Changes in the Flight Paths of Pigeons Based on Extended Spatial Landmarks

SPATIAL PERCEPTION IN MIDDLE-DISTANCE MOVEMENTS	
	Remote sensing data
$\rightarrow \begin{aligned} & \text { 1.2. Weather Conditions } \\ & \text { Wind, atmospheric precipitation, poor visibility. }\end{aligned}$	Weather data
2.1. Collective Motion Analysis roup polarity Nearest neighbour distance.	GPs loger + GIS Procesing
2.2. Individual Motion Analysis Variety of trajectories and directions. Survey flight over unknown terrain	GPS loger + GII frocessing
3.1. Total Brain Activity EEG activity	Neurrogger
$\begin{aligned} & \text { 3.2. Activity of individual brain cells } \\ & \text { Border cells, grid cells, place cells } \end{aligned}$	Mathematical Processing

Stimuli and textures

Datasets

In this work, calculations were carried out based on data packages published in open repositories (Dryad Digitall Reposoutiorrand Mond Movebank Datat Repositiory).
The calculations were made tor 150 flight: 50 flights over terrain near the seaThe calculations were made for 150 tilights: 50 flilits over terrain near the sea
sores. sea coast, urban terrain and agricultural fields (datata packages 44$]$, 50 flights over natural forests and rural areas (data packages [5]), 50 fights ove ixxed suburan areas (data packages $[6])$.
with an averagests speed of of $60-120 \mathrm{~km} / \mathrm{h}$, at distances about $10-15 \mathrm{~km}$. During
flight pigeon flight pigeon can change its speed, direction, and altitude ba- $10-15$ km. During visual information. Measurements of coordinates between separate points of GPS tracks were taken from two to five times per second. Distances between the distinct coordinates in GPS tracks were within the range of three to five

Comparison of flight Features and Visual Features of Terrain The flight features were distinguished by calculation methods, using GIS applications in QGIS (https:///qisis.org). Borders between dissimiinar textures, as
well as linear objects, were selected using tools for constructing isolines. Flight characteristicts at the intersections of sisolines and pigeen trajectories we onsidered in more detail: mean standard deviations were calculated for all
hharacteristics for 10 seconds before and 10 seconds after crossing the isolines. igure shows an example of identifying intersections of flight tracks and of extended objects.

INTRODUCTION

The topic of spatial perception plays an important role in understanding the relationship between the earth's surface and living species, between the environment and the movements and migrations of animals. The study of landscape's and landmarks' feature allows to better explore how space is represented in the mind. To improve their investigations, researchers need more detailed information about spatial perception and cognition, and about brain organization, which controls these processes.
This presentation is devoted to the application in the field of spatial perception systems during the movement. Such topic are fundamentally interdisciplinary and it includes many specific questions for studying: from the complexity of neurological systems, to the ambiguity of the landscape features and the uncertainty in localization while perceptions.
The presentation shows possible influence of natural landscape on spatial perception and, as result, on changing in trajectories.

The navigational behavior of birds is based on the spatial perception of the terrain over which they fly. Not only single reference points, but also continuous linear and areal objects can be visually perceived in flight and affect the flight path. In this work, we studied the features of the trajectories of pigeons during flights in order to identify the effect of discrete or continuous extended landmarks on spatial orientation. For this purpose we compared the GPS tracks of pigeons flying over weakly familiar terrain, and the visual features of this terrain, calculated on the basis of remote sensing data. Various cases of linear landmarks (alleys, rivers, roads) and boundaries between different surfaces (vegetation covers, water surfaces, rural or urban areas) were considered. Values of changes in flight parameters of pigeons were calculated for 150 flights over various mixed landscapes: natural forests, agricultural fields, urban and suburban areas, and the sea coast. Linear and area landmarks were recognized by satellite images of the territories, using spatial analysis methods to highlight the boundaries of particular homogeneous and heterogeneous patterns. As a result, typical reactions to extended objects during movement were revealed: either a long flight along the border with smal fluctuations in the trajectory, or a sharp perpendicular crossing of the object's border. In this study, all spatial data were processed using the geographical information system QGIS.

RESULTS

In this study, 150 flights of pigeons were analyzed. The number of points in GPS records for individual pigeons ranged from 1,600 to 7,400 . Pigeons flew over a mixed territory composed of forests, agricultural fields and urban territory with low-rise buildings. Based on the calculations made in this work, various cases were identified, for which the flight characteristics of pigeons are stable or sensitive to a change in external environment. Such methods can be applied to study the navigational mechanisms in pigeon flight over mixed terrains.
Using the method of multi-factor analysis, it was found that in order to compare the flight characteristics of pigeons with the type of territory over which they fly, it is necessary to take into account four factors in GPS track sections: i) a stable direction for five or more seconds, ii) a high variability in direction or sharp change in direction, iii) stable height for five or more seconds, iv) a high variability in height.
This study shows the roles of sustainability (return to the previous value after deviation), sensitivity (variations in flight features near lengthy linear objects or near boundaries of distinct areas), and scale perception (represent itself in change of flight height).

GIS APPLICATIONS

Geographic information system (GIS) allow the handling of the flight path with reference to the locations and terrain features, including:
Process GPS data with precise spatial reference to terrain.
Calculate variation in directions of motion and in neighbour distances by vector data. Build summary diagrams of the dependence of different flight parameters with reference to time and to coordinates along the flight trajectories.
Calculate the terrain features obtained from remote sensing data-such as the boundaries between different types of terrain, or the density of special points on the surface in the form of a heat map.

REFERENCES

1. Montello, D., Freundschuh, S. Cognition of Geographic Information. A Res Agenda Geogr Inf Sci, 61-91 (2004).
2. Chiandetti, C., Regolin, L., Sovrano, V.A., Vallortigara, G. Spatial reorientation: the effects of space size on the encoding of landmark and geometry information. Anim Cogn 10, 159-168 (2007).
3. Tommasi, L., Chiandetti, C., Pecchia, T., et al. From natural geometry to spatial cognition. Neurosci Biobehav Rev 36, 799-824 (2012).
4. Watts, I., Pettit, B., Nagy, M., et al. Lack of experience-based stratification in homing pigeon leadership hierarchies. R Soc Open Sci 3, 150518 (2016).
5. Santos, C.D., Neupert, S., Lipp, H.P., et al. Temporal and contextual consistency of leadership in homing pigeon flocks. PLoS One 9, e102771 (2014).
6. Pettit, B., Flack, A., Freeman, R., et al. Not just passengers: pigeons, Columba livia, can learn homing routes while flying with a more experienced conspecific. Proc R Soc B Biol Sci 280, 20122160-20122160 (2012).
