Institute of Electrical and Electronics Engineers (IEEE) does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express 
permission from Institute of Electrical and Electronics Engineers (IEEE).   

 

Chance-Constrained Optimization of Energy 
Storage Capacity for Microgrids 
 

Nasim Yahya Soltani  
Department of Computer Science, Marquette University, Milwaukee, WI 

Adel Nasiri  
Center for Sustainable Electrical Energy Systems, University of Wisconsin-Milwaukee, WI 

 

Abstract 
The optimal storage capacity is a crucial parameter for stable and reliable operation of microgrids in an islanded 
mode. In this context, an analytical method is developed to robustly formulate and analyze energy storage 
capacity deploying chance constrained stochastic optimization. More specifically, the goal is to determine an 
appropriate size for an energy storage to reach a specific loss of load probability (LOLP) in a microgrid with large 
penetration of renewables considering generation and load forecast error. The total cost is minimized over 
optimal storage capacity as well as over generators power, while accounting for generation and storage power 
and energy constraints. It is postulated that the shortage/surplus power will be derived from/injected to the 
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storage system. However, due to stochastic nature of load and renewables and an inevitable forecast error, the 
renewable generation output or the load power may not be accurately acquired. Thus, the total storage power 
and energy constraints are posed as chance constraints, for which conservative convex approximations are 
employed for tractability. In particular, to overcome the difficulty brought about by the large size of the 
optimization problem, a separable (distributed) structure is pursued, and the dual decomposition method is 
adopted to obtain optimal solutions. Numerical tests verify the effect of prior knowledge in modeling the 
uncertainty in optimal choice of storage capacity. 

Nomenclature 
Abbreviation Expansion 

𝑺𝑺𝒌𝒌𝒕𝒕   The stored energy at time t in the battery 𝑘𝑘 
𝑷𝑷𝒌𝒌𝒎𝒎𝒎𝒎𝒎𝒎,𝑷𝑷𝒌𝒌𝒎𝒎𝒎𝒎𝒎𝒎  Minimum and maximum charge/discharge power for 𝑘𝑘th battery 
𝑷𝑷𝒌𝒌𝒕𝒕   The amount of charge/discharge power for each battery 𝑘𝑘 at time 𝑡𝑡 
𝑷𝑷𝑮𝑮𝒅𝒅
𝒕𝒕   The instantaneous power output of the generator 𝑑𝑑 at time 𝑡𝑡 

𝑷𝑷𝒆𝒆𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆  The amount of power curtailment for renewable sources in order to limit the charging 
power of the battery 

𝜶𝜶𝒌𝒌,𝜷𝜷𝒌𝒌  Coefficients for battery 𝑘𝑘 cost function 
𝑪𝑪𝑬𝑬𝒕𝒕   Total operational cost of energy storage system at time 𝑡𝑡 
𝑳𝑳𝟏𝟏𝒕𝒕 ,𝑳𝑳𝟐𝟐𝒕𝒕 ,𝑳𝑳𝟑𝟑𝒕𝒕 ,𝑳𝑳𝟒𝟒𝒕𝒕    Lagrangian functions 
𝝁𝝁𝒕𝒕−,𝝁𝝁𝒕𝒕+,𝝈𝝈𝒕𝒕  Constants 
𝝈𝝈𝒁𝒁𝒕𝒕   Variance of 𝑍𝑍𝑡𝑡 
𝜖𝜖  Probability violation threshold 
𝜻𝜻𝒁𝒁𝒕𝒕   Auxiliary variable at time 𝑡𝑡 
𝒎𝒎𝒁𝒁𝒕𝒕 ,𝒃𝒃𝒁𝒁𝒕𝒕   Auxiliary variables at time 𝑡𝑡 
𝑨𝑨𝒕𝒕,𝑩𝑩𝒕𝒕,𝑽𝑽𝒕𝒕,𝑯𝑯𝒕𝒕  Auxiliary variables at time 𝑡𝑡 
𝑪𝑪𝒌𝒌𝒕𝒕   Cost of energy storage 𝑘𝑘 at time 𝑡𝑡 
𝑪𝑪𝑹𝑹𝒕𝒕   Covariance matrix of the renewables forecast error at time 𝑡𝑡 
𝐷𝐷  Number of synchronous generators 
𝑫𝑫𝑫𝑫𝑫𝑫𝒌𝒌

𝒕𝒕𝒕𝒕  Maximum allowable depth of discharge for battery 𝑘𝑘 
𝜈𝜈,𝜔𝜔, 𝛾𝛾  Vectors of dual variables 
𝐾𝐾  Number of storage devices 
𝑀𝑀  Number of renewable generators 
𝑁𝑁  Number of consumers with different types of loads 
𝑷𝑷𝒆𝒆𝒎𝒎𝒄𝒄  Power threshold to adjust variations of battery charging power 
𝑷𝑷𝑬𝑬𝒕𝒕 ,𝑺𝑺𝑬𝑬𝒕𝒕 , 𝑪𝑪𝑬𝑬𝒕𝒕   Total storage, charging/discharging power and cost of storage system at time 𝑡𝑡 
𝑷𝑷𝑮𝑮𝒎𝒎𝒎𝒎𝒎𝒎,𝑷𝑷𝑮𝑮𝒎𝒎𝒎𝒎𝒎𝒎  Minimum and maximum allowable generation power 
𝑷𝑷�𝑳𝑳𝒎𝒎𝒆𝒆𝒕𝒕
𝒕𝒕   The load forecast of 𝑁𝑁 consumers at time 𝑡𝑡 

𝑷𝑷�𝑹𝑹𝒎𝒎
𝒕𝒕   The renewable generation 𝑚𝑚 output power forecast at time 𝑡𝑡 

𝑷𝑷�𝑳𝑳𝒎𝒎𝒆𝒆𝒕𝒕
𝒕𝒕   The load forecast error of 𝑁𝑁 consumers at time 𝑡𝑡 

𝑷𝑷𝑳𝑳𝒎𝒎𝒆𝒆𝒕𝒕
𝒕𝒕   Aggregate power consumption of N consumers at time 𝑡𝑡 

𝑷𝑷𝑹𝑹𝒎𝒎
𝒕𝒕   The renewable generation 𝑚𝑚 output power at time 𝑡𝑡 

𝑷𝑷�𝑹𝑹𝒎𝒎
𝒕𝒕   The renewable generation 𝑚𝑚 output power forecast at time 𝑡𝑡 

�𝝈𝝈𝑳𝑳𝒎𝒎𝒆𝒆𝒕𝒕
𝒕𝒕 �𝟐𝟐  Variance of the load forecast error at time 𝑡𝑡 

�𝝈𝝈𝑹𝑹𝒎𝒎𝒆𝒆𝒕𝒕
𝒕𝒕 �𝟐𝟐  Variance of the renewables forecast error at time 𝑡𝑡 

(𝝈𝝈𝒁𝒁𝒕𝒕 )𝟐𝟐  Variance of shortage output at time 𝑡𝑡 



𝑺𝑺𝒌𝒌𝒎𝒎𝒎𝒎𝒎𝒎,𝑺𝑺𝒌𝒌𝒎𝒎𝒎𝒎𝒎𝒎  Minimum and maximum storage capacity for battery 𝑘𝑘 
𝑺𝑺𝒌𝒌𝒕𝒕𝒕𝒕  Stored energy allowable threshold for battery 𝑘𝑘 
𝒈𝒈𝝂𝝂𝒕𝒕 ,𝒈𝒈𝝎𝝎𝒕𝒕 ,𝒈𝒈𝜸𝜸𝒕𝒕   Subgradients 𝑤𝑤. 𝑟𝑟. 𝑡𝑡.  𝜈𝜈,𝜔𝜔, 𝛾𝛾 
𝑼𝑼𝒕𝒕  The instantaneous shortage or surplus power to meet the microgrid demand balance at 

time slot 𝑡𝑡 
𝒁𝒁𝒕𝒕  Auxiliary variable as shortage output 
𝜻𝜻𝒌𝒌 ∈ (𝟎𝟎,𝟏𝟏]  The charging/discharging efficiency of the 𝑘𝑘th battery. 

SECTION I. Introduction 
The Microgrid vision is on extending distributed energy resources (DER) and reducing the losses from long-
distance transmission for a more reliable and efficient power network and greener environment. The term DER 
entails distributed storage system (DSS), renewable generation and fuel-based generators. Through DER a 
microgrid can enhance the reliability as well as other environmental and economical benefits. 

There are two modes of operation for microgrids. Microgrids can operate stand alone in islanded mode or be 
connected to the main grid in a grid-connected mode. Specially in islanded mode and with pertinent goal of 
minimal fuel-based generation, an uninterrupted and stable microgrid operation is ensured through an energy 
storage system (ESS). Specifically, with a high penetration of renewables, the availability of such energy 
resources involve uncertainty and calls for advanced planning and scheduling [1], [2], [3], [4], and [5]. 

One of the applications of ESS is to accommodate for the variabilities of intermittent energy sources such as 
wind and solar generation. Therefore, to meet the total demand at each time instant, one needs to plan to save 
some of the excess generated energy for later use through an ESS [6]. 

Pre-requisite to optimal generation and ESS sizing tasks is a reliable load and renewable generation forecast. 
Due to stochastic nature of the renewable power generation and sudden variation of the load, the task of 
forecast is challenging. Obviously, a long-term (month-ahead) forecast data entail more error than the short-
term (hours-ahead or day-ahead) prediction. Specifically, a couple of approaches are often employed to capture 
uncertainty [7]. Statistical knowledge of the uncertain parameters such as the mean and covariance, or the 
distribution may be assumed, which leads to chance-constrained formulations. An alternative is to adopt a 
robust optimization framework, where a bounded uncertainty region is postulated. 

Power and energy constraints under generation/load uncertainty can be cast as chance 
constraints [8], [9], [10], [11]. However, chance constraints are typically more difficult to handle than their 
deterministic counterparts, as they may be either non-convex, or tough to verify as being convex. Moreover, it is 
sometimes difficult to express these constraints in closed form. In such cases, convex approximation of the 
chance constraints is of practical merit [12], [13]. 

The problem of ESS sizing with different potential purposes including balancing the variations of the intermittent 
resources have been extensively addressed in the literature [4], [5], [14], [15]. However, only a limited number 
of papers have considered the forecast error and uncertainty in the problem 
formulation [8], [16], [17], [18], [19]. The wind power forecast errors obtained from persistence scenarios were 
used in [16] for ESS sizing. In [17], incorporating spatiotemporal interdependencies, an stochastic model of the 
wind is proposed to obtain the size of ESS. While, taking into account the uncertainty from renewable resources 
and dynamic pricing of the electricity, optimal sizing and management of ESS is addressed using dynamic 
programming in [18]. In [19] a sharing-based energy storage system to manage the peak hour energy for 
residential customers is proposed where the demand of each customer is modeled stochastically. The power 
shortage has been modeled through a probabilistic constraint in [8], and the optimal size of the ESS, the 



renewables and synchronous generators were obtained, where the probabilist shortage constraint was handled 
using scenario approximation. 

Electrical microgrids are experiencing a large growth due to three reasons: 1) reduction in cost of solar PV; 2) 
decreasing cost of electrical storage; and 3) lower cost for smaller national gas generators. Microgrids provide 
higher energy efficiency, higher reliability and lower cost to customers. Microgrids generally include a large 
share of renewable energy systems which are naturally intermittent. Energy storage systems are generally 
required for management of energy, voltage, and frequency in order to not significantly oversize non-renewable 
generations. All microgrids use energy storage systems in one form or another. This work enables optimization 
of energy storage system size in order to reduce the overall cost of microgrids. The impact of the proposed work 
is significant as microgrid systems are very cost-sensitive due to novelty of the technology. Major developments 
of microgrids have been for campuses (universities, hospitals, military installations), where there is demand for 
lower energy cost and higher reliabilities. Microgrids have also found very niche applications, for instance to 
power residential areas (especially in California) when grid power is frequently out due to wild fire hazards. For 
all these applications, there is a need for advanced optimization of energy storage size and capacity to meet the 
requirements. 

The present paper addresses the joint storage capacity and generation optimization task in islanded microgrid 
with uncertain renewable generation and load power. An expected cost minimization problem is formulated 
under the maximum and minimum allowable generation power and storage capacity constraints as well as the 
probabilistic power and energy constraints to guarantee an stable operation of the microgrid. The Bernstein 
method with minimal prior knowledge of the uncertain parameter is adopted to approximate the probabilistic 
constraints by convex and conservative surrogates. The resultant algorithm is then compared with Gaussian 
approximation as well as the case where load and renewables forecast errors are fully ignored. It will be shown 
that using those approximations the resultant problem is convex and separable per time slot, which opens the 
door to the dual decomposition approach, which leads to an optimal, distributed and computationally efficient 
solution with performance guarantee 

Compared to the existing literature, the contribution of this paper is fourfold, and of critical importance for 
microgrids with high-penetration of renewables. First, a detailed model for storage cost functions including 
battery lifetime is incorporated in the optimization problem. Second, both load and wind power uncertainty is 
modeled and captured not only in the constraints but also in the objective function. Third, in addition to 
analytical modeling of the uncertainty in the forecast error through Gaussian approximation, the current work 
will also explore the case where there is no prior knowledge on the probability distribution function of the 
forecast error and proposes a novel approach with an analytical and closed-form expression to handle such 
cases. Finally, since looking at a large historical data for storage sizing is computationally expensive, a solid, 
distributed, and efficient algorithm with performance guarantee is proposed to effectively solve the robust 
sizing problem. Detailed numerical tests are presented to illustrate the effects of different approaches in 
capturing uncertainty in ESS sizing problem. 

The rest of the paper is organized as follows. The problem is introduced and formulated in Section II and Section 
III. Bernstein’s approximation and Gaussian approximation techniques tailored for chance constraints are 
outlined in Section IV. The robust and deterministic algorithms are developed in Section V. Numerical tests are 
presented in Section VI, followed by conclusions in Section VII. 

A Note on Notations: In this paper, vector quantities are denoted as bold letters, and the sets as calligraphic 
upper-case letters. Superscriptt as in 𝑃𝑃𝐺𝐺

(𝑡𝑡) denotes the quantities related to the 𝑡𝑡 -th time slot and 𝑃𝑃𝑟𝑟{⋅
} represents the probability. 



SECTION II. System Components 
Consider a microgrid comprising of N consumers with different types of loads, M renewable generators, 
and K storage devices. 

A. Demand Profile 
Let  𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  indicate the aggregate power consumption of N consumers at time 𝑡𝑡; i.e., 𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡  is a continuous random 

variable. 

Let 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡   denote the load forecast of the consumers at time t. Then, the aggregate power consumption can be 

written as 

𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 = 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 + 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡    (1) 

 

where  𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡  is a zero-mean random variable with variance �𝜎𝜎𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 �2 capturing the forecast error and 
consumption dependencies of consumers. A typical choice of 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡   is Gaussian.1 However, in general the 
probability distribution of 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  depends on the forecast method. 

B. Energy Storage Model 
It is assumed that the microgrid is using an energy storage system including a set of electrochemical batteries 
represented by 𝒦𝒦, where |𝒦𝒦| = 𝐾𝐾. Let 𝑆𝑆𝑘𝑘𝑡𝑡  and 𝑃𝑃𝑘𝑘𝑡𝑡 denote the stored energy and charging/discharging power at 
time 𝑡𝑡 ∈ 𝜏𝜏 ≜ {1,2, … , T} in the battery 𝑘𝑘 ∈ 𝒦𝒦, respectively. With 𝜁𝜁𝑘𝑘 ∈ (0,1] as the average round trip efficiency 
of the battery 𝑘𝑘, the stored energy of battery 𝑘𝑘 at time slot t can be written as 

𝑆𝑆𝑘𝑘𝑡𝑡 = 𝑆𝑆𝑘𝑘𝑡𝑡−1 + 𝜁𝜁𝑘𝑘𝑃𝑃𝑘𝑘𝑡𝑡,    𝑘𝑘 ∈ 𝐾𝐾     (2) 

Where 𝑃𝑃𝑘𝑘𝑡𝑡 > 0   when charging and  𝑃𝑃𝑘𝑘𝑡𝑡 < 0 during discharge period. In general, to protect battery life a 
minimum allowable energy,  𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 is set. With  𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 as the maximum storage capacity, the storage capacity of 
battery k is bounded as  

𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑆𝑆𝑘𝑘𝑡𝑡 < 𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, 𝑘𝑘 ∈ 𝐾𝐾    (3) 

Similarly, the amount of charge/discharge power for each battery is constrained by 

𝑃𝑃𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑃𝑃𝑘𝑘𝑡𝑡 < 𝑃𝑃𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, 𝑘𝑘 ∈ 𝐾𝐾    (4) 

To increase lifetime of the battery, it is recommended that the stored energy does not get below a specified 
threshold,  𝑆𝑆𝑘𝑘𝑡𝑡ℎ: = �1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘𝑡𝑡ℎ�𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 , where superscript th refers to ‘threshold’ and 𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘𝑡𝑡ℎ represents the 
maximum allowable depth of discharge for battery 𝑘𝑘. Then, the cost of energy storage at time slot t can be 
formulated as 

𝐶𝐶𝑘𝑘𝑡𝑡 = 𝛼𝛼𝑘𝑘𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽𝑘𝑘𝑡𝑡�𝑆𝑆𝑘𝑘𝑡𝑡ℎ − 𝑆𝑆𝑘𝑘𝑡𝑡�, 𝑘𝑘 ∈ 𝐾𝐾    (5) 

where the first term refers to investment cost and the second term captures the operational cost which is 
proportional to the variation in battery energy (rate of charge and discharge) [20]. 

One can then easily obtain the total storage capacity, 𝑆𝑆𝐸𝐸𝑡𝑡  , charge/discharge power, 𝑃𝑃𝐸𝐸𝑡𝑡  , and the total cost of the 
storage system, 𝐶𝐶𝐸𝐸𝑡𝑡  as follows 



𝑆𝑆𝐸𝐸𝑡𝑡 = �  
𝐾𝐾

𝑘𝑘=1

𝑆𝑆𝑘𝑘𝑡𝑡 ,    𝑃𝑃𝐸𝐸𝑡𝑡 = �  
𝐾𝐾

𝑘𝑘=1

𝑃𝑃𝑘𝑘𝑡𝑡     (6)

𝐶𝐶𝐸𝐸𝑡𝑡 = �  
𝐾𝐾

𝑘𝑘=1

𝛼𝛼𝑘𝑘𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 + �𝛽𝛽𝑘𝑘𝑡𝑡�𝑆𝑆𝑘𝑘𝑡𝑡ℎ − 𝑆𝑆𝑘𝑘𝑡𝑡�     (7)
𝐾𝐾

𝑘𝑘=1

 

 

The constrains (3), (4), and (5) for the total storage system are then given by 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑆𝑆𝐸𝐸𝑡𝑡 < 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚    (8)
𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑃𝑃𝐸𝐸𝑡𝑡 < 𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚    (9)

 

where   
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≔ ∑  𝐾𝐾

𝑘𝑘=1 𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚: = ∑  𝐾𝐾
𝑘𝑘=1 𝑃𝑃𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑑𝑑  𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚: = ∑  𝐾𝐾

𝑘𝑘=1 𝑃𝑃𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚. With  𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚: = ∑  𝐾𝐾
𝑘𝑘=1 𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and the 

choices of 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑚𝑚{𝛼𝛼𝑘𝑘}𝑘𝑘=1𝐾𝐾  , and 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 = 𝑚𝑚𝑎𝑎𝑚𝑚{𝛽𝛽𝑘𝑘𝑡𝑡}𝑘𝑘=1𝐾𝐾  , the total operational cost of energy storage system 

at time t is upper-bounded by 

𝐶𝐶𝐸𝐸𝑡𝑡 ≤ 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ��1− 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑆𝑆𝐸𝐸𝑡𝑡 �    (10) 

Usually, smaller variation of energy promotes longer battery lifetime and efficiency. Clearly, higher values of  
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡  allow for smaller variations of the stored energy. If K=1 and one large storage is considered, then 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡  is 
replaced by 𝛽𝛽1𝑡𝑡. 

C. Renewable Generation Model 
The set of renewable power generators consisting of wind turbines and photovoltaics (PV) is represented 
by ℛ where |ℛ| = 𝑀𝑀. Let 𝑃𝑃𝑅𝑅𝑚𝑚

𝑡𝑡  denote the instantaneous power output of Wind turbine or PV generation 𝑚𝑚 ∈
ℛ at time 𝑡𝑡. For instance, the amount of power generated by a wind turbine varies with wind speed. Using the 
historical data, the wind turbine output power versus wind speed curve (power-speed curve) can be predicted, 
i.e., for wind turbine 𝑚𝑚 at time t given the wind speed, 𝑣𝑣𝑡𝑡 , the output power, 𝑃𝑃�𝑅𝑅𝑚𝑚

𝑡𝑡   is obtained. Similarly, PV 
output power forecast can be obtained. The power output of the renewable generation source m, 𝑃𝑃𝑅𝑅𝑚𝑚

𝑡𝑡  , can 
then be defined as a deterministic mean (or “nominal” value) plus a perturbation (error) term as follows 

𝑃𝑃𝑅𝑅𝑚𝑚
𝑡𝑡 = 𝑃𝑃�𝑅𝑅𝑚𝑚

𝑡𝑡 + 𝑃𝑃�𝑅𝑅𝑚𝑚
𝑡𝑡     𝑚𝑚 = 1, … ,𝑀𝑀     (11) 

where 𝑃𝑃�𝑅𝑅𝑚𝑚
𝑡𝑡  denotes a typical power output, obtained from forecast and 𝑃𝑃�𝑅𝑅𝑡𝑡  accounts for forecast error at time t. 

Let 𝐏𝐏�𝑅𝑅𝑡𝑡  and 𝐏𝐏�𝑅𝑅𝑡𝑡  collect all 𝑃𝑃�𝑅𝑅𝑚𝑚
𝑡𝑡  and 𝑃𝑃�𝑅𝑅𝑚𝑚

𝑡𝑡   , respectively, i.e., 𝐏𝐏�𝑅𝑅𝑡𝑡 : = �𝑃𝑃�𝑅𝑅1
𝑡𝑡 , … ,𝑃𝑃�𝑅𝑅𝑀𝑀

𝑡𝑡 � and 𝐏𝐏�𝑅𝑅𝑡𝑡 : = �𝑃𝑃�𝑅𝑅1
𝑡𝑡 , … ,𝑃𝑃�𝑅𝑅𝑀𝑀

𝑡𝑡 �. It is also 
postulated that the forecast error is zero mean with a known covariance matrix 𝐶𝐶𝑅𝑅𝑡𝑡 . Then, the probability 
distribution function (p.d.f) of 𝑃𝑃𝑅𝑅𝑡𝑡  can be represented by 𝑃𝑃𝑅𝑅𝑡𝑡 ∼ 𝑓𝑓�𝐏𝐏�𝑅𝑅𝑡𝑡 ,𝐶𝐶𝑅𝑅𝑡𝑡� , where f(.) may in general be unknown. 
For notational simplicity, and without loss of generality (w.l.o.g), one can define the net renewable generation 

as 𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 : = � 𝑃𝑃𝑅𝑅𝑚𝑚

𝑡𝑡
𝑀𝑀

𝑚𝑚=1
. The first and second order statistics of 𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  can then be written as 

𝔼𝔼�𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 � = �  

𝑀𝑀

𝑚𝑚=1

𝑃𝑃�𝑅𝑅𝑚𝑚
𝑡𝑡                                                  (12)

�𝜎𝜎𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 �2 = �  

𝑀𝑀

𝑚𝑚=1

�  
𝑚𝑚−1

𝑚𝑚=1

{[𝐶𝐶𝑅𝑅𝑡𝑡 ]𝑚𝑚𝑚𝑚 + 2[𝐶𝐶𝑅𝑅𝑡𝑡]𝑚𝑚𝑚𝑚}    (13)   

 



With  �𝜎𝜎𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 �2 as the variance of 𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  , it holds that 𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 ∼ ℎ �𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 �𝜎𝜎𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 �2�, where the function ℎ(. ) can in 

general be assumed an unknown p.d.f. 

D. Synchronous Generator 
The set of synchronous generators is represented by 𝒟𝒟 where |𝒟𝒟| = 𝐷𝐷. Let 𝑃𝑃𝐺𝐺𝑑𝑑

𝑡𝑡  denote the instantaneous power 
output of the generator 𝑑𝑑 ∈ 𝒟𝒟 at time 𝑡𝑡 ∈  {1, … ,𝑇𝑇} and 𝑷𝑷𝐺𝐺𝑡𝑡 : = �𝑃𝑃𝐺𝐺1

𝑡𝑡 , … ,𝑃𝑃𝐺𝐺𝐷𝐷
𝑡𝑡 �, then 𝑃𝑃𝐺𝐺𝑑𝑑

𝑡𝑡  follows a box constraint 
as 

𝑃𝑃𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 ≤ 𝑃𝑃𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚    𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝜏𝜏    (14) 

where 𝑃𝑃𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 represent the minimum and maximum allowable generation power. The generation cost 

is typically modeled as a convex and quadratic function in total power 𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡  as 𝑎𝑎𝑑𝑑𝑃𝑃𝐺𝐺𝑑𝑑

𝑡𝑡 2 + 𝑏𝑏𝑑𝑑𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 + 𝑐𝑐𝑑𝑑, where 𝑎𝑎𝑑𝑑 ,

𝑏𝑏𝑑𝑑, 𝑐𝑐𝑑𝑑 are constants. 

E. Demand Balance Constraint 
Suppose microgrid is operating in islanded-mode. Then, the total generation must meet the total demand and 
the energy shortage is supplied by the battery. Similarly, the excess generation can be stored in the battery for 
later use. It is desirable to have the renewable generation at the maximum foretasted capacity. However, in a 
condition with very light load and high renewable generation, parameter  𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡  is defined as the amount of 
power curtailment for renewable sources in order to limit the charging power of the battery under its nominal 
rating and avoid an storage system with an unreasonably large capacity. Also, 𝑷𝑷𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒collects 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1 , … ,𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇 . 
The instantaneous shortage or surplus power to meet the microgrid demand balance at time slot t can then be 
defined as 

𝑈𝑈𝑡𝑡 ≔ 𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 +∑ −𝐷𝐷

𝑑𝑑=1 𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 − 𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 − 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡      (15) 

Clearly, 𝑈𝑈𝑡𝑡 < 0 denotes the shortage in the microgrid which needs to be supplied by the storage system 
and  𝑈𝑈𝑡𝑡 > 0 represents the surplus power stored in the storage system. 

SECTION III. Energy Storage Capacity Optimization 
The cost efficient operation of a microgrid in islanded-mode calls for maximum generation of renewables and 
minimum supply from the synchronous generators. In addition, the demand balance constraint in (15) ensures 
that the total demand is satisfied, thus guaranteeing an stable operation of the microgrid. Furthermore, the 
energy and power requirements of the storage system must be met. Let define 𝑍𝑍𝑡𝑡: = 𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 − 𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡  for 

notational and computational simplicity. Then, the storage capacity optimization problem amounts to 



(P1) 𝑚𝑚𝑚𝑚𝑎𝑎
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑷𝑷𝑛𝑛𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒,𝑷𝑷𝐺𝐺

𝑛𝑛
�  
𝑇𝑇

𝑡𝑡=1

� �𝑎𝑎𝑑𝑑𝑃𝑃𝑡𝑡𝐺𝐺𝑑𝑑
2 + 𝑏𝑏𝑑𝑑𝑃𝑃𝐺𝐺𝑑𝑑

𝑡𝑡 + 𝑐𝑐�
𝐷𝐷

𝑑𝑑=1

+𝔼𝔼 ��  
𝑇𝑇

𝑡𝑡=1

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ��1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − �  

𝑡𝑡

𝑡𝑡′=1

𝑈𝑈𝑡𝑡′��

+𝜂𝜂𝑡𝑡𝔼𝔼◂∑▸�  
𝑇𝑇

𝑡𝑡=1

�𝑍𝑍𝑡𝑡 − 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 − 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐�
2 + 𝛼𝛼𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

subject to: Pr �𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑆𝑆𝐸𝐸0 + �  
𝑡𝑡

𝑡𝑡′=1

𝑈𝑈𝑡𝑡′ ≤ �1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚�

≥ 1 − 𝜖𝜖, 𝑡𝑡 ∈ 𝜏𝜏
Pr�𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑈𝑈𝑡𝑡 ≤ 𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚� ≥ 1 − 𝜖𝜖, 𝑡𝑡 ∈ 𝜏𝜏
𝑃𝑃𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝐺𝐺𝑑𝑑

𝑡𝑡 ≤ 𝑃𝑃𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝜏𝜏
𝟎𝟎 ⪯ 𝑷𝑷𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡

0 ≤ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑆𝑆𝑒𝑒𝑚𝑚𝑐𝑐

 

where the objective function is the expected cost incurred by the stochastic charge/discharge power over the 
varying renewable output power and load power, i.e., the expectation is with respect to 𝑍𝑍𝑡𝑡(𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  and 𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡  ). 

The third term in the cost function is to adjust variations of battery charging power and encourage the battery 
charging power to remain below a specified level denoted as 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐. This soft constraint avoids an unreasonably 
large energy storage system. Clearly, higher weights, ηt lead to smaller variations. The probability that total 
battery energy at each time does not violate the maximum/minimum battery capacity is limited by 1 − 𝜖𝜖 in (17) 
and (18) ensures that the probability that the battery power flow goes beyond the pre-specified limits does not 
exceed 1 − 𝜖𝜖. Constraint (19) limits the minimum/maximum synchronous generator power output. Similarly, 
constraints (20) and (21) are the required box constraints for 𝑷𝑷𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, respectively. It is natural to 
assume that the uncertainty involved in renewable generation is independent of the load uncertainty, i.e., 
𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 ⊥⊥ 𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  for 𝑡𝑡 ∈  𝜏𝜏. Upon the load and renewable generation output power independence, the 
expectation terms in (16) can be re-written as 

�  
𝑇𝑇

𝑡𝑡=1

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ��1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − � 𝔼𝔼�◂◽˙▸𝑈𝑈𝑡𝑡′�

𝑡𝑡

𝑡𝑡′=1

�

+𝔼𝔼{(𝑍𝑍𝑡𝑡)2}− 2�𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐 + 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 � 𝔼𝔼{𝑍𝑍𝑡𝑡} + �𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐�
2    (22)

 

where 𝑈𝑈𝑡𝑡, 𝔼𝔼{𝑈𝑈𝑡𝑡}can be expressed as 

𝑈𝑈𝑡𝑡 = �  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 + 𝑍𝑍𝑡𝑡 − 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡                          (23)

𝔼𝔼{𝑈𝑈𝑡𝑡} = �  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡′ + 𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 − 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 − 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡      (24)

 

Also, 𝔼𝔼{(𝑍𝑍𝑡𝑡)2} = �𝜎𝜎𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 �2 + �𝜎𝜎𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 �2 + �𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 �2 + �𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 �2 − 2𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  

Upon substituting 𝑈𝑈𝑡𝑡 from (23) the probabilistic constraint in (17) is represented by    



𝑃𝑃𝑟𝑟

⎝

⎜
⎛

0 ≤ −𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑆𝑆𝐸𝐸0 + ��𝑍𝑍𝑡𝑡′ + �  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡′ �

𝑡𝑡

𝑡𝑡′=1

≤ �1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

⎠

⎟
⎞
≥ 1 − 𝜖𝜖 

and can alternatively be substituted by the following two constraints as  

Pr

⎝

⎜
⎛
−�1− 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑆𝑆𝐸𝐸0 + ��𝑍𝑍𝑡𝑡′ + �  

𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡′ �

𝑡𝑡

𝑡𝑡′=1

≤ 0

⎠

⎟
⎞

≥ 1 −
𝜖𝜖
2

    (25) 

and  

Pr�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑆𝑆𝐸𝐸0 − ∑  𝑡𝑡
𝑡𝑡′=1 𝑍𝑍𝑡𝑡′ − ∑  𝑡𝑡

𝑡𝑡′=1 ∑  𝐷𝐷
𝑑𝑑=1 𝑃𝑃𝐺𝐺𝑑𝑑

𝑡𝑡′ ≤ 0� ≥ 1 − 𝜖𝜖
2        (26) 

Similarly, constraint 𝑃𝑃𝑟𝑟�𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑈𝑈𝑡𝑡 ≤ 𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚� ≥ 1 − 𝜖𝜖 can be splitted as 

Pr�𝑍𝑍𝑡𝑡 + �  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 − 𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0� ≥ 1 −

𝜖𝜖
2

and  Pr�𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑡𝑡 −�  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 ≤ 0� ≥ 1 −

𝜖𝜖
2

     (27)  (28) 

For notational simplicity, let 𝜖𝜖′: = 𝜖𝜖
2
. 

 

Remark 1: 
The new probabilist constraints in (25)–(26) and (27)–(28) can conservatively substitute their original 
counterparts in (17) and (18). To verify that, let for example 𝑃𝑃𝑟𝑟{𝐴𝐴 < 𝑚𝑚 < 𝐵𝐵} > 1 − 𝜖𝜖 which is equivalent 
to 𝑃𝑃(𝑚𝑚 > 𝐴𝐴) + 𝑃𝑃(𝑚𝑚 < 𝐵𝐵) − 1 > 1 − 𝜖𝜖. Therefore, the following 𝑃𝑃(𝑚𝑚 > 𝐴𝐴) + 𝑃𝑃(𝑚𝑚 < 𝐵𝐵) > 2 − 𝜖𝜖 holds. 
Substituting the above equation with 𝑃𝑃(𝑚𝑚 > 𝐴𝐴) > 1 − 𝜖𝜖/2, and 𝑃𝑃(𝑚𝑚 < 𝐵𝐵) > 1 − 𝜖𝜖/2 follows 𝑃𝑃(𝑚𝑚 > 𝐴𝐴) +
𝑃𝑃(𝑚𝑚 < 𝐵𝐵) > 2 − 𝜖𝜖. 

It is worth noting that in general, the feasible set of (17) and (18) can be either convex or non-convex, depending 
on the distribution of random parameters 𝑍𝑍𝑡𝑡. However, even if the constraints are convex, it may not be 
straightforward to express them in closed form, rendering the optimization problem intractable. A useful 
approach to tackle the non-convexity and non-tractability of the chance constraints, is to substitute the 
constraint with a convex and conservative surrogate. To this end, Gaussian and Bernstein approximation are 
deployed and introduced in Section IV. 

SECTION IV. Convex Approximation of Chance Constraints 
A. Bernstein Approximation 
With no knowledge on probability distribution of 𝑍𝑍𝑡𝑡, except the mean and variance, we would like to replace 
chance constraints in problem (P1) with convex and tractable approximations. In addition, the surrogate 
constraints need to be conservative, in the sense that the feasible set of approximate constraints are a subset of 



the original chance constraints. Therefore, the optimal solution of the approximate problem will be a feasible 
suboptimal solution of (P1). A special class of convex conservative approximation techniques for chance 
constraints includes Bernstein approximations which is briefly reviewed in the present context [7], [21]. Consider 
a chance constraint of the form 

𝑃𝑃𝑟𝑟 �𝑓𝑓0(𝐱𝐱) +�  
𝑇𝑇

𝑡𝑡=1

𝜁𝜁𝑡𝑡 𝑓𝑓𝑡𝑡(𝐱𝐱) < 0� ≥ 1 − 𝜖𝜖     (29) 

where 𝑚𝑚 is a deterministic parameter vector, and {𝜁𝜁𝑚𝑚} are random variables with marginal distributions denoted 
as {𝜋𝜋𝑚𝑚}. The following assumptions are necessary to deploy the approximation. 

1. {𝑓𝑓𝑎𝑎(𝑚𝑚) are affine in 𝐱𝐱 for 𝑡𝑡 = 0,1, … ,𝑇𝑇; 

2. {𝜁𝜁𝑡𝑡} are independent of each other; and 

3. {𝜋𝜋 𝑡𝑡} have a common bounded support of [−1, 1]; that is, −1 ≤ 𝜁𝜁𝑡𝑡 ≤ 1 for all 𝑡𝑡 = 1, … ,𝑇𝑇. 

Under these assumptions, a conservative substitute of (29) based on moment generating functions is given 
by [7], [21] 

𝑚𝑚𝑎𝑎𝑓𝑓
𝑣𝑣>0

[𝑓𝑓0(𝐱𝐱) + 𝑣𝑣�Ω𝑡𝑡  (𝑣𝑣−1 𝑓𝑓𝑡𝑡(𝐱𝐱))
𝑇𝑇

𝑡𝑡=1

+ 𝑣𝑣 log(
1
𝜖𝜖

)] ≤ 0    (30) 

where 𝑣𝑣 > 0 is the optimization variable,  Ω𝑡𝑡(𝑦𝑦): = 𝑚𝑚𝑎𝑎𝑚𝑚
𝜋𝜋𝑛𝑛

Φ(𝑦𝑦) , and Φ(𝑦𝑦,𝜋𝜋𝑡𝑡): = log (∫ exp (𝑚𝑚𝑦𝑦)𝑑𝑑𝜋𝜋𝑡𝑡(𝑚𝑚)) 

represents logarithmic moment generation function. Moreover, it is guaranteed that (30) is convex [7], [21]. 
However, in general, {Ω𝑡𝑡(𝑦𝑦)} may not be easy to evaluate. To this end, one can consider an upper-bound 
for Ω𝑡𝑡(𝑦𝑦) given by 

Ω𝑡𝑡(𝑦𝑦) ≤ 𝑚𝑚𝑎𝑎𝑚𝑚{𝜇𝜇𝑡𝑡−𝑦𝑦, 𝜇𝜇𝑡𝑡+𝑦𝑦} +
𝜎𝜎𝑡𝑡2

2
𝑦𝑦2, 𝑡𝑡 = 1, … ,𝑇𝑇    (31) 

where 𝜇𝜇𝑡𝑡−, 𝜇𝜇𝑡𝑡+ with −1 ≤ 𝜇𝜇𝑡𝑡− ≤ 𝜇𝜇𝑡𝑡+ ≤ 1 and 𝜎𝜎𝑡𝑡 ≥ 0  are constants that depend on the given families of 
probability distributions. Some examples are given in [21, Table 1], where the useful prior knowledge includes 
the support, unimodality (with respect to the center of the support), and symmetry of the distribution, as well as 
the ranges of the first- and the second-order moments. Using more prior knowledge leads to tighter 
approximation. Replacing Ω𝑡𝑡(⋅) in (30) with this upper-bound, and invoking the arithmetic-geometric inequality, 
yields 

𝑓𝑓0(𝐱𝐱) + �𝑚𝑚𝑎𝑎𝑚𝑚 {𝜇𝜇𝑡𝑡− 𝑓𝑓𝑡𝑡(𝐱𝐱) , 𝜇𝜇𝑡𝑡+ 𝑓𝑓𝑡𝑡(𝐱𝐱)}
𝑇𝑇

𝑡𝑡=1

+𝜅𝜅(�  
𝑇𝑇

𝑡𝑡=1

𝜎𝜎𝑡𝑡2𝑓𝑓𝑡𝑡(𝐱𝐱)2)
1
2 ≤ 0

     (32) 

as a convex conservative surrogate for (29). 

Due to the renewable resources generation limits and the fact that the total load of a household or a building is 
limited, it is natural to assume that the distributions of 𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡  and 𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡  have bounded support of [𝑙𝑙𝑋𝑋𝑡𝑡 ,𝑢𝑢𝑋𝑋𝑡𝑡 ] and 

[𝑙𝑙𝑌𝑌𝑡𝑡 ,𝑢𝑢𝑌𝑌𝑡𝑡 ]  , respectively. Therefore, 𝑍𝑍𝑡𝑡 has also a bounded support of [𝑙𝑙𝑍𝑍𝑡𝑡 ,𝑢𝑢𝑍𝑍𝑡𝑡 ]. More specifically, with  
(𝜎𝜎𝑍𝑍𝑡𝑡)2: = (𝜎𝜎𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 )2 + (𝜎𝜎𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 )2 and 𝔼𝔼[𝑍𝑍𝑡𝑡] : = �̂�𝑍𝑡𝑡 as the nominal value, it is assumed that 𝑍𝑍𝑡𝑡 − �̂�𝑍𝑡𝑡 ∈ [−𝜎𝜎𝑍𝑍𝑡𝑡 ,𝜎𝜎𝑍𝑍𝑡𝑡]. 

Furthermore, in addition to the load and total renewables output generation independence, it is assumed that 



the total shortage outputs 𝑍𝑍𝑡𝑡  and 𝑍𝑍𝑡𝑡 are independent. Let introduce constants 𝑎𝑎𝑍𝑍𝑡𝑡 : = 1
2

(𝑢𝑢𝑍𝑍𝑡𝑡 − 𝑙𝑙𝑍𝑍𝑡𝑡 ) = 𝜎𝜎𝑍𝑍𝑡𝑡  and  

𝑏𝑏𝑍𝑍𝑡𝑡 : = 1
2

(𝑢𝑢𝑍𝑍𝑡𝑡 + 𝑙𝑙𝑍𝑍𝑡𝑡 ) = �̂�𝑍𝑡𝑡 to normalize the supports to [−1, 1] per as3); that is, 

𝜁𝜁𝑍𝑍𝑡𝑡 : =
𝑍𝑍𝑡𝑡 − 𝑏𝑏𝑍𝑍𝑡𝑡

𝑎𝑎𝑍𝑍𝑡𝑡
∈ [−1,1].    (33) 

Then, with (33) and letting  
𝑓𝑓0(𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑷𝑷𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 ,𝑷𝑷𝐺𝐺𝑡𝑡 ) = −�1− 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑆𝑆𝐸𝐸0 + ∑  𝑡𝑡

𝑡𝑡′=1 𝑏𝑏𝑍𝑍𝑡𝑡
′ + ∑  𝑡𝑡

𝑡𝑡′=1 ∑  𝐷𝐷
𝑑𝑑=1 and𝑓𝑓𝑡𝑡(𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑷𝑷𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡′ ,𝑷𝑷𝐺𝐺𝑡𝑡

′) =
𝑎𝑎𝑍𝑍𝑡𝑡

′
for 𝑡𝑡′ ∈ 𝜏𝜏, it follows that (29) is equivalent to (25). Thus, substituting these into (29), (25) is replaced by (34). 

Similarly, constraints (26), (27), and (28) can be approximated. With  𝜇𝜇𝑡𝑡+ = 𝜇𝜇𝑡𝑡−: = 𝐸𝐸{𝑍𝑍
𝑛𝑛−𝑏𝑏𝑍𝑍

𝑛𝑛

𝑚𝑚𝑍𝑍
𝑛𝑛 |𝑎𝑎𝑍𝑍𝑡𝑡 ≤ 𝑍𝑍𝑡𝑡 ≤ 𝑏𝑏𝑍𝑍𝑡𝑡} =

0 and 𝜎𝜎𝑡𝑡 = 1 , Bernstein approximation of the constraints (25), (26), (27), and (28) boil down to (34), (35), (36), 
and (37) as shown at the bottom of this page 

here 𝜅𝜅 = �2 log 1
𝜖𝜖′

. 

B. Gaussian Approximation 
A yet another approximation can be deployed here to approximate (17), and (18) and avoid conservatism of 
Bernstein method. The tacit assumption here is that the forecast errors in the load and renewable output power 
follow a Gaussian distribution, i.e., 𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 ∼ 𝑁𝑁(𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 (𝜎𝜎𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 )2) and 𝑃𝑃𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 ∼ 𝑁𝑁(𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 (𝜎𝜎𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 )2). Then, it can be 

shown that approximate constraints through Gaussian approximation are the same as Bernstein approximation 
except that κ is replaced by 𝑄𝑄−1 (𝜖𝜖′), where the 𝑄𝑄(. ) is the standard Gaussian tail function. 

SECTION V. The Proposed Algorithm 
A. Robust Algorithm 
Substituting the probabilistic constraints and taking the expectation in objective function, the problem (P1) can 
be re-written as 



(P2) 𝑚𝑚𝑚𝑚𝑎𝑎
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝐏𝐏𝐺𝐺

𝑛𝑛
�  
𝑇𝑇

𝑡𝑡=1

� �𝑎𝑎𝑑𝑑𝑃𝑃𝑡𝑡𝐺𝐺𝑑𝑑
2 + 𝑏𝑏𝑑𝑑𝑃𝑃𝐺𝐺𝑑𝑑

𝑡𝑡 + 𝑐𝑐�
𝐷𝐷

𝑑𝑑=1

+𝛼𝛼𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + �  
𝑇𝑇

𝑡𝑡=1

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡

× [(1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ)𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + �  
𝑡𝑡

𝑡𝑡′=1

× (−�  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡′ − 𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡′ + 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡′ + 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡′ )]

+𝜂𝜂𝑡𝑡�  
𝑇𝑇

𝑡𝑡=1

𝐶𝐶𝑍𝑍𝑡𝑡 − 2�𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐��𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 − 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 �

+�𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐�
2

subject to: (19), (20), (21), (34), (35), (36),and  (37)  

 

(38) 

Proposition 1 
If (𝑃𝑃2) is feasible, then deploying dual method leads to zero duality gap and global optimum. 

Proof: 
The constraints are linear with respect to 𝑃𝑃𝐺𝐺𝑑𝑑

𝑡𝑡  , 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡  and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚. In addition, the cost function in (𝑃𝑃2) consists of 
continuous quadratic and linear terms which are known to be convex over the entire space. Since the 
continuous convex cost function in (𝑃𝑃2) is minimized over a nonempty compact set specified by the set of 
constraints in (𝑃𝑃2), the optimal value is also finite. These two conditions are sufficient to claim on zero duality 
gap and the dual method is well motivated [22]. 

Remark 2: 
It is worth noting that Bernstein approximation is made conservative in the sense that the feasible set of the 
approximated problem (𝑃𝑃2) is a feasible subset of the original problem (𝑃𝑃1). Then, by construction the optimal 
solution of (𝑃𝑃2) is guaranteed to be feasible suboptimal solution for the original problem. 

Introducing dual variables 𝝂𝝂: = [𝜈𝜈1, … , 𝜈𝜈𝑇𝑇],𝝀𝝀: = [𝜆𝜆1,𝜆𝜆2, … , 𝜆𝜆𝑇𝑇],𝝎𝝎: = [𝜔𝜔1, … ,𝜔𝜔𝑇𝑇],𝜸𝜸: = [𝛾𝛾1, … , 𝛾𝛾𝑇𝑇] , The dual 
function is given by 



𝐷𝐷(𝝂𝝂,𝝀𝝀,𝝎𝝎,𝜸𝜸) = inf
𝟎𝟎⪯𝑷𝑷𝑛𝑛𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛 ,𝑷𝑷𝐺𝐺

𝑚𝑚𝑚𝑚𝑛𝑛≤𝐏𝐏𝐺𝐺
𝑛𝑛≤𝑷𝑷𝐺𝐺

𝑚𝑚𝑚𝑚𝑚𝑚,0≤𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚≤𝑆𝑆𝑒𝑒𝑚𝑚𝑐𝑐

× �𝐿𝐿1𝑡𝑡  (𝑷𝑷𝐺𝐺𝑡𝑡 ;𝝂𝝂,𝝀𝝀,𝝎𝝎,𝜸𝜸)
𝑇𝑇

𝑡𝑡=1

+ 𝐿𝐿2𝑡𝑡 (𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚;𝝀𝝀)

+ 𝐿𝐿3𝑡𝑡 (𝝂𝝂,𝝀𝝀,𝝎𝝎,𝜸𝜸) + 𝐿𝐿4𝑡𝑡 (𝑷𝑷𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 ,𝝂𝝂,𝝀𝝀,𝝎𝝎,𝜸𝜸)

=

⎩
⎪
⎨

⎪
⎧ 𝑚𝑚𝑎𝑎𝑓𝑓
𝑷𝑷𝐺𝐺
𝑚𝑚𝑚𝑚𝑛𝑛≤𝐏𝐏𝐺𝐺

𝑛𝑛≤𝑷𝑷𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚

�  
𝑇𝑇

𝑡𝑡=1

𝐿𝐿1𝑡𝑡 + 𝐿𝐿3𝑡𝑡 + 𝐿𝐿4𝑡𝑡

if 𝜆𝜆𝑡𝑡 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 +

𝛼𝛼
𝑇𝑇(1 −𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ)

−∞, otherwise

 

(39) 

where 

𝐿𝐿1𝑡𝑡 : = �𝑎𝑎𝑑𝑑𝑃𝑃𝑡𝑡𝐺𝐺𝑑𝑑
2

𝐷𝐷

𝑑𝑑=1

+ �𝑏𝑏𝑑𝑑𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡

𝐷𝐷

𝑑𝑑=1

+(𝜔𝜔𝑡𝑡 − 𝛾𝛾𝑡𝑡)�  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 + (𝜆𝜆𝑡𝑡 − 𝜈𝜈𝑡𝑡 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ) �  
𝑡𝑡

𝑡𝑡′=1

�  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡′     (40)

𝐿𝐿2𝑡𝑡 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ��1− 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 +
𝛼𝛼
𝑇𝑇
− 𝜆𝜆𝑡𝑡�1− 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ��

𝐿𝐿3𝑡𝑡 = −2𝜂𝜂𝑡𝑡𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 �𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 − 𝑃𝑃�◂◽.▸𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 �+ 𝜂𝜂𝑡𝑡�𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐�
2         

−(𝜔𝜔𝑡𝑡 − 𝛾𝛾𝑡𝑡)𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 − (𝜆𝜆𝑡𝑡 − 𝜈𝜈𝑡𝑡) �  
𝑡𝑡

𝑡𝑡′=1

𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡′          (42)

𝐿𝐿4𝑡𝑡 = 𝜆𝜆𝑡𝑡(𝐴𝐴𝑡𝑡 + 𝑉𝑉𝑡𝑡) − 𝜈𝜈𝑡𝑡(𝐴𝐴𝑡𝑡 − 𝑉𝑉𝑡𝑡) + 𝜔𝜔𝑡𝑡(−𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵𝑡𝑡 + 𝐻𝐻𝑡𝑡)
+𝛾𝛾𝑡𝑡�𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐵𝐵𝑡𝑡 + 𝐻𝐻𝑡𝑡�                                              (43) 

(41) 

and 𝐴𝐴𝑡𝑡: = 𝑆𝑆𝐸𝐸0 + ∑  𝑡𝑡
𝑡𝑡′=1 𝑍𝑍𝑡𝑡′ ,𝑉𝑉𝑡𝑡: = 𝜅𝜅 �∑  𝑡𝑡

𝑡𝑡′=1 �𝜎𝜎𝑍𝑍𝑡𝑡
′�
2
�
1
2
 and 𝐻𝐻𝑡𝑡: = 𝜅𝜅𝜎𝜎𝑍𝑍𝑡𝑡. Then, the dual problem is given by 

𝑠𝑠𝑢𝑢𝑠𝑠
𝝂𝝂⪰𝟎𝟎,𝝎𝝎⪰𝟎𝟎,𝜸𝜸⪰𝟎𝟎

𝐷𝐷(𝝂𝝂,𝝎𝝎,𝜸𝜸)      (44) 

It is interesting to note that the optimization in (39) can be decomposed per time slot, thanks to the separable 
structure of the problem. Specifically, at each time slot 𝑡𝑡 ∈ 𝜏𝜏 , the optimal power for generator 𝑑𝑑 ∈ 𝒟𝒟 and 
optimal excess power are obtained by 

𝑃𝑃𝐺𝐺𝑑𝑑
∗𝑡𝑡 = �

𝛾𝛾𝑡𝑡 + 𝜈𝜈𝑡𝑡 − 𝜔𝜔𝑡𝑡 − 𝑏𝑏𝑑𝑑 + 𝜂𝜂
2𝑎𝑎𝑑𝑑

−
𝛼𝛼

2𝑎𝑎𝑑𝑑𝑇𝑇(1 −𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ)�
𝑃𝑃𝐺𝐺
𝑚𝑚𝑚𝑚𝑛𝑛

𝑃𝑃𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚

.

𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗𝑡𝑡 = �
𝛾𝛾𝑡𝑡 + 𝜈𝜈𝑡𝑡 − 𝜔𝜔𝑡𝑡 − 𝑏𝑏𝑑𝑑 + 𝜂𝜂

2𝑎𝑎𝑑𝑑
−

𝛼𝛼
2𝑎𝑎𝑑𝑑𝑇𝑇(1 −𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ)�

+

         (46)

  (45) 

where[𝑎𝑎]+: = 𝑚𝑚𝑎𝑎𝑚𝑚(0,𝑎𝑎). It is immediate from (34) that the optimal storage size is given by 



𝑆𝑆∗𝑚𝑚𝑚𝑚𝑚𝑚 ≥
𝐴𝐴𝑡𝑡 + 𝑉𝑉𝑡𝑡

(1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ) +
∑  𝑡𝑡
𝑡𝑡′=1 ∑  𝐷𝐷

𝑑𝑑=1 𝑃𝑃𝐺𝐺𝑑𝑑
∗𝑡𝑡′

(1 −𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ) , 𝑡𝑡 ∈ 𝜏𝜏     (47) 

it then follows 

𝑆𝑆∗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑚𝑚
𝑡𝑡

𝐴𝐴𝑡𝑡 + 𝑉𝑉𝑡𝑡

(1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ)
+
∑  𝑡𝑡
𝑡𝑡′=1 ∑  𝐷𝐷

𝑑𝑑=1 𝑃𝑃𝐺𝐺𝑑𝑑
∗𝑡𝑡′

(1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ)
     (48) 

The optimal solution of (44) can be obtained via iterative optimization methods such as the subgradient method, 
which requires the subgradient of 𝐷𝐷(⋅) 𝑤𝑤. 𝑟𝑟. 𝑡𝑡.  [𝝂𝝂,𝝎𝝎,𝜸𝜸]. The subgradient is as follows 

𝑔𝑔𝝂𝝂𝑡𝑡 = −𝐴𝐴𝑡𝑡 + 𝑉𝑉𝑡𝑡 − �  
𝑡𝑡

𝑡𝑡′=1

�  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡′ + �  

𝑡𝑡

𝑡𝑡′=1

𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡′   (49)

𝑔𝑔𝝎𝝎𝑡𝑡 = −𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵𝑡𝑡 + 𝐻𝐻𝑡𝑡 + �  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 − 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡     (50)

𝑔𝑔𝜸𝜸𝑡𝑡 = 𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐵𝐵𝑡𝑡 + 𝐻𝐻𝑡𝑡 −�  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡        (51)

 

To avoid the computational complexity resulted from the large dimension of the optimization problem due to 
the use of a large data set of load and renewable power, the original optimization problem is solved in each time 
slot in a distributed manner. The detailed algorithm is shown in Table I. 

TABLE I Algorithm for Solving (P2) 

1: Initialize Lagrange multipliers v,𝜔𝜔, 𝛾𝛾, 𝜂𝜂. Set tolerance 𝜏𝜏 
2: For 𝑡𝑡 =  1, . . . ,𝑇𝑇 do 
3: Find 𝑃𝑃𝐺𝐺𝑑𝑑

∗𝑡𝑡  and 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗𝑡𝑡  from (45) and (46) 
4: Repeat i =  0,1,2, . .. 
5: 𝒗𝒗𝑚𝑚+𝑙𝑙  = 𝒗𝒗𝑚𝑚 + 𝜂𝜂𝑚𝑚𝑔𝑔𝒗𝒗𝑚𝑚 , 

𝝎𝝎𝑚𝑚+𝑙𝑙  = 𝝎𝝎𝑚𝑚 +  𝜂𝜂𝑚𝑚𝑔𝑔𝜔𝜔𝑚𝑚 , 
𝜸𝜸𝑚𝑚+𝑙𝑙  = 𝜸𝜸𝑚𝑚 +  𝜂𝜂𝑚𝑚𝑔𝑔𝛾𝛾𝑚𝑚  

6: Until convergence 
7: End for 
8: Find 𝑆𝑆∗𝑚𝑚𝑚𝑚𝑚𝑚 from (48) 

 

B. Simplified Algorithm Incorporating Only the Historical Data 
In case the forecast error is not available, one can resort to only forecast data (or historical data), without 
incorporating the forecast error. Then, the probabilist constraints in (𝑃𝑃1) are substituted by the following 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑆𝑆𝐸𝐸0 + �𝔼𝔼 {𝑈𝑈𝑡𝑡′}
𝑡𝑡

𝑡𝑡′=1

≤ �1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡 ∈ 𝜏𝜏    (52)

𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝔼𝔼{𝑈𝑈𝑡𝑡} ≤ 𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡 ∈ 𝜏𝜏                                                 (53)

 

where 𝔼𝔼 {𝑈𝑈𝑡𝑡} is obtained from (24) and entails load and renewable forecast power data. Similar to (𝑃𝑃2), this 
optimization problem is convex and can be solved using dual method. The optimal solutions to this problem can 
be obtained from Table I, where the subgradients are simply obtained by substituting 𝜎𝜎𝑍𝑍𝑡𝑡 = 0 for 𝑡𝑡 ∈ 𝜏𝜏 from the 
following 



𝑔𝑔𝝂𝝂 = −𝑆𝑆𝐸𝐸0 + ��−𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡′ + 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡′ + 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡′ �
𝑡𝑡

𝑡𝑡′=1

− �  
𝑡𝑡

𝑡𝑡′=1

�  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡′     (54)

𝑔𝑔𝝎𝝎 = −𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 − 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 − 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 + �  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡                     (55)

𝑔𝑔𝜸𝜸 = 𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃�𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡 + 𝑃𝑃�𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 −�  
𝐷𝐷

𝑑𝑑=1

𝑃𝑃𝐺𝐺𝑑𝑑
𝑡𝑡 .                     (56)

 

SECTION VI. Numerical Tests 
In this section the proposed algorithm for generation output power and storage capacity optimization is verified 
using numerical tests. 

A. Microgrid Without Solar Generation 
A microgrid with 𝐷𝐷 = 2 generators, 𝑅𝑅 = 3 wind farms is considered. The hourly wind farms power data for the 
year 2012 were obtained from three geographically adjacent sites in NREL database [23]. The hourly total 
forecast load data of 2012 was collected from ERCOT database [24]. The time horizon spans 𝑇𝑇 = 24 × 300 =
7200 hours. As shown in Fig. 1, the wind power forecast data has been rescaled to the order of 0 to 312 kWh 
and the load data lies in the range of [160, 353]kW. It can be seen that at some intervals wind output power is 
enough to cover load power demand and in some instances, another source of energy is required. The 

generators parameters are 𝑎𝑎1 = 0.08 � $
(kW)2� ,𝑎𝑎2 = 0.07 � $

(kW)2� , 𝑏𝑏1 = 0.5 � $
kW
� , 𝑏𝑏2 = 0.3($/(kW)),𝑃𝑃𝐺𝐺1

𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑃𝑃𝐺𝐺2
𝑚𝑚𝑚𝑚𝑚𝑚 = 0 and 𝑃𝑃𝐺𝐺1

𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃𝐺𝐺2
𝑚𝑚𝑚𝑚𝑚𝑚 = 200kW. Unless stated otherwise, 𝛼𝛼 = 0.5($/(𝑊𝑊ℎ), 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ = 0.1,  𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐 =

0.02𝑚𝑚𝑎𝑎𝑚𝑚(�̂�𝑍) = 3 𝑘𝑘𝑊𝑊 

 
Fig. 1. Load and wind generation hourly data. 
 

Fig. 2 shows a comparison of the optimal storage capacity for different values of constraints violation 
probabilistic threshold, 𝜖𝜖 , for both Bernstein approximation-based and Gaussian approximation-based 
algorithms. The solid line without markers is for the case when it is assumed that the standard deviation of 
forecast error, i.e., 𝜎𝜎𝑍𝑍 = 0 , meaning the wind output power and load power shown in Fig. 1 are perfectly 
known. In this case, the chance constraints boil down to deterministic constraints as detailed in Section V-B and 
thus the optimal cost and battery capacity do not depend on 𝜖𝜖. The dashed lines with star and diamond markers 
correspond to the Bernstein approximation-based and the Gaussian approximation-based algorithms, 
respectively. It can be observed that the optimal storage capacity increases as 𝜖𝜖 increases, since larger 𝜖𝜖 renders 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5165411/9120396/8957678/nasir1-2966620-large.gif


the chance constraint more lenient. Also, it can be seen that the curves corresponding to the optimal storage 
capacity through Gaussian approximation-based algorithm are closer to the deterministic case than Bernstein 
approximation. This really confirms that more prior knowledge on the distribution of the forecast error results in 
more exact and less conservative optimal solutions. However, if minimal prior knowledge is available, one needs 
to resort to a more conservative approach. 

 
Fig. 2. Optimal storage capacity versus probability threshold of constraint violation, 𝜖𝜖. 
 

Fig. 3 shows how prediction error affects on optimal capacity of storage system. The performance of Gaussian 
approximation-based robust algorithm is compared for different values of 𝜎𝜎𝑍𝑍. The dashed lines with square, star 
and diamond markers are evaluating Gaussian-based robust algorithm for different values of 𝜖𝜖. It is seen that as 
the forecast accuracy improves (smaller 𝜎𝜎𝑍𝑍 ), the performance of the robust algorithm gets better and 
eventually touches that of the deterministic case with no uncertainty. In other words, the performance gap will 
eventually close as 𝜎𝜎𝑍𝑍 vanishes. Similar trends are observed for different values of 𝜖𝜖. 

 
Fig. 3. Optimal storage capacity versus error standard deviation 𝜎𝜎𝑍𝑍. 
 

The sensitivity of the optimal expected cost to the choice of 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐 is examined in Fig. 4 for deterministic case. It is 
seen that higher values of 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐 , allows for storage of higher portion of excess wind energy which leads to an 
increase in storage capacity as well as the total cost. 
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Fig. 4. Optimal storage capacity versus 𝑃𝑃𝑒𝑒𝑚𝑚𝑐𝑐. 
 

In Fig. 5, the effectiveness of the joint optimal generator and battery power planning for an stable operation of 
the microgrid is demonstrated. A time horizon of one week is considered. It can be seen that the battery charges 
when the wind power is beyond the net demand and discharges when the demand exceeds the wind 
generation. However, due to the cost function for the lifetime of the battery in (𝑃𝑃1), the algorithm doesn’t allow 
for large variations of the battery energy. Therefore, the trend of charging and discharging of the battery is fairly 
smooth. As can be seen, the rest of the required power is provided by the generators.  

 
Fig. 5. Hourly battery power and energy compared to the load, wind and synchronous generators power. 
 

It is worth noting that as long as (𝑃𝑃2) is feasible, the algorithm is general enough to accommodate different 
microgrid scales and similar trends in terms of key conclusions such as the conservatism of approximations, the 
effect of the approximation error and optimal planning, hold true. 

B. Microgrid with Solar Generation 
To validate the proposed algorithms in a more practical setting, Fort Sill microgrid shown in Fig. 6 is considered. 
It is connected to the utility grid through a 480V/13.20kV transformer and a static switch. The generations in this 
microgrid include two synchronous generators with the same parameters as previous test except that 𝑃𝑃𝐺𝐺1

𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑃𝑃𝐺𝐺2
𝑚𝑚𝑚𝑚𝑚𝑚 = 20 𝑘𝑘𝑊𝑊. There is one 90 kW solar PV system, a 50 kW wind turbine, and an energy storage device. The 

system also includes various motor loads and variable loads. Motor loads mainly include chillers, water pumps, 
and air compressors. This microgrid can operate in a grid-tie mode or island mode, however, we are interested 
in island mode in this case study. The same load and wind data from subsection A of numerical tests have been 
scaled to be used in this microgrid. The solar profile for 24 hours as shown in Fig. 7 has been used to generate 
solar data for 𝑇𝑇 = 2000 hours. 
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Fig. 6. Schematic of the Fort Sill microgrid. 
 

 
Fig. 7. Solar PV power day profile for a bright day, cloudy day, and the worst power fluctuation during a one-
month period. 
 

Similar to Figs. 2 and 3, a comparison of the optimal storage capacity for different values of constraints violation 
probabilistic threshold, 𝜖𝜖 , and standard deviation are shown in Figs. 8 and 9. It can be seen that although the 
microgrid in the second case includes solar generation and is at a different scale, similar trends hold in both 
microgrids. Fig. 8 shows that due to lack of distribution assumption and prior knowledge on the uncertainty, the 
probabilistic constraint is enforced conservatively with Bernstein approximation. However, due to probability 
distribution assumption, Gaussian approximation provides less conservative solution. In Fig. 9 it can be seen that 
a large portion of storage capacity estimation error is attributed to the the power output prediction error. 

 
Fig. 8. Optimal storage capacity versus probability threshold of constraint violation, 𝜖𝜖. 
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Fig. 9. Optimal storage capacity versus error standard deviation 𝜎𝜎𝑍𝑍. 
 

In addition, the numerical tests illustrate that the size and consequently cost for the energy storage depends on 
the level of 𝐿𝐿𝐷𝐷𝐿𝐿𝑃𝑃 needed for any specific microgrid. For more critical systems, this cost can increase. In an 
infinite case, the storage must support all the loads for an extended period of time. 

It is worth noting that although the algorithm is processing data for T hours, since the problem is solved per time 
slot in a distributed manner, it is much faster than processing all the data simultaneously. Using 2.4 GHz 8-Core 
Intel Core i9 and for 𝑇𝑇 =  2000 hours, the algorithm converges to the optimal solution in 104.815 seconds. 

SECTION VII. Conclusion 
Joint storage capacity and generation optimization was considered, where the hourly optimal generation power 
and storage system capacity were obtained while ensuring that the demand is served with no interruption 
(demand-balance constraint) and the charging and discharging power of the battery is within the prespecified 
thresholds. Due to intermittent nature of the load and renewables, the forecast values involve uncertainty and 
error and the constraints which comprise of renewable generation or load were cast as a chance constraint. As 
the resulting optimization problem is intractable, two different approaches for approximation were introduced. 
First, a convex conservative surrogate of the chance constraint was employed using Bernstein approximation, to 
bypass the need to analytically represent the chance constraint, even without precise knowledge of the 
distribution of uncertain generation or load. Secondly, assuming that load and generation uncertainty entail 
Gaussian distribution, an approximation of the chance constraint is obtained. Due to separable structure of the 
problem, a distributed algorithm based on dual method was proposed. It is worth noting that the conservatism 
introduced through approximations is a side-effect often shared by a broad class of robust optimization 
approaches, and arguably constitutes the price paid to obtain guaranteed feasible solutions to chance-
constrained problems at an affordable complexity. 
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