
International Journal of Communication Networks and Security International Journal of Communication Networks and Security

Volume 1 Issue 1 Article 11

April 2011

A Temporal Logic Based Approach to Multi-Agent Intrusion A Temporal Logic Based Approach to Multi-Agent Intrusion

Detection and Prevention Detection and Prevention

Paritosh Das
Indian Institute of Techology Roorkee- 247667, India, pdas.rke@gmail.com

Rajdeep Niyogi
Indian Institute of Techology Roorkee- 247667, India, rajdpfec@iitr.ernet.in

Follow this and additional works at: https://www.interscience.in/ijcns

 Part of the Computer Engineering Commons, and the Systems and Communications Commons

Recommended Citation Recommended Citation
Das, Paritosh and Niyogi, Rajdeep (2011) "A Temporal Logic Based Approach to Multi-Agent Intrusion
Detection and Prevention," International Journal of Communication Networks and Security: Vol. 1 : Iss. 1 ,
Article 11.
DOI: 10.47893/IJCNS.2011.1009
Available at: https://www.interscience.in/ijcns/vol1/iss1/11

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Communication Networks and Security by
an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcns
https://www.interscience.in/ijcns/vol1
https://www.interscience.in/ijcns/vol1/iss1
https://www.interscience.in/ijcns/vol1/iss1/11
https://www.interscience.in/ijcns?utm_source=www.interscience.in%2Fijcns%2Fvol1%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcns%2Fvol1%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcns%2Fvol1%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcns/vol1/iss1/11?utm_source=www.interscience.in%2Fijcns%2Fvol1%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

A Temporal Logic Based Approach to Multi-Agent
Intrusion Detection and Prevention

ABSTRACT
Collaborative systems research in the last decade have led
to the development in several areas ranging from social
computing, e-learning systems to management of complex
computer networks.
 Intrusion Detection Systems (IDS) available today have a
number of problems that limit their configurability, scalability
or efficiency. An important shortcoming is that the existing
architectures is built around a single entity that does most of
the data collection and analysis. This work introduces a new
architecture for intrusion detection and prevention based on
multiple autonomous agents working collectively. We adopt
a temporal logic approach to signature-based intrusion
detection. We specify intrusion patterns as formulas in a
monitorable logic called EAGLE. We also incorporate logics
of knowledge into the agents. We implement a prototype tool,
called MIDTL and use this tool to detect a variety of security
attacks in large log-files provided by DARPA.

Keywords
Multi-agent systems, Intrusion Detection, Intrusion
Prevention, temporal logic, intelligent security, Alternating-
time Temporal Epistemic Logic.

I INTRODUCTION
An Intrusion Detection System (IDS) is a computer

program that attempts to perform ID by either signature-based
or anomaly-based, or a combination of techniques. An IDS
should ideally perform its task in real time. An Intrusion
Prevention System (IPS) is a security component that has the
ability to detect attacks and prevent the malicious behavior
to succeed.

Few commercially available IDSs include Haystack [2],
Midas [3] and Asax [4]. There are certain drawbacks in these
system as given in [1]. Key drawbacks are i) scalability is
limited, ii) central analyzer is a single point of failure, iii) it is
difficult to add capabilities to the IDS, iv) the probabilities of
false positives and false negative are too high and v) inability
to detect distributed coordinated attack.

Thus the objective now is to make the intrusion detection
systems more intelligent. Some proposed means of achieving

such intelligence include use of neural networks, rule-based
networks, genetic algorithms, human-like immunology
systems [5] and Markov chains.

There are also approaches that used agents in achieving
intrusion detection system. For example Balasubramaniyam
et al [1], have used a hierarchical structure for intrusion
detection. There is also immune-based multi-agent intrusion
detection system by Wang et al [5]. Ontology based multi-
agent intrusion detection systems by Isaza et al [6].

In this paper, we adopt a temporal logic based approach
to signature-based intrusion detection. We use multi-agents
in this framework. We also incorporate logics of knowledge
into the agents.

We specify the intended behavior of intrusion attacks as
temporal formulas, and monitor the system execution to check
if a system event violates the formula. If the observed execution
violates the formula then an intrusion has occurred. We also
make use of autonomous agents to increase the scalability of
our system and also to remove many other drawbacks of
existing IDS. For our IPS we incorporated logics of knowledge
into the agents. Thus our system can not only detect attacks
but also can take remedial actions against those attacks.

Our approach to intrusion detection is motivated by how
the use of multi-agent system has increased the performance
of IDS when compared to standard centralized IDS [1]. Further
motivations come from the success of runtime verification
[7], the goal of which is to use light-weight formal methods
for system monitoring.

We use EAGLE, introduced in [8], for specifying attacks
pattern. We use a monitoring algorithm and process each
event with the EAGLE formula and then modify the formula
to store the result of the event. If, after any event the modified
formula becomes false, an intrusion has occurred. Thus
signature-based IDS is achieved by the careful use of temporal
logic.

We show that our approach is effective by specifying
several types of attacks and by monitoring those using
MIDTL. We perform offline monitoring using the large log-
files made available by DARPA [9]. The specified attacks have

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

53

Paritosh Das, Rajdeep Niyogi
Department of Electronics and Computer Engineering

Indian Institute of Techology Roorkee
Roorkee- 247667, India

pdas.rke@gmail.com, rajdpfec@iitr.ernet.in

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

been successfully detected. The experiments suggest that
the proposed approach using multi-agents is better than
existing IDSs.

We achieve Intrusion Prevention by incorporating logics
of knowledge into the agents. The agents have a knowledge
base within them in which they store the remedial actions to
be taken against a certain attack. The agents can gain
experience about wide variety of attacks by communicating
with other agents present in different hosts.

II BACKGROUND AND MOTIVATION

A Use of Temporal Logic for Intrusion Detection

Signature-based approaches have low false alarm rate, but
would fail to detect attacks that differ even slightly from the
given signature. Signature-based approach has been popular
because of their accuracy and simplicity. For signature-based
system there have been several approaches to intrusion
detection. For example, Roger et al. in [10] have used temporal
logic and model-checking based approach to detect intrusion.
In this paper we use monitoring logic called EAGLE [8] to
achieve signature-based intrusion detection. EAGLE based
approach seems to be simpler to describe. When using EAGLE
we can express the attack pattern with real-time constraints.
EAGLE supports recursively defined temporal formulas,
which can be parameterized by data expressions. Once an
attack has been specified by EAGLE formula ö, we can then
monitor the system events against the formula. We use a
monitoring algorithm and process each event with the EAGLE
formula and then modify the formula to store the result of the
event. Whenever the formula becomes false, we know that
intrusion has occurred.

We use agents for intrusion detection. We distribute
the task to detect intrusion into parts and distribute among
the agents. Information about system events obtained from
relevant log-files is captured by Sensor agents. A Transceiver
agent then merges the events from various sources by
timestamp. It can also filter the events, so only appropriate
events can reach the analyzer agent. Analyzer agent then
monitors these events against a given formula, and if the
formula becomes false it informs Reaction agent. Reaction
agent with the help of Communication agent sends alert
messages to Monitor agent, which raises an intrusion alarm.

B Knowledge aspect of Agents
An interesting area of research in multi-agent systems is to
understand the knowledge aspects of agents. A fact like ‘agent
A knows a fact Õ’, is simple not enough, but also to express
the fact that ‘agent A knows that agent B knows Õ’ and so
on.

In our approach, we use a temporal logic that
incorporates knowledge operators [11]. This logic is called
Alternating Temporal Epistemic Logic (ATEL) [12], and is an
extension of the Alternating Temporal Logic (ATL) of Alur et
al [13]. ATL is a novel generalization of Computational Tree
Logic (CTL) [14] in which the path quantifiers of CTL are
replaced by cooperation modalities: the ATL formula 〉〉Γ〈〈 à,
where

Γ

 is a group of agents, expresses the fact that can
cooperate to eventually bring about j. The CTL path
quantifiers A (“on all paths. . . “) and E (“on some paths. . . “)
can be expressed in ATL by the cooperation modalities (“the
empty-set of agents can cooperate to. . . “) and (“the grand
coalition of all agents can cooperate to. . . “). ATEL extends
ATL by the addition of operators for representing knowledge.
As well as operators for representing the knowledge of
individual agents, ATEL includes modalities for representing
what “everyone knows” and common knowledge.

In this section we design an architecture for our IDS and IPS
system that uses agents for data collection and analysis. It
also employs a hierarchical structure to allow for scalability.
It also incorporates logics of knowledge into the agents.

A The Architecture

Figure 1. Overall view of the architecture.

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

54

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

The overall architecture of the network is shown in Figure. 1.
This figure shows a subnet with four hosts. The subnet is
connected to a larger network of similar type. The hosts in
the subnet may or may not be fully connected. The figure
also shows different types of agents present in a host. Each
host in the network has MAS architecture. One particular
host in the network has agents like Sensor agents, Transceiver
agent, Analyzer agent, Reaction agent and Communication
agent. Few hosts have Monitor agent, which does a higher
level correlation and detect intrusions that involve several
hosts. Such hosts are known as Monitor Node. Together
with all these agents, they form a multi-agent community.

The sensor agents, transceiver agent, analyzer agent does
the data collection and data analysis part. As we will soon
see in section 4, analyzer agent uses temporal logic in detecting
intrusions. Known attack patterns are expressed as formulas
in a monitorable logic called EAGLE [8]. Analyzer agent uses
a monitoring algorithm that matches specifications of the
absence of an attack with system execution log, if the
specification is violated; analyzer agent informs the findings
to the reaction agent. Reaction agent has a knowledge base,
so it does appropriate changes with its findings. It may update
its knowledge base with new findings or it can do some useful
correlation. With the help of communication agent, it informs
a monitor agent about the intrusion. Monitor agent may be
present in the same host or different host. Either way monitor
agent does a higher level correlation with its own knowledge
base and generates an alarm. Monitor agent helps in making
the system scalable. It informs the network administrator
about the intrusion. Network administrator can then take the
necessary action. Thus this architecture presents an Intrusion
Detection System. Reaction agent and Monitor agent has a
knowledge base. It incorporates logics of knowledge in itself
with the help of ATEL (Alternating Temporal Epistemic Logic)
[12] as we will see in section 5. As a result of this Reaction
agent can take remedial actions of its own without the need
to inform Monitor agent or Network administrator. Thus this
architecture can also perform as an Intrusion Prevention
System.

In the following section we describe each component in
greater detail.

B Overview

Figure 2. Multi-agent architecture

KB – Knowledge Base SA – Sensor Agent

WL – Webserver log NL – Network Log

Intelligent multi-agents for IDS and IPS architecture is shown in
Figure. 2. Sensor agents, transceiver agent, analyzer agent, reaction
agent and communication agent are present in all the hosts of
the network. Few of the hosts in the network have monitor
agents within them. This monitor agent has user interfaces
by which they can directly contact the administrator of the
network. All these agents are autonomous in nature. Some
agents may or may not need data produced by other agents
to perform their work.

The figure shows the multi-agent architecture inside a host.
The output from sensor agents is fed into transceiver agent.
The results of transceiver agent are given to analyzer agent.
Analyzer agent and reaction agent work together. Reaction
agent communicates with reaction agent or monitor agent of
other host with the help of communication agent.

Reaction agent is mainly responsible for establishing IPS in
this architecture. Prevention mechanisms are taken by a host
with the help of reaction agent’s knowledge base. Certain
preventive measures like reconfiguring the firewall, removing
a subnet from the network or by simply terminating a session
are undertaken by the reaction agent. In section 5, we will
learn about prevention mechanism in greater detail. With the
help of this prevention mechanism, a reaction agent need not
contact monitor agent whenever an intrusion takes place.
Reaction agent can take care of the intrusion by itself. There
is also no need to contact the administrator of the network.

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

55

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

The knowledge base of reaction agent is shared by the
analyzer agent. Analyzer agent can read certain remedial
actions against few attacks, for example the blocked IP address
list. So, whenever an IP address from the blocked lists tries to
create a session, analyzer agent informs reaction agent about
it and that particular connection is immediately closed off

C An Example scenario

Figure. 3 shows a subnet with four hosts. The subnet is
connected to a network. Host 4 has a monitor agent
whereas the other host does not. Let us call Host 4 as
monitor node.

Figure 3. A subnet with four hosts.

Suppose analyzer agent of host 1 detects an attack. The reaction
agent of host 1 first searches its own knowledge base for a remedial
action against this attack. If there is an action available, reaction
agent of host 1 performs the action, for example terminating a
session or closing off a connection. Thus host 1 can take
care of the attack all on its own.

If suppose there is no action available against the attack
in its knowledge base, reaction agent of host 1 contact a
monitor node of its subnet so that it can inform it of the
attack, in this case it is host 4. Reaction agent of host 1 sends
alert message about the attack by communicating with the
monitor agent of host 4 either directly or indirectly. Monitor
agent of host 4 upon receiving the alert message generates
an alarm and informs the network administrator about the
attack. The administrator takes appropriate actions.

Host 4 which has a monitor agent also does a higher
level correlation of the entire subnet involving all four hosts.
If it detects an attack it takes similar actions as above. If there
are no remedial actions available in its knowledge base it
generates an alarm and informs the network administrator.

IV DETECTING INTRUSIONS USING TEMPORAL
LOGIC
In this section we see how analyzer agent detects intrusions.
Analyzer agent as discussed above uses a temporal logic
approach to signature-based intrusion detection. The idea is
to specify the behavior of different intrusion attacks as
temporal formulas, and monitor the system execution to see if
it violates the formula. If the observed execution violates the
formula then an intrusion has occurred.

A EAGLE: A monitoring logic

The intrusion attacks are specified formally in the logic EAGLE
[8]. EAGLE contains a small set of operators. The three
temporal operators used are next-time (Ο), previous-time
(™”), and concatenation (

⋅

). Rules can be parameterized with
formulas and data-values.

Syntax
A specification S consists of a declaration part D and an

observer part O. D consists of zero or more rule definitions
R, and O consists of zero or more monitor definitions M,
which specify what to be monitored. Rules and monitors

are named (N). A rule definition R is preceded by a keyword
indicating whether the interpretation is maximal or minimal.

Semantics
Given a trace ó and a specification D O, satisfaction is defined
as follows:

ó |= D O “ iff “ (mon N = F) “ O . ó, 1 |=D F

That is, a trace satisfies a specification if the trace, observed
from position 1 (the first state), satisfies each monitored
formula. The definition of the satisfaction relation |=D †”
(Trace × nat) × Form, for a set of rule definitions D, is
presented below, where 0 d” i d” n + 1 for some trace ó = s1s2
. . . sn.

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

56

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

We refer to [8] for detailed semantics.

Monitoring Algorithm
We describe here the computation mechanism used to check
if an EAGLE formula is satisfied by a sequence of events. Our
assumption is that the expressions of an EAGLE formula are
specified with respect to the fields of the event record. At
every event the algorithm evaluates the monitored formula
on the event and generates another formula. At the end of
the event sequence, the value of the evolved formula is
determined; if the value is true the formula is satisfied by the
event sequence, if it is false then the formula is violated.

The evaluation of a formula F at an event s = ó(i) is transformed
into another formula F’ = eval (F, s) with the property that ó,
i |= F if and only if ó, i + 1 |= F’, where eval is the monitor
function. At the end of the trace we compute the Boolean
function value(F), where F is the evolved formula, such that
value(F) is true if and only if ó, |ó| + 1 |= F and false otherwise.
Thus for a given trace ó = s1s2 . . . sn and an Eagle formula F, ó
satisfies F if and only if value(eval (. . . eval (eval (F, s1), s2) .
. . , sn)) = true. The details of the algorithm can be found in [8].

V Different Types of Attacks and its Specification
In this section, we present few attack signatures using the
logic EAGLE which can be used to monitor the system. The
attacks classes and its descriptions are taken directly from
[15]. The specifications of few attacks like Dictionary, Port-
Sweep attack were given in [16].

Denial of Service Attacks
A denial of service attack is an attack in which the attacker
makes some computing or memory resource too busy or too
full to handle legitimate requests, or denies legitimate users
access to a machine. There are many varieties of denial of
service (or DoS) attacks. Some DoS attacks (like a mailbomb,
neptune, or smurf attack) abuse a perfectly legitimate feature.
Others (teardrop, Ping of Death) create malformed packets
that confuse the TCP/IP stack of the machine that is trying to
reconstruct the packet. Still others (apache2, back, syslogd)
take advantage of bugs in a particular network daemon.

SYN Flood
A SYN Flood is a denial of service attack to which every TCP/
IP implementation is vulnerable (to some degree). Each half-
open TCP connection made to a machine causes the “tcpd”
server to add a record to the data structure that stores
information describing all pending connections. This data
structure is of finite size, and it can be made to overflow by
intentionally creating too many partially-open connections.
The half-open connections data structure on the victim server
system will eventually fill and the system will be unable to
accept any new incoming connections until the table is
emptied out.

In order to detect this attack, we need to look at
network events from a log created by tcpdump. The formula
for absence of this attack is given by:

Check(int f, long i1, int p) = (f = flag) Ù (i1 = ip1) Ù (p = port)
 Count(int f, long i1, int p, int a, int b) = (a d” b)
 ® ((Check(f, i1, p) ® Ο Count(f, i1, p, a + 1, b))
 Ù (¬Check(f, i1, p) ® Count(f, i1, p, a , b)))
NoSYNFloodAttack = Always(Count(flag, ip1, port, 1, 15))
In above example, flag would be “S” if the SYN bit is set. ip1
is the destination ip address, port is a particular port number.
The upper limit of the number of SYN packets that can be
sent to a particular port is 15. a is the current number of SYN
packets sent to a particular port, b is the upper limit. f holds
the flag value and i1 holds the destination ip address.
Whenever a SYN packet is sent to the same port, the value of
a is increased by one. If it goes beyond 15 then it is a SYN
Flood attack.

Teardrop
The teardrop exploit is a denial of service attack that exploits
a flaw in the implementation of older TCP/IP stacks. Some
implementations of the IP fragmentation re-assembly code
on these platforms does not properly handle overlapping IP
fragments.
In order to detect this attack, we need to look at network
events from a log created by tcpdump. The formula for absence
of this attack is given by:
TearNext(int i1, int s1, int o1) = (i1 = i) ® (o1 > s) Ù (s1 < s)
Tear(int i, int s, int o) = (o = 0) ® TearNext(id1, size1, offset1)
NoTeardropAttack = Always(Tear(id, size, offset))
We can find this attack by looking for two specially
fragmented IP datagrams. The first datagram is a 0 offset
fragment with a payload of size N, with the MF bit on (the
data content of the packet is irrelevant). The second datagram
is the last fragment (MF == 0), with a positive offset greater
than N and with a payload of size less than N. id, size, offset is
the ip-fragment id, fragment size and its offset.

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

57

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

User to Root Attacks
User to Root exploits are a class of exploit in which the attacker
starts out with access to a normal user account on the system
(perhaps gained by sniffing passwords, a dictionary attack,
or social engineering) and is able to exploit some vulnerability
to gain root access to the system.
There are several different types of User to Root attacks. The
most common is the buffer overflow attack. Buffer overflows
occur when a program copies too much data into a static
buffer without checking to make sure that the data will fit.

Eject
In Solaris 2.5, removable media devices that do not have an
eject button or removable media devices that are managed by
Volume Management use the eject program. Due to insufficient
bounds checking on arguments in the volume management
library, it is possible to overwrite the internal stack space of
the eject program. If exploited, this vulnerability can be used
to gain root access on attacked systems.
A host-based intrusion detection system could catch an eject
attack either by noticing the invocation of the eject program
with a large argument.
In order to detect this attack, we need to have access to the
host’s audit logs. Auditing can be turned on by running Sun’s
Basic Security Monitoring (BSM) software.
Eject() = (event_type = “execve”) Ù (path = “/usr/bin/eject”)
Arg(int n) = (n d” 50)
NoEjectAttack = Always(Eject()® Arg(num))
In above formula, num means the number of arguments given
when invoking the eject program. We can get this from BSM
audit log. If the number of arguments exceeds 50 then we
have an Eject attack. event_type is the current event the log
is recording.

Ffbconfig
Ffbconfig is same as the Eject Attack. Due to insufficient
bounds checking on arguments in the volume management
library, it is possible to overwrite the internal stack space of
the ffbconfig program.
A host-based intrusion detection system can look for the
invocation of the command “/usr/sbin/ffbconfig/” with an
oversized argument for the “-dev” parameter.
Ffbconfig() = (event_type = “execve”) Ù (path = “/usr/bin/
eject”) Ù (param = “-dev”)
Arg(int n) = (n d” 50)
NoFfbconfigAttack = Always(Ffbconfig()® Arg(num))

Remote to User Attacks

A Remote to User attack occurs when an attacker who has
the ability to send packets to a machine over a network, but
who does not have an account on that machine, exploits some
vulnerability to gain local access as a user of that machine.
There are many possible ways an attacker can gain

unauthorized access to a local account on a machine. Some
of the attacks discussed within this section exploit buffer
overflows in network server software (imap, named, sendmail).
The Dictionary, Ftp-Write, Guest and Xsnoop attacks all
attempt to exploit weak or misconfigured system security
policies.

Dictionary
The Dictionary attack is a Remote to Local User attack in
which an attacker tries to gain access to some machine by
making repeated guesses at possible usernames and
passwords. An attacker who knows the username of a
particular user (or the names of all users) will attempt to gain
access to this user’s account by making guesses at possible
passwords. Dictionary guessing can be done with many
services; telnet, ftp, pop, rlogin, and imap are the most
prominent services that support authentication using
usernames and passwords.
In order to detect this attack, we need to have access to the
host’s audit logs. We can get this from BSM audit log.
LoginError() = (type = login) Ù failure
LoginAgain(long i) = (i = ip) Ù LoginError()
 Check(long t, long s, int c, long i, int d) = (time – t < s)
 ® ((LoginAgain (i) ® (c d” d Ù Ο Check(t, s, c + 1, i, d)))
 Ù (¬ LoginAgain (i) ® Check(t, s, c, i, d)))
NoDictionaryAttack = Always(LoginError() ® Check(time,
8000, 1, ip, 3))
In above rule, the arguments t, s, c, i, and d represent the rule
invocation time, the timeout period, the current number of
unsuccessful-guesses count, the source IP address doing
the guess, and the threshold count. An attack occurs when
the number-of-guess count c from the IP address i exceeds
the threshold count d within the timeout period s. The monitor
NoDictionaryAttack asserts that whenever there is a failure
of login from an IP address then eventually within time 8000
the number of login-failures from the same IP address must
be less than or equal to 3.

Port-Sweep Attack
A port sweep is a surveillance scan through many ports on a
single network host. Each port scan is essentially a message
sent by the attacker to the victim’s port and elicits a response
from the victim that indicates the port’s status. The aim of the
attacker is to determine which services are supported on the
host, and use this information to exploit vulnerabilities in
these services in the future.
PortScan(long i1, long i2, Set S) = (i1 = ip1) Ù (i2 = ip2) (
port “ S)
 Check(long t, long s, int c, long i1, long i2, Set S, int d) = (
time – t < s)® ((PortScan(i1, i2, S) ® (c d” d Ù Check(t, s,
c + 1, i1, i2, S U {port}, d))) Ù (¬ PortScan(i1, i2, S)
® Check(t, s, c + 1, i1, i2, S, d)))

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

58

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

NoPortSweepAttack = Always(Check(time, 100, 1, ip1, ip2, {
port }, 10)) The arguments t, s, c and d in the Check rule are
the initial time, the timeout period, the frequency count, and
the threshold count. The parameterized Check rule asserts
that the number of port scans between a source and
destination IP (i1 and i2) address pair never exceeds a certain
threshold d within time s. Note that in the rule Check we add
every new port number scanned to the set S of all port
numbers that are scanned within time s.

VI EPISTEMIC PROPERTIES OF AGENTS
In this section we see how reaction agent takes preventive
measures against intrusion attacks, how the logic of
knowledge is incorporated in an agent. Reaction agent keeps
the remedial action of certain attacks in its knowledge base. It
also maintains certain knowledge about its neighboring
agents. Let us consider a group of agents where some agents
would like to share a common knowledge. This can be
expressed using alternating temporal epistemic logic (ATEL)
[12]. ATEL is alternating-time temporal logic (ATL) [13]
extended to capture knowledge modality. We omit the details
of the logics due to space constraints.

Figure 5. A subnet with three hosts.

Smurf Attack

The attack and its EAGLE specifications were discussed in
section 4.2. Let us consider a network as shown in Figure. 5.

Suppose analyzer agent of host 4 has detected a smurf attack. It has
been asked to host 4 to broadcast ICMP request message with host
1 as sender. Host 1 is the victim here. If certain actions are not
taken immediately, network will get congested with all the
ICMP echo replies being sent to host 1. Reaction agent of
host 4 does the following remedial action: It tries to
communicate with the sender of ICMP request message which
is host 1 here in this case, either directly or indirectly. Thus
host 4 communicates with its neighbors to communicate with
host 1 and find out whether host 1 indeed sent an ICMP
request message. In above case host 4, host 3 and all other

neighbors of host 4, if it exists, collaborates to find out if host
1 sent an ICMP request message.

〉〉〈〈 4,2,3 Did host 1 sent an ICMP echo request message?

After reply from host 1 (the reply being sent by the reaction
agent of host 1), host 4 now keeps a table in its knowledge base
about host 1 that he did not sent any ICMP message. It can be
represented as

K4 (reply = no) → (stateICMPmsg(host1) = false)

Let this formula be represented as ϕ. Thus now there exist a
group knowledge, where everyone in the group knows ϕ. EGÕ,
where G being host 2, host 3 and host 4 in this case. Now anytime
in future if such similar attack occurs, reaction agent of host 4
looks into its knowledge base and finds out that the ICMP
state of host 1 is still false and so it does not sends any ICMP
echo reply thereby preventing the network from congestion.

If host 1 wants to send an ICMP request message, it first
contacts its neighbors which in turn contacts other hosts of
the network and informs them to change the ICMP state of
host 1 in the table. Thus again there exist a group knowledge,
where everyone in the group knows the fact that host 1 indeed
want to sent a ICMP request message anytime in the future.

VII IMPLEMENTATIONS AND RESULTS

A MIDTL: Multi-Agent Intrusion Detection system
based on Temporal Logic

A monitoring engine called EAGLE FLIER, is written in Java
and is available as a library. The engine EAGLE FLIER
converts the EAGLE formulas into Java classes and then it
can be used for monitoring events. EAGLE FLIER can be
downloaded from the authors of EAGLE [8].

In our tool MIDTL, we didn’t use EAGLE FLIER
instead we have converted the attack formulae into Java
programs. Attacks like Dictionary and Eject are converted
into Java programs. Data structures have been assigned to
certain attacks. For example, Dictionary attack java program
maintains a HashMap of String arrays for its function. The
system MIDTL is written in Eclipse which is a multi-language
software development environment.

All the agents in MIDTL have been implemented as
user-level threads. Two agents never communicate using
methods but only by exchanging messages. When there is
no work to do, an agent goes to sleep, whenever there is work
an agent wakes up the required agent.

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

59

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

B Results

We perform offline monitoring using MIDTL with the standard
DARPA Intrusion Detection Evaluation data set [16]. The
large log-files made available by DARPA are used exclusively
for the task of evaluating intrusion detection systems. In our
experiment we used the data sets provided in the 1998 offline
Intrusion Detection Evaluation plan. There are two types of
logs which are available for analysis. The tcpdump logs and
Sun Basic Security Module (BSM) audit logs. We use the
BSM log which contains audit information describing system

Figure 6. Snapshot of a BSM audit log.

calls made to the Solaris kernel. The size of typical BSM audit
log varies from 200 – 300MB.

Figure. 6. shows a typical BSM audit log. The audit trail shows
a number of events generated by the system. Every event
starts with a header. In addition to other information header
reports the event_type and also timestamp of that particular
event. Header is followed by subject which explains the user’s
related information. Each record ends with return which
reports the status of the event – success or failure. Return is
usually followed by a trailer. Suppose for Dictionary attacks,
we are interested only in “login – telnet” events.

MIDTL reads various log files through Sensor agent
and sends relevant events to Analyzer agent for processing.
Sensor agent sometimes filters the raw data, such as for
Dictionary attack only login events are considered. Fig. 7.
shows a filtered log. Analyzer agent then uses the above
data structure and a monitor function to monitor the system
events of the filtered log. For every relevant event monitor
function is called iteratively and it modifies the data structure
accordingly. Whenever any event causes to exceed a certain
threshold, an alarm is generated. Analyzer agent then
communicates this message to Monitor agent through

Communication agent. Monitor agent then displays a warning
message about the threat. The network administrator can then
take the necessary action.

Figure 7. A filtered log.

We have implemented and tested our tool against the
Dictionary attack and Eject attack. We ran our experiment on
1.70 GHz Pentium M laptop with 512MB RAM. Using MIDTL
we were able to simulate the behavior of an intrusion detection
system which passively processes events from our host
offline. Our experiments successfully detected all the
Dictionary and Eject attacks in the logs. Whenever an attack
is detected, MIDTL displays a warning message to the user.
The message contains the name of the attack, and the ip-
address of the attacker. Figure. 8. shows the output of the
MIDTL system.

Figure 8. Output of the system.

The current version of MIDTL does only the work of an
Intrusion Detection system. Prevention measures are to be
incorporated in our future work. The functionality of Reaction
agent was not implemented in MIDTL. Thus, it is the

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

60

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

responsibility of the user or network administrator to take
necessary actions against such attacks.

VIII CONCLUSIONS AND FUTURE WORK
We have designed an architecture for an intelligent Intrusion
Detection and Prevention System using multi-agents. We also
employed a hierarchical structure to allow for scalability. We
showed that our architecture can remove certain limitations
of existing IDS. We used temporal logic approach to signature-
based intrusion detection. Using temporal logic formulas to
specify the intended behavior of security-attacks coupled
with multi-agents, we obtained an intelligent Intrusion
Detection System. Our tool MIDTL successfully detected
well-known attacks from large event-logs made available by
DARPA. We also incorporated logics of knowledge into the
agents and using it we obtained an intelligent Intrusion
Prevention System.

Future work can focus on making the agents more
informative by knowledge acquisition, knowledge distribution
and sharing. We can further reduce the false-positive and
false-negative error rates by using hybrid techniques which
combines intelligent models like genetics algorithms or fuzzy
logic.

REFERENCES

[1] Balasubramaniyan, J. S. , Garcia-Fernandea, J. O., Isacoff, D.,
Spafford, E. and Zamboni, D.: An Architecture for Intrusion
Detection using Autonomous Agents. http://citeseer.nj.nec.com/
balasubramaniyan98architecture.htm1

[2] Smaha, S.E.: Haystack: an intrusion detection system. In:
Proceedings of Aerospace Computer Security Applications
Conference (1988) 37–44

[3] Habra, N., Charlier, B.L., Mounji, A., Mathieu, I.: Expert system
in intrusion detection: A case study. In: Proceedings of the 11th
National Computer Security Conference, Baltimore, MD (1988)
74–81

[4] Habra, N., Charlier, B.L., Mounji, A., Mathieu, I.: Asax: Software
architecture and rule-based language for universal audit trail
analysis. In: Deswarte, Y., Quisquater, J.-J., Eizenberg, G. (eds.)
ESORICS, LNCS, vol. 648. Springer, Heidelberg (1992) 435–
450

[5] Dian Gang Wang, Tao Li, Sun Jun Liu, Gang Liang and Kui
Zhao.: An Immune Multi-Agent System for Network Intrusion
Detection. In: ISICA, LNCS 5370, (2008) 436-445

[6] Isaza, G. A., Castillo, A. G. and Duque, N. D.: An Intrusion
Detection and Prevention Model Based on Intelligent Multi-
Agent Systems, Signatures and Reaction Rules Ontologies. In:
7th International Conference on PAAMS. (2009) 237-245

[7] Sen, K., Vardhan, A., Agha, G. and Rosu, G.: Efficient decentralized
monitoring of safety in distributed systems. In: Proceedings of
26th International Conference on Software Engineering,
Edinburgh, UK, (2004) 418–427

[8] Barringer, H., Goldberg, A., Havelund, K. and Sen, K.: Rule-
based runtime verification. In: Proceedings of 5th International
Conference on Verification, Model Checking and Abstract
Interpretation. Lecture Notes in Computer Science, Vol. 2937.
Springer-Verlag, Venice, Italy, (2004) 44–57

[9] MIT Lincoln Laboratory. DARPA intrusion detection
evaluation.

 http://www.ll.mit.edu/IST/ideval/

[10] Roger, M. and Goubault-Larrecq, J.: Log auditing through model-
checking. In: 14th IEEE Computer Security Foundations
Workshop. IEEE (2001)

[11] Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about
Knowledge. MIT Press, Cambridge (1995)

[12] van der Hoek, W., Wooldridge, M.: Tractable multiagent
planning for epistemic goals. In: Proceedings of AAMAS (2002)

[13] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time
temporal logic. In: Proceedings of 38th IEEE Symposium on
Foundations of Computer Science (1997)

[14] Clarke, E.M., Grumberg, O. and Peled, D.A.: Model Checking.
MIT Press, (1999)

[15] Kendall, K.: A Database of Computer Attacks for the Evaluation
of Intrusion Detection Systems, Master’s Thesis, Massachusetts
Institute of Technology, (1998)

[16] Naldurg, P., Sen, K. and Thati, P.: A Temporal Logic Based
Framework for Intrusion Detection. FORTE. LNCS. Vol. 3235.
(2004) 359-376

A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

61

	A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention
	Recommended Citation

	A Temporal Logic Based Approach to Multi-Agent Intrusion Detection and Prevention

