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Abstract
Introduction: Resting state functional magnetic resonance imaging (rsfMRI) studies 
demonstrate that individuals with posttraumatic stress disorder (PTSD) exhibit atypi-
cal functional connectivity (FC) between the amygdala, involved in the generation 
of emotion, and regions responsible for emotional appraisal (e.g., insula, orbitofron-
tal cortex [OFC]) and regulation (prefrontal cortex [PFC], anterior cingulate cortex). 
Consequently, atypical amygdala FC within an emotional processing and regulation 
network may be a defining feature of PTSD, although altered FC does not seem con-
strained to one brain region. Instead, altered amygdala FC involves a large, distrib-
uted brain network in those with PTSD. The present study used a machine-learning 
data-driven approach, multi-voxel pattern analysis (MVPA), to predict PTSD severity 
based on whole-brain patterns of amygdala FC.
Methods: Trauma-exposed adults (N  =  90) completed the PTSD Checklist-Civilian 
Version to assess symptoms and a 5-min rsfMRI. Whole-brain FC values to bilateral 
amygdala were extracted and used in a relevance vector regression analysis with 
a leave-one-out approach for cross-validation with permutation testing (1,000) to 
obtain significance values.
Results: Results demonstrated that amygdala FC predicted PCL-C scores with statis-
tically significant accuracy (r = .46, p = .001; mean sum of squares = 130.46, p = .001; 
R2 = 0.21, p =  .001). Prediction was based on whole-brain amygdala FC, although 
regions that informed prediction (top 10%) included the OFC, amygdala, and dorso-
lateral PFC.
Conclusion: Findings demonstrate the utility of MVPA based on amygdala FC to pre-
dict individual severity of PTSD symptoms and that amygdala FC within a fear acqui-
sition and regulation network contributed to accurate prediction.
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1  | INTRODUC TION

Posttraumatic stress disorder (PTSD) is a debilitating disorder, as-
sociated with reduced physical (El-Gabalawy, Blaney, Tsai, Sumner, 
& Pietrzak,  2018; Richardson, Long, Pedlar, & Elhai,  2008), occu-
pational (Smith, Schnurr, & Rosenheck,  2005), social (Freedman, 
Gilad, Ankri, Roziner, & Shalev, 2015), and emotional (Radomski & 
Read, 2016) health and well-being. Despite the negative impact of 
PTSD on overall quality of life (Vogt et al., 2017), the neurophysiology 
of this disorder is still not well understood. Prior research implicates 
atypical amygdala response and amygdala functional connectivity 
(FC) as a cardinal feature of the disorder (Liberzon & Sripada, 2007; 
Patel, Spreng, Shin, & Girard, 2012; Rauch, Shin, & Phelps, 2006). 
In regard to FC studies, findings suggest that the amygdala is atyp-
ically connected with a number of brain areas spanning both corti-
cal and subcortical regions (Bryant et al., 2008; Diener et al., 2016; 
Felmingham et  al.,  2014; Fonzo et  al.,  2010; Hayes et  al.,  2011; 
Hendler et al., 2003; Killgore et al., 2014; Linnman, Zeffiro, Pitman, 
& Milad,  2011; Nilsen et  al., 2016; Patel, Girard, Pukay-Martin, & 
Monson, 2016; Shin et al., 2005; Simmons et al., 2011; St. Jacques, 
Botzung, Miles, & Rubin, 2011; Williams et al., 2006). This suggests 
that amygdala FC changes in PTSD are widespread. As such, whole-
brain amygdala FC may be a meaningful biomarker of PTSD severity, 
although this has yet to be tested. As interest in precision medicine 
grows (Collins & Varmus,  2015), more research is needed on the 
amygdala and its broader connectivity across the brain in those with 
PTSD in order to assess whether this may be meaningfully related to 
the disorder and provide insight into treatment can lead to remedi-
ation of symptoms.

The amygdala is active in response to motivationally relevant 
stimuli, specifically stimuli that convey threat or danger (Costafreda, 
Brammer, David, & Fu, 2008). Early neuroimaging work from both 
functional magnetic resonance imaging (fMRI) and positron emission 
tomography (PET) studies report that the amygdala is hyper-respon-
sive to negative faces (Bryant et al., 2008; Felmingham et al., 2010; 
Fonzo et  al.,  2010; Killgore et  al.,  2014; Rauch et  al.,  2000; Shin 
et  al.,  2005; Simmons et  al.,  2011), scenes (Brohawn, Offringa, 
Pfaff, Hughes, & Shin, 2010; Brunetti et al., 2010; Patel et al., 2016), 
words (St. Jacques et al., 2011), and trauma-specific stimuli (Hendler 
et al., 2003; Peres et al., 2011; Protopopescu et al., 2005) in those 
with PTSD compared to both trauma-exposed and healthy controls. 
Aberrant amygdala FC in response to threat also occurs in those with 
PTSD and spans a broad neural network. For instance, in response 
to threat, individuals with PTSD exhibit aberrant amygdala–brain-
stem (Steuwe et al., 2015), amygdala–thalamus (Morey et al., 2015; 
Rabellino et al., 2016), amygdala–medial prefrontal cortex (MPFC) and 
amygdala–anterior cingulate cortex (ACC) connectivity (Cisler, Scott 
Steele, Smitherman, Lenow, & Kilts, 2013; Keding & Herringa, 2016; 

Neumeister et al., 2016; Rabellino et al., 2016; Stevens et al., 2013; 
White, Costanzo, Blair, & Roy, 2015; Wolf & Herringa, 2016). Both 
healthy controls and traumatized controls are used as comparison 
groups throughout the literature, with no clear relationship be-
tween the directionality of findings and the type of control group 
employed. Individual differences in altered amygdala FC (e.g., either 
decreased or increased) also correspond to PTSD symptom severity 
(Cisler et al., 2013; Keding & Herringa, 2016; Stevens et al., 2013; 
White et al., 2015; Wolf & Herringa, 2016) and in instances where 
authors did not find a relationship between PTSD symptom severity 
and amygdala activation (Keding & Herringa, 2016). Further, severity 
of PTSD symptoms correlates with amygdala FC in trauma survivors 
without a PTSD diagnosis (Cisler et al., 2013; Stevens et al., 2013) 
and in individuals with sub-threshold severity of symptoms (White 
et al., 2015). Thus, amygdala FC appears to be a sensitive biomarker 
for individual differences in PTSD symptom severity.

During rest (e.g., when not viewing threatening stimuli), individ-
uals with PTSD also display aberrant amygdala FC (either increased 
or decreased compared to controls) with the insula (Nicholson 
et al., 2016; Rabinak et al., 2011; Sripada et al., 2012; X. Zhang, Wu, 
et al., 2016) orbitofrontal cortex (OFC [(Aghajani et al., 2016; Zhang, 
Wu, et al., 2016; Zhu et  al.,  2017), MPFC (Aghajani et  al.,  2016; 
Brown et al., 2014; Jin et al., 2014), and hippocampus (Li et al., 2017; 
Sripada et al., 2012). Direction of findings does not appear to de-
pend on within structure differentiations (e.g., comparing dorsal vs. 
ventral MPFC) (Aghajani et  al.,  2016). Differences in the direction 
of amygdala FC in those with PTSD (e.g., increased, decreased) may 
be caused by differences in amygdala subnuclei, as the basolateral 
amygdala (BLA) and centromedial amygdala (CMA) have differ-
ent functions (Phelps, 2004). Yet, to date, only a handful of unique 
studies have investigated FC with amygdala subnuclei (N  =  7) and 
again report disparate findings, specifically differential FC patterns 
for BLA compared to CMA (Brown et al., 2014; Koch et al., 2016; 
Nicholson et  al.,  2015, 2017; Varkevisser, Gladwin, Heesink, van 
Honk, & Geuze, 2017; Zhu et al., 2017) or no differences between 
the subnuclei (Zhu et al., 2018), while no study reports identical ab-
errations in amygdala FC by subregion. Alongside failure to replicate, 
across all studies, altered FC is diffuse and aberrations span the fron-
tal cortex, cingulate, parietal lobe, thalamus, cerebellum, and precu-
neus. Heterogeneous findings in terms of direction (e.g., increased, 
decreased) and brain location demonstrate a need for better preci-
sion in mapping atypical neural networks in PTSD.

Nevertheless, PTSD symptom severity correlates with atypi-
cal amygdala FC (Aghajani et al., 2016; Jin et al., 2014; Keding & 
Herringa, 2016; Li et al., 2017; Nicholson et al., 2016; Zhang, Wu, 
et al., 2016; Zhu et  al.,  2017). Other work shows that amygdala 
FC changes as a function of treatment response and thus remains 
a good target for the pathophysiology of the disorder. Decline in 
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PTSD symptoms after trauma-focused cognitive behavioral ther-
apy (TF-CBT) (Cisler et al., 2016), CBT (Shou et al., 2017), and pro-
longed exposure (PE) (Stojek, McSweeney, & Rauch,  2018; Zhu 
et al., 2018) all correlate with amygdala FC. Pretreatment amyg-
dala FC also predicts clinical improvement after transcranial mag-
netic stimulation (Philip et al., 2018). Although not in the context 
of FC, other research shows that amygdala activation in response 
to threat correlates with PTSD severity even in cases where 
amygdala activation did not differ by group (PTSD vs. Control) (El 
Khoury-Malhame et  al.,  2011). Amygdala activation and its con-
nectivity are therefore a reliable measure of state-dependent 
symptom severity, while changes in amygdala FC as a function of 
treatment occur across treatment modalities. However, despite 
several studies investigating amygdala FC as a “neurobiological” 
marker of PTSD disease state, prior work has overwhelmingly used 
a univariate approach to examine the relationship between rsfMRI 
amygdala FC with a single region (e.g., insula or PFC) and symp-
toms. As the above findings demonstrate, those with PTSD exhibit 
altered amygdala FC with a large brain network spanning limbic 
and cortical regions. Therefore, an alternative approach is to in-
vestigate whether patterns of distributed amygdala connectivity 
accounts for variability in stress symptomatology.

Multi-pattern voxel analyses (MVPA) have gained traction 
in recent years as a way to map spatially distributed patterns of 
brain activation and/or FC (Cohen et al., 2017; Pereira, Mitchell, & 
Botvinick, 2009). Rather than testing the association between symp-
toms and discrete reactivity or FC (i.e., within or between a couple 
of regions), this approach examines whether whole-brain distributed 
neural activation patterns are correlated with symptoms, leveraging 
the fact that brain functioning is defined by spatially distributed pro-
cesses (Davis et al., 2014). In adding machine learning as an analysis 
technique, MVPA can be used to subsequently predict individual 
differences in symptom severity based on a spatially extensive pat-
tern of activation in the brain (Clark et al., 2014). To date, relatively 
few studies have used MVPA and machine learning to study the 
association between neural functioning and individual differences 
in PTSD symptom severity, although this approach has been used 
successfully in patients with depression (Habes et al., 2013; Mwangi, 
Matthews, & Steele,  2012; Yang et  al.,  2016) and anxiety (Visser, 
Haver, Zwitser, Scholte, & Kindt, 2016). In the context of PTSD, Liu 
and colleagues used MVPA and a machine-learning method known 
as support vector machine (SVM) to demonstrate that whole-brain 
amplitude of low-frequency fluctuations (ALFF) and whole-brain FC 
based on 116 regions of interest predicts patients from controls with 
93% accuracy (Liu et al., 2015). Zhang and colleagues found similar 
results, using whole-brain ALFF to predict patients from controls 
with 89% accuracy (Zhang, Zhang, Zhang, Wang, Li, & Zhang, 2016). 
Gong and colleagues used MVPA and SVM to also demonstrate that 
whole-brain patterns of structural integrity accurately predict pa-
tients with PTSD from healthy controls with 91% accuracy (Gong, Li, 
Du, et al., 2014). In a follow-up paper, this group of researchers also 
found that whole-brain rsfMRI ALFF predicted individual differences 
in PTSD severity using another machine-learning technique called 

relevance vector regression (RVR) (Gong, Li, Tognin, et al., 2014). As 
opposed to SVM, RVR utilizes a regression approach to test whether 
distributed neural patterns can accurately predict individual differ-
ences in symptom severity, rather than predicting a dichotomous 
classification such as PTSD diagnosis. Altogether, these publications 
demonstrate that MPVA and machine-learning approaches can be 
used to accurately distinguish those with PTSD and predict individ-
ual differences in PTSD symptom severity. However, these studies 
did not examine whether whole-brain amygdala FC at rest also pre-
dicts PTSD symptom severity.

The current study used MVPA and machine learning to predict 
PTSD severity based on whole-brain patterns of amygdala FC col-
lected from rsfMRI. Previous studies have found that PTSD severity 
is related to amygdala FC with a large host of brain regions. That is, 
based on pre-existing literature, amygdala FC with any number of 
subcortical and cortical regions is associated with severity of symp-
toms. By focusing on singular brain regions or even singular neu-
rocircuitries (e.g., frontoparietal network), this research may ignore 
larger-scale dysfunction in amygdala FC across the entire brain as 
an indication of PTSD severity. Based on prior literature, we hy-
pothesized that whole-brain patterns of amygdala FC would accu-
rately predict individual differences in PTSD severity in a sample of 
trauma-exposed adults. Based on evidence of aberrant amygdala 
FC to regions involved in fear learning and regulation, we further 
hypothesized that while results would be informed by whole-brain 
(e.g., global) amygdala FC, amygdala FC to regions instrumental for 
mounting a fear response (i.e., brainstem, thalamus, insula, hippo-
campus, OFC) and regulation of this response (i.e., MPFC, ACC) 
would be among the top regions that contributed to PTSD severity.

2  | MATERIAL AND METHODS

2.1 | Participants

Ninety-two undergraduate Caucasian adults were recruited at the 
University of Wisconsin-Milwaukee (Milwaukee, WI). Participants 
were deemed eligible if they were between the ages of 18–50, had 
normal or corrected-to-normal vision, were right-handed, a Native 
English speaker, able to provide informed consent, and endorsed 
personally experiencing a trauma as reported on the Life Events 
Checklist (LEC) (Gray, Litz, Hsu, & Lombardo,  2004). All partici-
pants completed the Mini-International Neuropsychiatric Interview 
(M.I.N.I. [Sheehan et  al.,  1997]), and participants were excluded if 
they had a clinically significant neurological disorder, history of sei-
zures or head injuries, endorsed symptoms of mania, schizophrenia, 
obsessive-compulsive disorder, or panic attacks. Participants were 
also excluded if they were currently taking antipsychotics, anti-
convulsants, or mood stabilizers. Due to the use of MRI scanning, 
participants were excluded if they were deemed MRI incompatible 
based on the presence of ferromagnetic material in the body, claus-
trophobia, were unable to lie still for two hours, or were pregnant 
or trying to become pregnant. Participant demographics are listed 
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in Table 1. All participants completed a consent form approved by 
the local Institutional Review Board at the University of Wisconsin-
Milwaukee. Participants were compensated for their time and all 
procedures complied with the Helsinki Declaration.

2.2 | Measure of PTSD symptom severity

Symptoms of PTSD were acquired using the PTSD Checklist-Civilian 
Version based on the fourth edition of the Diagnostic and Statistical 
Manual of Mental Disorders (Weathers, Litz, Huska, & Keane, 1994). 
The PCL-C is a 17-item self-report measure of stress symptoms with 
good internal consistency (Cronbach's α = 0.94), convergent validity 

(r  >  .75), and test–retest reliability (r  =  .92) (Ruggiero, Ben, Scotti, 
& Rabalais, 2003), including in nonclinical samples to assess stress 
severity (Conybeare, Behar, Solomon, Newman, & Borkovec, 2012). 
Use of the PCL-C to quantify PTSD severity is consistent with prior 
publications using MVPA and machine learning in this population 
(Gong, Li, Du, et al., 2014; Gong, Li, Tognin, et al., 2014).

2.3 | Resting state fMRI acquisition

All participants completed a 5-min resting state scan during fMRI. 
During the scan, participants viewed a white crosshair displayed on 
a black background and were instructed to keep their eyes open. 

TA B L E  1  Sample demographics (N = 90)

M (SD)

Age 22.12 (3.72)

PCL-C 31.10 (12.93)

n (%)

Gender (Female) 62 (68.90%)

Diagnoses

Agoraphobia 4 (4.44)

Alcohol use disorder (AUD) 13 (14.44%)

Attention-deficit hyperactivity disorder (ADHD) 1 (1.11%)

Generalized anxiety disorder (GAD) 7 (7.78%

Major depressive disorder (MDD) 5 (5.56%)

Posttraumatic stress disorder (PTSD) 2 (2.22%

Social anxiety disorder (SAD) 1 (1.11%)

Substance use disorder (SUD) 5 (5.56%)

Trauma Exposure as reported on the Life Events Checklist (LEC)

Natural disaster 15 (16.70%)

Fire or explosion 13 (14.40%)

Transportation accident 64 (71.10%)

Serious accident at work, home, or during recreational activity 18 (20.00%)

Exposure to toxic substance 8 (8.90%)

Physical assault 36 (40.00%)

Assault with a weapon 8 (8.90%)

Sexual assault 15 (16.70%)

Other unwanted or uncomfortable sexual experience 29 (32.20%)

Combat or exposure to a war zone 1 (1.10%)

Captivity 2 (2.20%)

Life-threatening illness or injury 5 (5.60%)

Severe human suffering 3 (3.30%)

Sudden, violent death 2 (2.20%)

Sudden, unexpected death of someone close to you 40 (44.40%)

Serious injury, harm, or death you caused to someone else 3 (3.30%)

Any other very stressful event or experience 39 (43.30%)

Note: Diagnoses and trauma exposures are not mutually exclusive.
Abbreviation: PCL-C, PTSD Checklist-Civilian Version.
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Scanning was performed on a 3.0 Tesla short bore GE Signa Excite 
MRI system at the Medical College of Wisconsin. Functional T2*-
weighted echoplanar images (EPI) were collected in a sagittal orien-
tation with the following parameters: repetition time (TR)/echo time 
(TE) = 2,000/25 ms; FOV = 24 mm; matrix = 64 × 64; flip angle = 77°; 
slice thickness = 3.5 mm. A high-resolution T1-weighted anatomical 
image was also acquired for co-registration with the following pa-
rameters: TR/TE = 8.2/3.2 ms; FOV = 240 mm; matrix = 256 × 224; 
flip angle = 12°; voxel size = 0.9375 × 1.071 × 1 mm.

2.4 | Data analysis

2.4.1 | Image preprocessing

Individual functional images were analyzed using the CONN FC 
toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). Images were 
preprocessed according to standard procedures. Briefly, images 
underwent spatial realignment using the SPM12 realign and unwarp 
procedure (Andersson, Hutton, Ashburner, Turner, & Friston, 2001) 
with all scans referenced to the first image and estimated motion 
parameters calculated across six variables representing, to be used 
as regressors of no interest. Temporal misalignment was corrected 
using slice time correction (Henson, Buchel, Josephs, & Friston, 
1998). As small head movements can cause spurious noise- and dis-
tance-dependent changes in signal correlations (Power et al., 2014; 
Power, Schlaggar, & Petersen, 2015), frame-wise displacement (FD) 
was computed to rule out confounding effects of motion. Volumes 
with FD > 0.2 mm (plus 1-back and 2-forward neighboring volumes) 
were “scrubbed” (e.g., removed from analysis), and subjects with 
>3 mm or 3° of rotational cumulative movement were dropped from 
analysis. Structural segmentation and normalization were done to 
classify data into gray matter, white matter, cerebrospinal fluid (CSF) 
through the estimation of the posterior tissue probability maps in 
SPM12 (Ashburner & Friston, 2005). Images were then normalized 
to the Montreal Neurological Institute template and smoothed with 
a 4 mm3 Gaussian kernel (Hagler, Saygin, & Sereno, 2006). To isolate 
rsfMRI signal, resulting data were bandpass filtered at 0.01–0.09 Hz, 
while signal from CSF, white matter, and motion realignment param-
eters were entered as regressors of no interest to control for these 
effects during scanning.

2.4.2 | Pattern recognition analysis

Using CONN, whole-brain bilateral amygdala FC maps were com-
puted at the first level (e.g., within-subjects) for each individual using 
the anatomical automatic labeling (AAL)-defined bilateral amygdala 
mask from the SPM toolbox (Maldjian, Laurienti, Kraft, & Burdette, 
2003; Tzourio-Mazoyer et  al.,  2002) as the seed region. This pro-
duced an amygdala FC map for each individual, where each voxel 
represented a Fisher-transformed bivariate correlation coefficient 
between bilateral amygdala BOLD time series and every other 

voxel's BOLD time series. In traditional mass-univariate statisti-
cal approaches, these maps are subsequently used in second-level 
(e.g., between-subjects) analyses of connectivity values to investi-
gate the relationship between spatially discrete amygdala FC val-
ues (e.g., within certain brain regions) and PCL-C scores. Instead, 
we used each individual amygdala FC map and a multivariate RVR 
approach using the PRoNTo toolbox ([Schrouff, Rosa, et al., 2013]; 
http://www.mlnl.cs.ucl.ac.uk/pront​o/) to statistically test whether 
the whole-brain pattern of amygdala FC (e.g., across all voxels) pre-
dicted PCL-C scores.

In contrast to SVM methods that predict classification of 
groups based on MVPA, RVR is a pattern recognition method 
that uses Bayesian inference to obtain sparse regression models 
(Tipping,  2001). Sparsity is achieved in the classification of zero 
versus nonzero weights through the calculation of the Bayesian 
posterior distribution of all weights. In this process, the majority 
of weights peak at zero with relatively few nonzero weights, which 
are subsequently used to define parameter optimization. To con-
strain the maximum likelihood estimation of this model in this way, 
the weight distribution is applied with a zero-mean Gaussian prior 
probability distribution (Tipping,  2001). The posterior distribution 
that is optimized in this process is then used to predict target values 
(e.g., PCL-C score) from amygdala FC maps. In effect, this method is 
used to predict continuous characteristics from patterns of neuro-
imaging data weighted for relevance (Hou et al., 2016; Stonnington 
et  al.,  2010).  In the RVR approach, training (“relevance”) vectors 
establishing all model weights are iteratively estimated, and only 
the model weights (e.g., nonzero) that are deemed relevant based 
on training data remain in the model (Formisano, De Martino, & 
Valente,  2008). Unlike SVM approaches, RVR is a sparse kernel 
method, and therefore, the number of relevance vectors used for 
model estimation does not automatically linearly grow with size of 
the training set.

For the current analysis, one image representing bilateral 
amygdala FC maps for each individual was used for feature selec-
tion, with amygdala FC representing connectivity across the entire 
scan duration. Feature selection was constrained to voxels inside 
the brain through the use of a standard binary mask (Schrouff, 
Rosa, et al., 2013). In the calculation of features, a linear kernel 
was used with a square matrix of dimensions N × N, where the 
kernel reflected a similarity measure between each participant, 
called the dot product. No second-level mask was used to con-
strain feature selection by a subset of voxels; instead, all voxels 
were used to compute features. In model specification, we used 
the RVR approach, described above. In this process, features 
were mean-centered using the training data and generalizability 
of the model was estimated using a leave-one-out approach for 
cross-validation. Cross-validation is used to ensure generalizabil-
ity of the model and to not overfit the data. The performance of 
the model was characterized using the (cross-validated) Pearson 
correlation coefficient (r), mean squared error (MSE), and the co-
efficient of determination (R2) between estimated and true PCL-C 
scores. Significance values for prediction scores were obtained 

http://www.mlnl.cs.ucl.ac.uk/pronto/
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using permutation testing (1,000 iterations), a necessary step 
when dealing with large neuroimaging datasets that violate the as-
sumption that data are independently and identically distributed. 
The choice for 1,000 permutations is identical with the methods 
found in with prior machine-learning MVPA publications using 
neuroimaging data (Gong, Li, Du, et al., 2014).

To view results of the model, colormaps were created that 
reflected the contribution of each voxel, representing bilateral 
amygdala FC values, toward model performance. Voxels with high 
weight values, represented by warmer colors, indicate that these 
regions positively contributed to model performance. In contrast, 
voxels with low weight values, represented by cooler colors, in-
dicate weight values that negatively contributed to model per-
formance (e.g., push it toward decreased prediction). Post hoc 
averaging of weight values by individual brain regions was also 
done during visualization of results (Schrouff, Cremers, et al., 
2013). For averaging by brain region, we utilized the AAL atlas, 
resulting in the averaging of weight values within N  = 117 brain 
regions.

3  | RESULTS

3.1 | Participants

Two participants were excluded due to excessive motion (>3 mm in 
any direction) during rsfMRI, leaving a total of 90 participants avail-
able for data analysis.

3.2 | Trauma exposure

All participants endorsed personally experiencing at least one trau-
matic event based on LEC scores as stipulated in the inclusion cri-
teria. However, LEC scores indicated that 85.60% of participants 
endorsed personally experiencing multiple traumas, while 14.40% 
endorsed experiencing a single traumatic event. The three most fre-
quent types of traumas reported were as follows: transportation ac-
cidents (71.10%), sudden and unexpected death of someone close 
(44.40%), and physical assault (40.00%). Table 1 includes a detailed 
listing of LEC trauma types and frequencies. To note, trauma types 
are not mutually exclusive across participants, reflecting high inci-
dence of multiple traumas in this sample.

3.3 | PTSD symptoms

Posttraumatic stress disorder symptoms as measured by PCL-C 
scores ranged from 17 to 75 (M = 31.10, SD = 12.93) indicating vari-
ability in PTSD symptom severity from minimal to moderate/severe 
and a good distribution in scores. Using a recommended > 30 PCL-C 
cut-point score (Blanchard, Jones-Alexander, Buckley, & Forneris, 
1996), 45.60% of the sample were eligible for a PTSD diagnosis.

3.4 | MVPA results

Amygdala FC predicted PCL-C scores with statistically signifi-
cant accuracy (r = 0.46, p =  .001; mean sum of squares = 130.46, 
p = .001; R2 = 0.21, p = .001), while prediction was based on amyg-
dala FC across the whole brain. As our sample was unequal in gen-
der distribution (68.90% female), we re-ran analyses controlling for 
gender. Results were unchanged with almost no deviation in the 
strength of this relationship, such that amygdala FC remained a sig-
nificant predictor of PCL-C scores (r =  .48, p =  .001; mean sum of 
squares = 128.43, p = .001; R2 = 0.23, p = .001). Given high concord-
ance between PTSD and MDD and the need for specificity in iso-
lating prediction for PTSD severity (Flory & Yehuda, 2015), we also 
re-ran analyses controlling for diagnosis of MDD; results remained 
significant (r = .51, p = .001; mean sum of squares = 123.30, p = .001; 
R2 = 0.26, p = .002). Figure 1 depicts the relationship between actual 
PCL-C scores on the y-axis plotted against predicted PCL-C scores 
based on the MVPA algorithm on the x-axis. In plotting this relation-
ship, we identified two possible outliers based on actual or predicted 
PCL-C scores. We subsequently removed these individuals and re-
ran analyses on the N = 88 remaining participants. Results remained 
unchanged and amygdala FC was still a significant predictor of PTSD 
severity (r = .30, p = .006; mean sum of squares = 128.28, p = .006; 
R2 = 0.09, p = .047).

Similar to others (Gong, Li, Du, et al., 2014; Hou et  al.,  2016), 
we used a 10% threshold to visualize RVR-derived weights, which 
resulted in a listing of regions with the greatest weight vector val-
ues. Regions implicated in fear acquisition and regulation, including 
the OFC, amygdala, and the dorsolateral prefrontal cortex (DLFPC), 
were within this top 10% (Table 2). Figure 2 displays results of the 
RVR analysis depicting weight value for each voxel representing bi-
lateral amygdala FC, while Figure 3 provides spatial location of re-
gions within the top 10% (e.g., with greatest weight vector values). 
A distribution of relevant model weights by regions in the atlas was 
also produced (Figure S1), which provided more information on spa-
tial location of relevant model weights. The x-axis of the distribution 
demonstrated that averaged model weights contributing to model 
estimation spanned all brain regions.

4  | DISCUSSION

The current study used an MVPA approach to determine whether 
whole-brain patterns of bilateral amygdala FC predicted individual 
differences in PTSD severity in an adult trauma-exposed sample. 
Several insights emerged from this investigation: First, whole-brain 
patterns of amygdala FC did significantly predict severity of PTSD 
symptoms, indicating that whole-brain patterns of amygdala con-
nectivity are meaningfully related to variability in PTSD outcomes 
in trauma-exposed individuals. Second, connectivity to regions in-
volved in fear acquisition (i.e., amygdala), appraisal (i.e., OFC), and 
regulation (e.g., DLPFC) were among the top regions most helpful 
for predicting PTSD severity. The evidence from this data-driven 
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approach supports existing theoretical frameworks outlining the 
importance of regions implicated in fear dysregulation for the etiol-
ogy of PTSD (Liberzon & Sripada,  2007; Patel et  al.,  2012; Rauch 
et al., 2006).

Principally, these findings demonstrate that amygdala FC across 
the entire brain, versus with discrete regions, is helpful at predict-
ing variability in PTSD severity in a sample of trauma-exposed 
adults. In focusing on a distributed pattern of activation in this 
analysis, we have demonstrated that connectivity patterns across 
the entire brain may be a more precise biomarker for severity of 

PTSD symptoms, at least in some cases. Based on these findings, 
prior studies that did not find a relationship between symptom se-
verity and brain response (Bryant et al., 2008; Diener et al., 2016; 
Felmingham et  al.,  2014; Fonzo et  al.,  2010; Hayes et  al.,  2011; 
Hendler et al., 2003; Killgore et al., 2014; Linnman et al., 2011; Nilsen 
et al., 2016; Patel et al., 2016; Shin et al., 2005; Simmons et al., 2011; 
St. Jacques et al., 2011; Williams et al., 2006) or between symptom 
severity and amygdala FC (Rabinak et al., 2011; Sripada et al., 2012) 
may benefit from investigating the relationship between symptoms 
and distributed patterns of activation. By demonstrating sensitivity 

F I G U R E  1  Significant relationship 
between actual and predicted PCL-C 
scores based on the MVPA algorithm 
(r = .46, p = .001; mean sum of 
squares = 130.46, p = .001; R2 = 0.21, 
p = .001). MVPA, multi-pattern voxel 
analysis; PCL-C, Posttraumatic stress 
disorder Checklist-Civilian Version

TA B L E  2  Model weights per regions of interest

Region of Interest Laterality Weight (%) Size (voxels) Expected Ranking

MNI Coordinates

x y z

Cerebellar vermis Midline 1.56 105 3.13 0 −46 −32

Caudate L 1.55 942 2.11 −12 12 10

Caudate R 1.45 982 3.14 14 14 10

DLPFC R 1.40 1,208 4.67 48 14 22

Superior parietal cortex R 1.30 1,471 6.14 24 −58 60

Cerebellar vermis Midline 1.29 195 6.52 2 −72 −26

OFC R 1.25 556 7.00 18 46 −14

DLPFC R 1.21 1,559 9.61 46 28 14

PCC R 1.14 323 11.78 6 −42 24

Amygdala L 1.13 211 9.64 −24 0 −16

Supramarginal gyrus R 1.12 1,598 16.28 56 −32 34

Note: Reported regions represent top 10% of regions based on weight. Weight is determined by the contribution of that region divided by the total 
contribution of all regions and displayed as a percentage. Expected ranking reflects how stable the ranking of each region is across folds. Bolded text 
reflects regions of interest involved in acquisition and regulation of fear.
Abbreviations: DLPFC, dorsolateral prefrontal cortex; L, left; MNI, Montreal Neurological Institute; OFC, orbitofrontal cortex; PCC, posterior 
cingulate cortex; R, right.
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of whole-brain amygdala FC to predict individual variation in PTSD 
symptoms, the current study replicates prior research that also 
found whole-brain measures of functional activity (e.g., rsfMRI 
ALFF) (Gong, Li, Tognin, et al., 2014; Liu et al., 2015; Zhang, Zhang, 
et al., 2016) and whole-brain gray matter volume (Gong, Li, Du, et al., 
2014; Zhang, Zhang, et al., 2016) useful for predicting PTSD illness. 
Altogether, this demonstrates that whole-brain data-driven ap-
proaches have merit for mapping the neurobiological underpinnings 
associated with PTSD.

In addition, we also found evidence that regions involved in fear 
acquisition (i.e., amygdala), appraisal (i.e., OFC), and regulation (i.e., 
DLPFC) were among the top regions that predicted PTSD severity. 
As stated prior, these regions are studied extensively in the con-
text of PTSD (Liberzon & Sripada, 2007; Patel et  al.,  2012; Rauch 
et al., 2006) and our results further confirm their clinical significance 
for the disorder. Based on these results, intra-amygdala connectiv-
ity may be an important predictor of PTSD status. This is supported 
by recent work that has found fine-grained structural abnormalities 
within the amygdala in those with PTSD (Akiki et al., 2017), alongside 

evidence that individuals with PTSD with versus without the disso-
ciative subtype exhibit differential FC to other brain regions based 
on basolateral and centromedial divisions of the amygdala (Brown 
et al., 2014; Nicholson et al., 2015). In addition, in response to trau-
ma-related stimuli in individuals with PTSD, direction of amygdala 
FC to the PFC and brainstem depend on amygdala subregion distinc-
tions (e.g., basolateral vs. centromedial nuclei (Rabellino et al., 2016)). 
In building upon these findings, the current study provides evidence 
that intra-amygdala FC may be an important consideration for pre-
dicting variance in PTSD symptoms. In addition, atypical OFC re-
sponding (Huang et al., 2014; Thomaes et al., 2013) is documented in 
those with PTSD, with altered engagement of this region theorized 
to contribute to symptoms of anger, irritability, and recklessness 
often evident in the disorder (Weston, 2014). As highlighted earlier, 
atypical amygdala-OFC FC is also documented in those with PTSD 
(Aghajani et al., 2016; Zhang, Wu, et al., 2016; Zhu et al., 2017). As 
the OFC is involved in appraisal of emotional states in conjunction 
with assessing reward and predictive value of stimuli, altered FC be-
tween the amygdala that detects emotional stimuli and the OFC that 

F I G U R E  2   Results of the RVR analysis 
depicting weight value for each voxel. 
RVR, relevance vector regression

F I G U R E  3  Spatial location of top 10% of weighted regions that predicted PCL-C scores. The (a) OFC and (b) amygdala are involved in the 
acquisition of fear. Conversely, the (c) DLPFC is involved in the regulation of fear. Additionally, the (d) caudate, (e) cerebellum, (f) superior 
parietal cortex, (G) posterior cingulate cortex, and (h) supramarginal gyrus were among the top regions that contributed to the model. 
DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; PCL-C, Posttraumatic stress disorder Checklist-Civilian Version; R, right; L, 
left
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assigns value to this experience could result in atypical emotional 
responding (Phillips, Drevets, Rauch, & Lane,  2003). Similarly, de-
creased engagement of the DLPFC occurs in those with PTSD during 
exposure to negative images (Blair et al., 2013) and when trying to 
down-regulate negative emotions (Rabinak et al., 2014). The DLPFC 
is involved in top-down regulation of emotion and is involved in deci-
sion making and selection of strategies for emotion regulation (Lee & 
Seo, 2007; Yamagishi et al., 2016). Although not directly connected 
to the amygdala as much as ventral and medial portions of the PFC, 
the DLPFC modulates amygdala response in healthy individuals 
(Barbas, 2000; Ghashghaeia, Hilgetag, & Barbas, 2007; Stefanacci & 
Amaral, 2002). Therefore, atypical connectivity between the amyg-
dala and the DLPFC as a predictor of PTSD severity substantiates 
the notion that PTSD is a disorder that is not just defined by aberrant 
bottom-up generation of emotional states, but also disruption in the 
ability to regulate emotion through top-down control (Fitzgerald, 
DiGangi, & Phan, 2018).

In addition, we found that amygdala FC with regions not typi-
cally explored in the etiology of PTSD helped in predicting PTSD 
severity. Specifically, amygdala FC with the caudate, cerebellum, 
superior parietal cortex, posterior cingulate cortex (PCC), and su-
pramarginal gyrus was also within the top 10% of regions that con-
tributed to correctly predicting PTSD symptoms. Limited studies 
have found disturbances in FC between the amygdala and these 
regions at rest. Nicholson and colleagues found that PTSD indi-
viduals with dissociation displayed enhanced amygdala FC with 
the superior parietal cortex (Nicholson et  al.,  2015). Enhanced 
connectivity with this region, which receives projections from 
visual and sensory cortices, may indicate disruptions in the abil-
ity to integrate sensory experiences with affective responses 
(Nicholson et  al.,  2015). With regard to the PCC, two investiga-
tions have found that greater PCC-amygdala FC prospectively 
predicts greater symptoms six weeks (Lanius et  al.,  2010) and 
six months (Zhou et al., 2012) later as assessed by the Clinician-
Administered PTSD Scale (CAPS). The PCC is involved in the men-
talizing process and plays a pivotal role in integrating information 
(Baliki, Mansour, Baria, & Apkarian,  2014). Thus, amygdala-PCC 
connectivity as a predictor of PTSD variability may signal the dis-
ruption between detection of emotional salience (e.g., amygdala) 
and internal representation of this state (e.g., PCC) in those with 
PTSD. With regard to the role of the cerebellum in PTSD, its role 
in the disorder is still unclear despite a number of studies that have 
found altered amygdala-cerebellum FC in those with PTSD (Brown 
et al., 2014; Stevens et al., 2013). Recently, altered cerebellum in-
tegrity was identified as a common feature of psychopathology 
(e.g., across internalizing, externalizing, and thought disorders) 
(Romer et al., 2018). As the cerebellum is involved in coordination 
and monitoring of incoming information (Romer et  al.,  2018), its 
role in PTSD pathophysiology may be linked to general deficits in 
the integration of affective experiences.

By contrast, to our knowledge no prior studies have documented 
atypical amygdala FC with the caudate and the supramarginal gyrus 
in those with PTSD. Nevertheless, altered connectivity between 

these regions and those closely linked to the amygdala has been 
found. First, Rabellino and colleagues found enhanced FC between 
the bed nucleus of the stria terminalis (BNST) and the caudate in 
those with PTSD (Rabellino et al., 2017). The BNST is a neural re-
gion closely connected to the amygdala that regulates the stress 
response (Choi et al., 2007). Enhanced FC between this region and 
the caudate, involved in action planning, associative learning, and 
inhibitory control (Provost, Hanganu, & Monchi, 2015), may signal 
atypical cognitive control over stress responses in those with PTSD. 
Second, decreased connectivity between the brainstem and supra-
marginal gyrus has also been found in those with PTSD (Harricharan 
et  al.,  2016). The amygdala receives direct connections from the 
brainstem in order to quickly process incoming sensory information 
that may signal threat. As the supramarginal gyrus integrates visu-
al-spatial information (Harricharan et  al.,  2016), decreased brain-
stem–supramarginal gyrus FC may portend atypical integration of 
sensory information.

Results of the present study should be considered in light of 
several limitations. First, although this sample, on average, did ap-
pear to suffer from clinically significant PTSD symptoms based on 
recommended PCL-C cutoffs, there is substantial variability with 
regard to severity of illness. Thus, results should be interpreted 
with caution with regard to extending findings to chronically ill 
samples. Second, PTSD symptom severity was self-reported. 
Future work should consider whether use of MVPA and amyg-
dala FC validates prediction of clinician-rated PTSD symptom 
severity. We also used a homogenous Caucasian adults’ sample 
for this study; thus, results may not extend to ethnic minorities. 
More work needs to be done to verify results using diverse pop-
ulations. Finally, although we found evidence that whole-brain 
amygdala FC predicted PTSD severity in a statistically significant 
manner, the strength of this correlation does not indicate that all 
the variance in PTSD severity can be explained by amygdala FC. 
Other individual factors need to be investigated as predictors of 
stress severity in trauma survivors, with one factor being the ways 
in which individual differences in FC with particular subnuclei of 
the amygdala—not investigated in this study—also correlates with 
PTSD severity, given differential roles of the amygdala divisions in 
fear learning (Díaz-Mataix, Tallot, & Doyère, 2014). Future analy-
ses should also consider other seed regions beyond the amygdala 
when investigating whole-brain patterns of FC.

5  | CONCLUSIONS

In conclusion, we demonstrated that MVPA in the context of 
amygdala FC is a valid approach for predicting severity of PTSD 
symptoms at the individual level. Although whole-brain amygdala 
FC accurately predicted symptoms, amygdala FC within a fear 
acquisition, appraisal, and regulation network encompassing the 
amygdala, OFC, and DLPFC contributed to accurate prediction. In 
addition, regions not typically discussed in the etiology of PTSD, 
including the caudate, cerebellum, superior parietal cortex, PCC, 
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and supramarginal gyrus, were among the top regions to contrib-
ute to the algorithm's success. In sum, results demonstrate that 
heterogeneous responses in amygdala FC that are spatially distrib-
uted are meaningful for the prediction of PTSD symptom sever-
ity, while also further supporting the specificity of fear acquisition 
and regulation neurocircuitries to predict individual differences in 
PTSD severity.
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