International Journal of Communication Networks and Security

Volume 1 | Issue 1 Article 4

April 2011

Recovery of loss of packet in network using constant packet
reordering

Sandeep Kumar Gonnade
CSE Department. NIT Raipur (C.G.), sandeep_gonnade@yahoo.co.in

Naresh Kumar Nagwani
CSE Department. NIT Raipur (C.G.), nknagwani@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcns

Cf Part of the Computer Engineering Commons, and the Systems and Communications Commons

Recommended Citation

Gonnade, Sandeep Kumar and Nagwani, Naresh Kumar (2011) "Recovery of loss of packet in network
using constant packet reordering," International Journal of Communication Networks and Security. Vol. 1 :
Iss. 1, Article 4.

DOI: 10.47893/1JCNS.2011.1002

Available at: https://www.interscience.in/ijcns/vol1/iss1/4

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Communication Networks and Security by
an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcns
https://www.interscience.in/ijcns/vol1
https://www.interscience.in/ijcns/vol1/iss1
https://www.interscience.in/ijcns/vol1/iss1/4
https://www.interscience.in/ijcns?utm_source=www.interscience.in%2Fijcns%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcns%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcns%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcns/vol1/iss1/4?utm_source=www.interscience.in%2Fijcns%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Recovery of loss of packet in network using
constant packet reordering

Sandeep Kumar Gonnade , Naresh Kumar Nagwani
CSE Department.
NIT Raipur (C.G)
sandeep_gonnade@yaho00.co.in

Abstract-When the packet is reordered the most standard

implementation of the Transmission control protocol (TCP) gives poor
performance. This paper proposes a new version of the TCP which gives
the high throughput when the packet reordering occurs and in another
case if the packet reordering is not occurs then in that case also it is
friendly to other version of the TCP. Transmission control protocol
constant Packet Reordering (TCP-CPR) does not depend or rely on the
duplicate acknowledgement to detect the packet loss. Instead the timer
is used to maintain how long packet is transmitted. In this case timer is
used to keep the track how long packets are transmitted. If
acknowledgement are not received within the appropriate time then
packet assume to loss because of the TCP-CPR does not depend on the
duplicate acknowledgement. Packet reordering has does not effect on
the performance of TCP-CPR.
Through the performance of the TCP-CPR consistently better than
existing mechanism that make the try to make the TCP more robust to
packet reordering. In case where packets are not reordered, it’s verified
that TCP-CPR maintains the same throughput as the typical
implementation of TCP.

Keywords — TCP, TCP-CPR, congestion, packet, DUPACK

l. INTRODUCTION
As per the design format of the Transmission control protocol
(TCP) error and congestion control mechanism which is based
on the principle that packet loss is an indication of the network
congestion. As per TCP senders backs off transmission rate
by decreasing its congestion control windows. TCP uses two
strategies for the detection of the packet loss the first one is
based on the sender’s retransmission timeout (RTO) which is
also referred as coarse timeout. When the senders timeout
which is responded by the congestion control by slow start
which leads into decreasing congestion window to one
segment. The packet detection loss is detected at the receiver
side by using the sequence number. In this case receiver checks
the sequence number of received packet. The hole in the
sequence indicates that there is loss of the packet in such case
the receiver generates the duplicate acknowledgement for
every “out-of-order” segment it receives. Until the lost packet
received, the entire reaming packet with higher sequence
number is consider as out of order and will cause to creation of
duplicates packets. After that sender retransmit the lost packet
without waiting for timeout which helps to reduction of
congestion windows. The main idea behind retransmit packet
this is to improve the performance of TCP throughput by
avoiding sender to timeout.

Using fast retransmit can continuously improve the TCP’s
performance in the presence of irregular reordering but it still

operates under the assumption of that out — of — order packets
which indicate the packet loss and which leads to congestion.
As a result its performance degrades in the presence of
persistent reordering. This is procedure for reordering both
data and acknowledgment packet. Packet reordering is
generally attributed to transient conditions pathological
behavior and erroneous implementation.

l. EXISTINGSYSTEM

The design of TCP’s error and congestion control
mechanisms was based on the premise that packet loss is an
indication of network congestion. Therefore, upon detecting
loss, the TCP sender backs off its transmission rate by
decreasing its congestion window. TCP uses two strategies
for detecting packet loss. The first one is based on the sender’s
retransmission timeout expiring and is sometimes referred to
as coarse timeout. When the sender times out, congestion
control responds by causing the sender to enter slow-start,
drastically decreasing its congestion window to one segment.
The other loss detection mechanism originates at the receiver
and uses TCP’s sequence number. Essentially, the receiver
observes the sequence numbers of packets it receives; a “hole”
in the sequence is considered indicative of a packet loss.
Specifically, the receiver generates a “duplicate
acknowledgment” (or DUPACK) for every “out-of-order”
segment it receives. Note that until the lost packet is received,
all other packets with higher sequence number are considered
“out-of-order” and will cause DUPACKS to be generated.
Modern TCP implementations adopt the fast retransmit
algorithm which infers that a packet has been lost after the
sender receives a few DUPACKS.

The sender then retransmits the lost packet without
waiting for a timeout and reduces its congestion window in
half. The basic idea behind fast retransmit is to improve TCP’s
throughput by avoiding the sender to timeout (which
results in slow-start and consequently the
shutting down of the congestion window to
one) .

Fast retransmit can substantially improve TCP’s
performance in the presence of sporadic reordering but it still
operates under the assumption that out-of-order packets

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

12

Recovery of loss of packet in network using Constant packet reordering

indicate packet loss and therefore congestion. Consequently,
its performance degrades.

Considerably in the presence of “constant reordering.” This
is the case for reordering of both data and acknowledgment
packets. Indeed, it is well known that TCP performs poorly
under significant packet reordering (which may not be
necessarily caused by packet losses). Packet reordering is
generally attributed to transient conditions, pathological
behavior, and erroneous implementations. For example,
oscillations or “route flaps™” among routes with different round-
trip times (RTTs) are acommon cause for out-of-order packets
observed in the Internet today. Internet experiments performed
through MAE-East and reported in show that 90% of all
connections tested experience packet reordering. Researchers
at SLAC performed similar experiments and found that 25% of
the connections monitored reordered packets. However,
networks with radically different characteristics (when
compared to the Internet, for example) can exhibit packet
reordering as a result of their normal operation. Most standard
implementations of TCP perform poorly when packets are
reordered. In existing TCP was based on the premise that packet
loss is an indication of network congestion. The exact lost
packets in the network couldn’t able to find. It causes
redundancy of acknowledgement for packets.

Most standard implementations of TCP perform poorly
when packets are reordered. In a existing TCP was based on
the premise that packet loss is an indication of network
congestion.

2.1 Limitations
e TCP detects packet loss through duplicate
Acknowledgement.
It performs poorly when packets are reordered.
Its Throughput decreases whenever packet is
reordered.
Not easier to deploy.
Decreased robustness.

I.PROPOSED SYSTEM

The basic idea behind TCP-CPR is to detect packet losses
through the use of timers instead of duplicate
acknowledgments. This is prompted by the observation that,
under constant packet reordering, duplicate acknowledgments
are a poor indication of packet losses. Because TCP-CPR relies
solely on timers to detect packet loss, it is also robust to
acknowledgment losses as the algorithm does not distinguish
between data (on the forward path) or acknowledgment (on
the reverse path) losses.

The proposed algorithms only require changes in the TCP
sender and are therefore Backward-compatible with any TCP
receiver. TCP-CPR’s sender algorithm is still based on the
concept of a congestion window, but the update of the
congestion window follows slightly different rules than standard

TCP. However, significant care was placed in making the
algorithm fair with respect to other versions of TCP to ensure
they can coexist Packets being processed by the sender are
kept in one of two lists: the to-be-sent list contains all packets
whose transmission is pending, waiting for an “opening” in
the congestion window. The to-be-ack list contains those
packets that were already sent but have not yet been
acknowledged. Typically, when an application produces a
packet it is first placed in the to-be-sent list; when the
congestion window allows it, the packet is sent to the receiver
and moved to the to-be-ack list; finally when an ACK for that
packet arrives from the receiver, it is removed from the to-be-
ack list (under cumulative ACKs, many packets will be
simultaneously removed from to-be-ack). Alternatively, when
it is detected that a packet was dropped, it is moved from the
to-be-ack list back into the to-be-sent list.

As mentioned above, drops are always detected through
timers. To this effect, whenever a packet is sent to the receiver
and placed in the to-be-ack list, a timestamp is saved. When a
packet remains in the to-be-ack list more than a certain amount
of time it is assumed dropped. In particular, it assumed that a
packet was dropped at time when exceeds the packet’s
timestamp in the to-be-ask list plus an estimated maximum
possible round-trip time.

3.1 Advantages of Proposed system

e Proposed system works perfectly when packet is
reordered.

e |tuses Timer Control to detect the packet Loss.

e Its performance will be same even the packet is
reordered.

e Proposed system not only depends on the duplicate
acknowledgements and packet reordering to detect
the packet losses.

e This system performs consistently better than existing
mechanisms that try to make TCP more robust to
packet reordering.

e Easier to deploy since no changes are required at the
sender side.

1. PROBLEM FORMULATION MODULES
The Proposed system is divided into following main modules

e Transmission without Reordering

e Transmission with Packet Reordering

e segmentation

e Timer Control

e Packet Reordering

e Comparison chart

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

13

Recovery of loss of packet in network using Constant packet reordering

Module Description:
A. Transmission without Packet Reordering

If a message transmitted without packet reordering, then
If part of a message is lost during the transmission then it’s
needed to retransmit the entire message or it’s needed to
retransmit from that particular part. Therefore, upon detecting
loss, the TCP sender backs off its transmission rate by
decreasing its congestion window. TCP uses two strategies
for detecting packet loss. The first one is based on the sender’s
retransmission timeout (RTO) expiring and is sometimes referred
to as coarse timeout. When the sender times out, congestion
control responds by causing the sender to enter slow-start,
drastically decreasing its congestion window to one segment.
The other loss detection mechanism originates at the receiver
and uses TCP’s sequence number. Essentially, the receiver
observes the sequence numbers of packets it receives; a “hole”
in the sequence is considered indicative of a packet loss.
Specifically, the receiver generates a “duplicate
acknowledgment” (or DUPACK) for every “out-of-order”
segment it receives. Note that until the lost packet is received,
all other packets with higher sequence number are considered
“out-of-order” and will cause DUPACKSs to be generated.
Modern TCP implementations adopt the fast retransmit
algorithm which infers that a packet has been lost after the
sender receives a few DUPACKS.

B. Transmission with Packet Reordering

If a message is transmitted as packets then it’s needed to
retransmit only the packet which is lost and not the entire
message. The message is send from the source to the ingress
router and then to the intermediate routers and then to the
outgress router and the destination.

The basic idea behind TCP-CPR is to detect packet losses
through the use of timers instead of duplicate
acknowledgments. This is prompted by the observation that,
under constant packet reordering, duplicate acknowledgments
are a poor indication of packet losses. Because TCP-CPR relies
solely on timers to detect packet loss, it is also robust to
acknowledgment losses as the algorithm does not distinguish
between data (on the forward path) or acknowledgment (on
the reverse path) losses.

The proposed algorithms only require changes in the TCP
sender and are therefore backward-compatible with any TCP
receiver. TCP-CPR’s sender algorithm is still based on the
concept of a congestion window, but the update of the
congestion window follows slightly different rules than standard
TCP. However, significant care was placed in making the
algorithm fair with respect to other versions of TCP to ensure
they can coexist. Packets being processed by the sender are
kept in one of two lists: the to-be-sent list contains all packets
whose transmission is pending, waiting for an “opening” in

the congestion window. The to-be-ack list contains those
packets that were already sent but have not yet been
acknowledged. Typically, when an application produces a
packet it is first placed in the to-be-sent list; when the
congestion window allows it, the packet is sent to the receiver
and moved to the to-be-ack list; finally when an ACK for that
packet arrives from the receiver, it is removed from the to-be-
ack list (under cumulative ACKs, many packets will be
simultaneously removed from to-be-ack). Alternatively, when
it is detected that a packet was dropped, it is moved from the
to-be-ack list back into the to-be-sent list.

C. Segmentation

Segmentation is the process of dividing the source code
into small number of packets and transmitting the packets
through the routers. It’s defined certain limits for the size of the
packets. The packet is sent as 48 bytes data + 5 byte header
information. The header information includes source machine
name, destination machine name, position of the packet and
the related information. The message as packets is sent to the
router where it splits and gets the destination address name
and forwards the message’s packet to the destination. The
destination also splits the packet information and then extracts
the original message from the packets and sorts it using the
hash algorithm based on the index or position.

D. Timer control

Whenever each and individual packet starts sending a
timer is started. The system current time is taken as a start time
and added with delay and it acts as a threshold time and if the
threshold time exceeds the maximum elapsed time of the packet
then the packet is retransmitted. If the time doesn’t exceed
then the packet may arrive safe. If so the next packet is
transmitted else the current packet is transmitted until it arrives
safely. Thread concept is used to implement the timer.

E. Packet Reordering C.

Collects packets from intermediate routers.
Reorders the packets using hash table.

e When EOF is reached it sends the message to
destination.

F. Comparison Chart

Comparison chart compares the throughput of TCP
without Packet Reordering with New TCP With packet
Reordering. The performance is shown by comparing the
transmission rate of existing system with proposed system

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

14

Recovery of loss of packet in network using Constant packet reordering

=101 x|
Bar Chart Demo

Time

Category 1
Category

W First m Second

Figure 1. comparing the transmission rate of existing system with
proposed system

1. TRANSMISSION CONTROL PROTOCOL-
CONSTANT PACKET REORDERING

The basic idea behind TCP-CPR is to detect packet losses
through the use of timers instead of duplicate
acknowledgments. This is prompted by the observation that,
under constant packet reordering, duplicate acknowledgments
are a poor indication of packet losses. Because TCP-CPR relies
solely on timers to detect packet loss, it is also robust to
acknowledgment losses as the algorithm does not distinguish
between data (on the forward path) or acknowledgment (on
the reverse path) losses.

The proposed algorithms only require changes in the TCP
sender and are therefore Backward-compatible with any TCP
receiver. TCP-CPR’s sender algorithm is still based on the
concept of a congestion window, but the update of the
congestion window follows slightly different rules than standard
TCP. However, significant care was placed in making the
algorithm fair with respect to other versions of TCP to ensure
they can coexist

1. ALGORITHMS

Packets being processed by the sender are kept in one of two
lists: the to-be-sent list contains all packets whose transmission
is pending, waiting for an “opening” in the congestion window.
The to-be-ack list contains those packets that were already
sent but have not yet been acknowledged. Typically, when an
application produces a packet it is Qrst placed in the to-be-sent
list; when the congestion window allows it, the packet is sent
to the receiver and moved to the to-be-ack list; Gnally when an
ACK for that packet arrives from the receiver, it is removed
from the to-be-ack list (under cumulative ACKs, many packets
will be simultaneously removed from to-be-ack). Alternatively,
when it is detected that a packet was dropped, it is moved from
the to-be-ack list back into the to-be-sent list.

As mentioned above, drops are always detected through
timers. To this effect, whenever a packet is sent to the receiver

and placed in the to-be-ack list, a timestamp is saved. When a
packet remains in the to-be-ack list more than a certain amount
of time it is assumed dropped. In particular, it assumed that a
packet was dropped at time when exceeds the packet’s
timestamp in the to-be-ack list plus an estimated maximum
possible round-trip time mxrtt.

As data packets are sent and ACKs received, the estimate
mxrtt of the maximum possible round-trip time is continuously
updated. The estimate used is given by

mxrtt = 3 ® ertt
Where & is a constant larger than 1 and srtt an exponentially
weighted average of past RTT Whenever a new ACK arrives,

srtt updated as follows:

srtt = m -:«;Jl-. » Brtt,sample rt:]r

Where a denotes a positive constant smaller than 1, |cwmid

the Qoor of the current congestion window size, and sample -
RTT the RTT for the packet whose acknowledgment just
arrived. The reason to raise & to the power 1/ isthat in one RTT
the formulain (2) is iterated times. This means that, e.g., if there
were a sudden decrease in the RTT then srtt would decrease
by arate of per RTT, independently of the current value of the
congestion window. The parameter & can therefore be
interpreted as a smoothing factor in units of RTT.The
performance of the algorithm is actually not very sensitive to
changes in the parameters d and 4, provided they are chosen in
appropriate ranges.

Note that srtt tracks the peaks of RTT. The rate that srtt decays
after a peak is controlled by &. The right-hand plot shows how
large jumps can cause RTT > mxrtt (for this data set, occurrences
at 155,455, 75 s, etc.) resulting in spurious time- outs (note
that the jumps in RTT in the right-hand plot were artiGcially
generated). In order for these jumps to cause a spurious
timeouts, the jumps in RTT could occur no sooner than every
15 seconds. Inthis case, 1500 packets were delivered between
these jumps. If the jJumps occurred more frequently, then, as
can be seen from the gure mxrtt, would not have decayed to a
small enough value and spurious timeouts would not occur.
Furthermore, if the jJumps were larger, then the time between
jumps to cause a timeout would be no smaller.

Two modes exist for the update of the congestion window:
slow-start and congestion-avoidance. The sender always starts
in slow-start and will only go back to slow-start after periods
of extreme losses. In slow-start, cwnd starts at 1 and increases
exponentially (increases by one for each ACK received). Once
the Qrst loss is detected, cwnd is halved and the sender
transitions to congestion-avoidance, where cwnd increases
linearly (1/ cwnd for each ACK received). Subsequent drops
cause further halving of cwnd, without the sender ever leaving

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

15

Recovery of loss of packet in network using Constant packet reordering

congestion-avoidance. An important but subtle point in halving
cwnd is that when a packet is sent, not only a timestamp but
the current value of cwnd is saved in the to-be-ack list. When
a packet drop is detected, then cwnd is actually set equal to
half the value of cwnd at the time the packet was sent and not
half the current value of cwnd. This makes the algorithm fairly
insensitive to the delay between the times a drop occurs until
it is detected.

To prevent bursts of drops from causing excessive
decreases in cwnd, once a drop is detected a snapshot of the
to-be-sent list is taken and saved into an auxiliary list called
memorize. As packets are acknowledged or declared as dropped,
they are removed from the memorize list so that this list contains
only those packets that were sent before cwnd was halved and
have not yet been unaccounted for. When a packet in this list
is declared dropped, it does not cause cwnd to be halved. The
rational for this is that the sender already reacted to the
congestion that caused that burst of drops. This type of
reasoning is also present in TCP-New Reno and TCP-SACK.
The pseudo-code in Table | corresponds to the algorithm just
described

Event Code
Initializat 1 mode = slow-start
ion 2 cwnd=1
3 ssthr =+8
4 memorize =0
Time=ti 5 remove(to-be-ack, n)
me(n) + 6 add(to-be-sent.n)
mxrtt 7 if not is-in{fmemorize ,n)
(drop then /*new drop®/
detected 8 memorize = to-be-ack
for 9 cwnd=cwnd(n)/2
packetn) 10 ssthr=cwnd
11 else /*other drop is burst®/
12 remove(memorize . n)
13 flush-cwnd{}
Ack 14 srtt =max{a l/cwnd
received X srit, time-time(n) |
for 15 mxrtt=p x srtt
packet n 16 remove(to-be-ack, n)
17 remove(memorize, n)
18 if mode= slow-start and
cwnd +1= ssthr then
19 cwnd = cwnd + 1
20 Else
21 Mode = congestion- avoidance
22 cwnd = cwnd + 1/ cwnd
23 flush-cwnd{}
flush- 24 while cwnd>| to-be-ack| do
cwnd {} 25 k=sent(to-be-sent)

26 remove(to-be-sent, k)
27 add(to-be-ack, k)
28 time(k) = time

TABLE | Table | .shows the
Algorithm for TCP-PR

I.IMPLEMENTATION

Implementation is the stage in the work where the
theoretical design is turned into a working system and is giving
confidence on the new system for the users, which it will work
efficiently and effectively. It involves careful planning,
investigation of the current System and its constraints on
implementation, design of methods to achieve the change over,
an evaluation, of change over methods. Apart from planning
major task of preparing the implementation are education and
training of users. The more complex system being implemented,
the more involved will be the system analysis and the design
effort required just for implementation.

An implementation co-ordination committee based on
policies of individual organization has been appointed. The
implementation process begins with preparing a plan for the
implementation of the system. According to this plan, the
activities are to be carried out, discussions made regarding
the equipment and resources and the additional equipment
has to be acquired to implement the new system.

Implementation is the final and important phase, the most
critical stage in achieving a successful new system and in
giving the users confidence. That the new system will work be
effective .The system can be implemented only after through
testing is done and if it found to working according to the
specification. This method also offers the greatest security
since the old system can take over if the errors are found or
inability to handle certain type of transactions while using the
new system.

Il. CONCLUSIONS

In this paper proposed and evaluated the performance of
Transmission control protocol constant Packet Reordering
(TCP-CPR), a variant of Transmission control protocol(TCP)
that is speciQcally designed to handle constant reordering of
packets (both data and acknowledgment packets). Our
simulation results show that TCP-CPR is able to achieve high
throughput when packets are reordered and yet is fair to
standard TCP implementations, exhibiting similar performance
when packets are delivered in order. From a computational
view-point, TCP-CPR is more demanding than TCP but carries
essentially the same overhead as Selective Acknowledgement
Options (TCP-SACK).

Because of its robustness to constant packet reordering,
TCP-CPR allows mechanisms that introduce constant packet
reordering as part of their normal operation to be deployed in

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

16

Recovery of loss of packet in network using Constant packet reordering

the Internet. Such mechanisms include proposed enhancements
to the original Internet architecture such as multi-path routing
for increased throughput, load balancing, and security;
protocols that provide differentiated services and traffic
engineering approaches.

[1]

[2]

[3]

[4]

[5]

[6]

(71

[8]

[9]

REFERENCES:

Bohacek, S.; Hespanha, J.P.; Junsoo Lee; Lim, C.; Obraczka, K.

“A new TCP for persistent packet reordering” Networking, |IEEE/
ACM Transactions on

Volume 14, Issue 2, April 2006 Page(s): 369 — 382

Colin M. Arthur, Andrew Lehane, David Harle, “Keeping Order:
Determining the Effect of TCP Packet Reordering,” icns, pp.116,
International Conference on Networking and Services (ICNS ’07),
2007

E. Blanton and M. Allman, “On making TCP more robust to
packet reordering,” ACM Comput. Commun. Rev., vol. 32, no.
1, 2002.

J. Bennett and C. Partridge, “Packet reordering is not pathological
network behavior,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp.
789-798,Dec. 1999.

F. Wang and Y. Zhang, “Improving TCP performance over mobile
ad-hoc networks with out-of-order detection and response,” in
ACM MOBIHOC, 2002, pp. 217-225.

T. Dyer and R. Boppana, “A comparison of TCP performance
over three routing protocols for mobile ad hoc networks,” in
ACM MOBIHOC,2001, pp. 56-66.

G. Holland and N. Vaidya, “Analysis of TCP performance over
mobile ad-hoc networks,” in ACM MOBICOM, 1999, pp. 219-
230.

N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality-of-service
routing using maximally disjoint paths,” in Proc. IEEE/IFIP
IWQ0S’99, Jun.1999, pp. 119-128.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Whang, and W.
Weiss,”An architecture for differentiated services,” RFC 2475,
2005.

[10] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

to the Selective Acknowledgment (SACK) option for TCP,” RFC
2883,2000.

D. Bertsekas, Network Optimization: Continuous and Discrete
Models. Belmont, MA: Athena Scientific, 2006.

M. Allman and V. Paxson, “Computing TCP’s retransmission
timer,”RFC 2988, Nov. 2000.

N. Zhang, B. Karp, S. Floyd, and L. Peterson, RR-TCP: A
reorderingrobust TCPWith DSACK. ICSI, Berkeley, CA, Tech.
Rep. TR-02-006, Jul. 2002

S. Bohacek, J. Hespanha, K. Obraczka, J. Lee, and C. Lim, “Secure
stochastic routing,” presented at the ICCCN’02, Miami, FL, 2002.

R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker,
“Characterizing and measuring path diversity of Internet
topologies,” presented at the ACM SIGMETRICS, San Diego,
CA, Jun. 2003.

A. Nasipuri and S. Das, “Demand multipath routing for mobile ad
hoc networks,” presented at the ICCCN’99, Boston, MA, Oct.
1999.

M. Pearlman, Z. Haas, P. Sholander, and S. Tabrizi, “The impact
of alternate path routing for load balancing in mobile ad hoc
networks,”presented at the ACM MobiHoc, Boston, MA, Aug.
2000.

R. Ludwig and R. Katz, “The Eifel algorithm: making TCP robust
against spurious retransmissions,” ACM Comput. Commun. Rev.,
vol.30, no. 1, 2000.

S. Bhandarkar, N. Sadry, A. L. N. Reddy, and N. Vaidya, “TCP-
DCR: a novel protocol for tolerating wireless channel errors,”
IEEE Trans.Mobile Comput., vol. 4, no. 5, pp. 517-529, Sep.-
Oct. 2004.

B. Sikdar, S. Kalyanaraman, and K. S.Vastola, “Analytic models
for the latency and steady-state throughput of TCP Tahoe, Reno,
and SACK,”IEEE/ACM Trans. Netw., vol. 11, no. 6, pp. 959-
971, Dec. 2003.

S. Bohacek, “A stochastic model of TCP and fair video

transmission,” in Proc. IEEE INFOCOM, 2003, pp. 1134-1144.

International Journal of Communication Network & Security, Volume-1, Issue-1, 2011

17

	Recovery of loss of packet in network using constant packet reordering
	Recommended Citation

	Recovery of loss of packet in network using constant packet reordering

