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I. INTRODUCTION  

 The availability of realistic network data plays a 
significant role in fostering collaboration and ensuring 
U.S. technical leadership in network security research. 
Unfortunately, a host of technical, legal, policy, and 
privacy issues limit the ability of operators to produce 
datasets for information security testing. In an effort to 
help overcome these limitations, several data collection 
efforts (e.g., CRAWDAD[14], PREDICT [34]) have 
been established in the past few years. The key principle 
used in all of these efforts to assure low-risk, high-value 
data is that of trace anonymization—the process of 
sanitizing data before release so that potentially 
sensitive information cannot be extracted. 

 Recently, however, the utility of these techniques in 
protecting host identities, user behaviors, network 
topologies, and security practices within enterprise 
networks has come under scrutiny. In short, several 
works have shown than unveiling sensitive data in 
anonymized network traces may not be as difficult as 
initially thought. The na¨ıve solution to this problem is 
to address the specifics of these attacks as they are 
discovered. However, doing so fails to address the 
underlying problem in its entirety. While isolated 
advances in network data anonymization are important, 
without a holistic approach to the problem they will 
simply shift the information-encoding burden to other 
properties of the traces, resulting in future privacy 
breaches. Given the significant reliance on anonymized 
network traces for security research, it is clear that a 
more exhaustive and principled analysis of the trace 
anonymization problem is in order. 

 Luckily, the problem of anonymizing publicly 
released data is not new. Over the past several decades, 
statisticians and computer scientists have developed 
approaches to anonymizing various forms of microdata, 
which are essentially databases of attributes collected 
about individuals. One prominent example is census 
data, which collects information about the salary, 

marital status, and many other potentially sensitive 
attributes from the population of an area or country. 
This census microdata, much like network data, is 
valuable to researchers for tracking trends, and as such 
the anonymized microdata must provide accurate 
information about potentially sensitive information. At 
the same time, it is essential that specifics from the data 
cannot be linked to individuals. In response, several 
anonymization methods, privacy definitions, and utility 
metrics have been developed to ensure that researchers 
can use the microdata for a wide spectrum of analyses 
while simultaneously providing principled, concrete 
guarantees on the privacy of those individuals within the 
data. 

 At first glance, it would seem as though the 
accumulated knowledge of microdata anonymization 
can be directly applied to network data anonymization 
since the two scenar ios share so much in common, 
including similar privacy and utility goals. 
Unfortunately, the inherently complex nature of network 
data makes direct application of these microdata 
methods difficult, at best. We can, however, learn from 
existing microdata anonymization literature and glean 
significant insight into how to approach the problem of 
network data anonymization in a principled fashion. 

In this extended abstract, we compare and contrast the 
fields of microdata and network data anonymization to 
reveal the ways in which existing microdata literature 
may be applied to the network data anonymization 
problem. We further lay out several challenges that lie 
ahead in the development of robust network data 
anonymization methodologies that are grounded in the 
insights and lessons learned from microdata 
anonymization. Specifically, we examine the difficulties 
of clearly defining the privacy properties of network 
data due to its complex nature.In addition, we point out 
the necessity of utility measures in quantifying the 
extent to which anonymization may alter results 
obtained from analysis of the data. It is important to note 
that there are additional challenges that we do not 
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address here, such as the legal and ethical issues with 
collecting network data. As a whole, we hope that this 
comparison between the fields of microdata and network 
data anonymization serves to focus the attention of the 
research community on a holistic approach to network 
data anonymization that enables the type of 
collaboration necessary to further progress in the areas 
of network and computer security research. 

II. MICRODATA ANONYMIZATION 

 Roughly speaking, microdata can be thought of as a 
database with n rows and m columns, where each row in 
the microdata corresponds to a single entity that 
contributed its data. In the case of census data, for 
example, the rows might represent people who 
responded to the survey. The columns represent the 
attributes of those entities, such as their height or salary 
information. The goal of  microdata anonymization is to 
alter the original data such that it is difficult (and 
quantifiably so) to infer potentially sensitive information 
about entities within the data while simultaneously 
ensuring that statistics computed on the data remain 
valid. As an example, average salary information for a 
given area should remain unchanged, but it should not 
be possible to infer a specific person’s salary. 

 Specifically, the attributes of the microdata are 
divided into three categories: (i) identifiers, (ii) key 
attributes (i.e., quasi-identifiers), and (iii) sensitive 
attributes. Identifiers are attributes that trivially identify 
the row, such as name or social security number. Key 
attributes can be used to make inferences on the identity 
of the row from auxiliary sources of information. 
Though these key attributes do not directly identify the 
row, unique attribute values can be used to link rows in 
the anonymized microdata with other databases that do 
have identifying information. For instance, if a row in 
the microdata had a unique combination of height, 
weight, and age key attributes, then the adversary could 
use these attributes to look up the row’s identity in a 
secondary database that includes the height, weight, age, 
and name. Finally, sensitive attributes are those that are 
not available from other data sources, and which the 
adversary would like to link to specific identities. To 
achieve the goal of anonymization, the data publisher 
removes identifiers, and applies one or more 
anonymization methods to alter the relationship between 
the key attributes and sensitive attributes to ensure that 
such inferences are unlikely. The resultant sanitized 
microdata can then be measured to quantify its level of 
privacy and utility. 

2.1. Anonymization Methods 

 Several techniques are used by data publishers to 
anonymize microdata for publication. Truncation 
methods remove or reorganize records in the microdata 

to hide the relationship between the key attributes and 
sensitive attributes. These methods include removing 
rows, removing attributes, suppression of key attribute 
values in specific rows, or generalization (i.e., recoding) 
where several key attributes are combined into a single 
equivalence class (e.g., 25 _ age _ 35) [39]. 
Additionally, several methods based on perturbation of 
the sensitive attributes exist. Some examples of 
perturbation include swapping the values of sensitive 
attributes among different rows [15], sampling the data, 
or adding noise to the values [4, 17]. 

 In addition to the truncation and perturbation-based 
methods, two methods have been proposed which do not 
directly sanitize the microdata, but instead provide the 
underlying statistics of the data in alternate ways. The 
first of which, synthetic data generation [35, 28], 
attempts to model the original data and generate 
completely new microdata from that statistical model. 
Since this new data is generated from a model, the 
resultant microdata has no connection to real individuals 
and at the same time the specific statistical properties 
captured by the model are guaranteed to be preserved. 
The second method stores the data on a secure remote 
server, where the data user can access it only through a 
query interface [3, 40, 19]. Thus, the user only gets the 
answer to specific queries, and the query interface 
ensures that no queries are answered if they are harmful 
to privacy. 

2.2. Measuring Privacy 

 Obviously, na¨ıvely applying anonymization 
methods to the data is not enough to guarantee privacy. 
In fact, inappropriate application of anonymization 
methods may provide several avenues of information 
leakage. For instance, a recent study by Narayanan and 
Shmatikov [30] showed that an anonymized dataset of 
movie recommendations released by NetFlix fails to 
meet the accepted privacy definitions for microdata, 
which results in re-identification of several users in the 
data. To prevent such information leakage, it is 
necessary to concretely measure the privacy of the 
resultant anonymized data. As the extensive literature in 
microdata privacy measures indicates, however, 
developing privacy definitions that encapsulate all areas 
of information leakage is not as straightforward as one 
might hope. 

A common microdata privacy definition, known as 
kanonymity, was proposed by Samarati and Sweeney 
[39]. The definition quantifies the difficulty of an 
adversary in determining which row in the microdata 
belongs to a given identity by requiring that every row 
must look like at least k _ 1 other rows with respect to 
their key attributes. In effect, this creates equivalence 
classes of key attributes where the adversary would have 
a 1=k chance of identifying the correct row using the 
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key attributes. Chawla tal. [10] provide a similar notion 
of anonymity that applies to microdatacontaining 
numerical, rather than categorical, data types. 

The notion of k-anonymity provides a necessary, 
but not Sufficient, condition for privacy since without it 
a row can be trivially identified by the uniqueness of its 
key attributes. Further restrictions are necessary, 
however, when we want to prevent the inference of 
sensitive attributes and not just which rows belong to a 
given identity. It may be possi ble, for example, to have 
an equivalence class that meets the k-anonymity 
definition, and yet has only one or a small number of 
distinct sensitive values. Thus, any individual that falls 
into such a class will have their sensitive attributes 
revealed. Machanavajjhala et al. [26]proposed diversity 
to strengthen the k-anonymity property by requiring that 
each class have at least` Distinct sensitive values. Truta 
and Vinay [43] concurrently developed PSensitive 
Kanonymity to provide the same requirement. 

The diversity property was further strengthened by 
Li et al. [25] since it may still be possible to leak 
information (in an information theoretic sense) about the 
sensitive attributes for an individual if the distribution of 
sensitive values in that individual’s equivalence class is 
significantly different than those of the population. 
Essentially, the distribution within the equivalence class 
gives the adversary a more refined distribution of 
potential sensitive values for an individual than the 
adversary would have access to without the anonymized 
microdata. The t -closeness property [25] requires that 
the distribution of sensitive values in all equivalence 
classes be within a distancet of the population 
distribution across all rows in the microdata. This 
property ensures that the data publisher has greater 
control over the amount of information the adversary 
can gain about sensitive values of the individuals in the 
equivalence classes, thought small values of t clearly 
have a deleterious effect on the utility of the data. 

While k-anonymity and t -closeness provide 
controls over the information disclosed by the key 
attributes and sensitive attributes, respectively, there are 
still other avenues of information leakage which the 
adversary can take advantage of. Zhang et al. [45] 
recently showed that it is possible to reverse the 
anonymization of a dataset if the adversary has 
knowledge of the anonymization method used (e.g., 
generalization). The key observation is that 
anonymization proceeds deterministically from 
anonymizations with the best utility (e.g., minimal 
equivalence class sizes) to those with worse utility, and 
will stop at the first anonymization that meets the 
privacy definition. Zhang et al.suggest the notion of P--
safe,p-optimal anonymization, where anonymized 
microdata produced to meet privacy definition p (e.g., k-

anonymity) is considered safe if it has more than one 
potential original microdata that could have produced it. 

An alternative approach to these uncertainty, or 
indistinguishability, definitions is provided by the notion 
of differential privacy [16]. Differential privacy is 
primarily applied to interactive query systems where 
users interact with the data via a secure query interface. 
The notion of differential privacy states that the 
probability of a privacy breach occurring for a person is 
similar whether or not that person’s information is 
contained in the data. The primary difference between 
differential privacy and the uncertainty-based definitions 
is that differential privacy is unable to quantify exactly 
what sensitive information could be leaked by the data, 
and instead focuses on the slightly more general 
guarantee that no additional harm will be done by 
adding a record. 

2.3. Measuring Utility 

 The primary motivation for publishing anonymized 
microdata is to provide some utility, such as the ability 
to calculate statistics on the attributes, to researchers 
who make use of the data. Clearly, the data would be 
useless if the privacy definitions above are achieved at 
the expense of utility. As a result, several utility 
measures have been developed to provide researchers 
with metrics that allow them to gauge the confidence 
they should have in the results gained by analysis of the 
anonymized data. Most utility measures for microdata 
focus on specific utilities that are meant to be preserved. 
The obvious problem is that in doing so one can only 
anticipate a limited set of utilities and therefore can not 
offer guidance about other uses of the data. 

 Recently, some global utility measures have been 
proposed to try and quantify a wide range of utilities in a 
single metric [44, 20]. These global measures, however, 
can be difficult to interpret and often times do not 
strongly predict the available utilities. Specifically, these 
measures are loosely correlated with the extent to which 
utility is preserved, but they are unable to communicate 
to the researcher the exact way in which a particular 
utility is affected by the anonymization. For instance, 
Karr et al. is use of the Kullback-Leibler divergence 
[20] between the anonymized and original data provides 
a broad notion of the similarity of the two distributions 
of attribute values, but that value has no direct 
connection to the changes to specific utilities. 

III. NETWORK DATA ANONYMIZATION 

 Network data can be viewed in much the same way 
as microdata; containing n rows each representing a 
single packet (or summarized network flow) and 
columns representing the fields in the packet. Unlike 
microdata, which generally contains only categorical or 
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numerical data, network data contains a variety of data 
types that make application of well-known 
anonymization methods difficult, if not impossible. 
Some fields in network data, like IP addresses, have a 
highly complex hierarchical ordering structure that often 
needs to be preserved after anonymization. Moreover, 
the relationship among different fields in network data is 
semantically rich, which means that the values taken by 
certain fields is dependent on their context with respect 
to other values within the data – both within the same 
row and within other rows – and these dependencies 
must be maintained in order for the data to be 
semantically meaningful. 

 The goals of network data anonymization are also 
superficially similar in nature to those of microdata 
insofar as they are focused on preventing the disclosure 
of sensitive information about certain entities present 
within the data. However, these goals are far more 
nebulous in the network data case since this sensitive 
information cannot be defined as a single field, nor can 
it be quantified for just a single row. Network data 
publishers are concerned with the privacy of 
workstations on the network and their users, which can 
be associated with multiple rows (e.g., packets) within 
the data. The sensitive information about these entities is 
often encoded in complex relationships among multiple 
fields across several different rows, such as a user’s web 
browsing patterns or computer virus activity. 
Unfortunately, these goals remain ill-defined even in the 
most recent work in this area, which necessarily limits 
the efficacy of the anonymization procedures. 

3.1. Anonymization Methods 

 Currently, the anonymization of network data is 
performed by applying one of a limited number of 
techniques, many of which are shared with microdata, to 
fields in the data chosen by the data publisher and 
defined in an anonymization policy language [33, 42]. 
The most widely used of these techniques are truncation, 
randomization, quantization, and pseudonymization. 
Truncation and randomization effectively destroy the 
semantics of the field they are applied to, but are helpful 
when dealing with fields that are likely to contain highly 
sensitive data. One example is the payload of packets, 
which might contain usernames and passwords and are 
removed from the data as standard practice. 
Quantization techniques, such as limiting the precision 
of time stamps, are applied to reduce the information 
gained about the identity of the workstations from 
timing attacks [21]. Perhaps the most widely used 
technique, pseudonymization, replaces IP addresses 
found in the data with linkable, prefix-preserving 
pseudonyms [32, 18]. These pseudonyms preserve the 
hierarchical relationships found in the prefixes of the 
original addresses. The underlying goal is to enable the 

analysis of packets generated from hosts, or whole 
prefixes, without providing the actual IPs. 

 In an effort to maintain as much of the original data 
as possible, data publishers apply these methods to as 
few fields as possible; normally, just the IP addresses, 
time stamps, and payloads. In fact, fields within the 
network data are typically anonymized only when they 
are shown to leak information via published attacks. As 
a result, the unaltered fields of the data provide 
significant information that can be used as key attributes 
to link objects in the data to their real identities. This 
reactionary anonymization policy has lead to the 
discovery of several attacks which use the unaltered 
features of the data to re-identify workstations and their 
behaviors [37, 5, 6, 12], and identify web pages that the 
users visit [22, 11]. 

3.2 . Measuring Privacy 

 Given the reactionary nature of network data 
anonymization, it comes as no surprise that network data 
does not have well-defined privacy measures, due in 
part to the difficulty in clearly defining the privacy 
properties desired by data publishers. To date, there 
have been a few attempts to quantify the uncertainty that 
the adversary has in identifying which pseudonyms or 
values in the data belong to which real world 
workstations. For instance, Ribeiro et al. [37] derive 
fingerprints, such as the port numbers used, for each IP 
address in both the anonymized and original data, and 
compare the two sets of fingerprints to determine the 
equivalence classes for each IP address. Those 
workstations with highly unique fingerprints are 
considered to be privacy risks for the data publisher. 
Coull et al. [13] also examines the similarity between 
the anonymized and original data, but examines a 
broader range of distributions of values found in the 
data. In doing so, they quantify the privacy of 
workstations in terms of the number of other 
workstations with similar value distributions, and also 
discover those fields in the data that negatively affect 
privacy. Kounine and Bezzi [23] perform a similar 
analysis with respect to the privacy of individual values 
after they have been anonymized rather than workstation 
privacy as a whole. The problem, of course, is that each 
of these techniques focus exclusively on workstation or 
individual field privacy, and yet network data can 
contain several different types of entities whose privacy 
is equally important. 

3.3. Measuring Utility 

The idea of quantifying the utility of network data is 
only just beginning to gain traction in the network data 
anonymization community, though the complex nature 
of the data makes such measures as important, if not 
more so, as those proposed in microdata anonymization. 
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One such utility measure was recently proposed by 
Lakkaraju and Slagell [24], and compares the 
performance of a wellknown intrusion detection system 
on the anonymized and unanonymized data. Another 
measure was proposed by Burkhart et al. [8] and applies 
anomaly detection methodologies to the anonymized 
data to quantify the way in which it affects its 
performance. Both methods closely resemble those of 
Brickell and Shmatikov [7] that apply machine learning 
tasks to microdata to determine the degradation in 
accuracy. In addition, the global utility measure of Woo 
et al. [44] can also be adapted to network data due to its 
use of standard statistical classification techniques. As 
with microdata, the use of highly specific measures, 
such as evaluations under specific anomaly detection 
methodologies or intrusion detection systems, leads to 
results that may not be applicable in a more general 
context. Similarly, global measures still remain difficult 
to interpret due to their disconnection from concrete 
utilities, and may in fact be even more difficult to apply 
effectively to network data because of its inherently 
complex and interdependent nature. 

IV. THE CHALLENGES AHEAD 

 Clearly, the problem of anonymizing microdata has 
received significant attention over the past three 
decades, and that attention has served to develop several 
methodologies for providing private and useful 
microdata to researchers. It is equally clear that network 
data anonymization is only just beginning to mature as 
an area of active research, and it can benefit from the 
substantial body of work generated by microdata 
anonymization research due to the similarities between 
the two areas. That said, microdata and network data 
have a number of non-trivial differences that make 
direct application of well-known microdata 
anonymization concepts meaningless. In this section, we 
outline three broad challenges that lie ahead in the 
development of effective methods for anonymizing 
network data. 

4.1. What are we protecting ? 

 Before we can begin developing effective 
anonymization methods for network data, we must first 
have a clear understanding of exactly what it is we hope 
to protect. For microdata, this question is easily 
answered because there is a natural one-to-one 
correspondence between the rows in the data and the 
entities being protected. With network data, however, 
this connection is not as clear. Publishers of network 
data are interested in protecting the privacy of a number 
of entities: the network users, the network’s security 
procedures, and the hosts that operate on the network. 
What makes it difficult to clearly define these entities is 
the fact that network data is inherently multifaceted. A 

single record in the network data may actually affect the 
privacy of many entities of varying types. Moreover, the 
privacy of those entities is not contingent on only a 
single row in the data, but on many rows that define 
their behavior over time. These issues naturally raise 
questions about how we define each of the entities for 
which the data publisher is interested in providing 
privacy. 

 With that said, for some types of entities the answer 
to this question is relatively straightforward. When 
considering the privacy of hosts on the network, for 
example, these host entities can be defined by assuming 
that the IP addresses in the network data consistently 
and uniquely identify a host. Even so, the relatively 
simple entity definition of hosts is not without its 
caveats, such as the possibility that multiple hosts may 
use the same IP. More complex entities, like users or 
web pages, are more difficult to define without 
significant auxiliary information (e.g., audit logs). Using 
those auxiliary data sources to mark the entities 
associated with each record in the data is one potential 
avenue for defining the entities of interest in the network 
data. 

4.2. What is sensitive? 

 Network data has a wide variety of information 
encoded within it.One need only consider some of its 
uses in network research to appreciate its scope: e.g., 
measurements of network traffic characteristics, testing 
new networking methodologies and tools, and studying 
emerging phenomena. As we move forward, we must 
decide which of these pieces of information encoded 
within the network data should be considered to be 
sensitive. Again, the relatively simple structure of 
microdata allows for an elegant definition of sensitive 
information – any attribute in the data that is likely to be 
unavailable from an external information source should 
be labeled as sensitive. The sensitivity of attributes are 
often easily intuited from knowledge of the underlying 
data. Unfortunately, such intuitive definitions are simply 
not applicable to network data. 

 The very same information-rich properties that 
make network data so useful to the research community 
also lead to two significant challenges in defining which 
pieces of information might be considered sensitive. 
First, potentially sensitive information encoded within 
the network data is not restricted to a single column in 
the data. In fact, the relationships between the columns 
and across several records often indicate the most 
sensitive of information. For instance, the distribution of 
ports used by a host in combination with other fields 
may indicate that the host is infected by a virus, whereas 
the distribution of ports alone would not. Similar 
arguments could be made for whether a user visited an 
illicit web site, or if the network is using a particular 
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security system. Second, many of the fields present 
within network data contain a combination of both 
publicly known and private values. As an example, the 
distribution of ports used by a host may indicate the 
services it offers, both publicly and privately within the 
local network. These scenarios are particularly 
troublesome since the known values within the column 
of port numbers can act as key attributes, while the 
unknown values act as sensitive attributes that the 
adversary may seek to infer. 

 Many of the attacks that have been discovered for 
anonymized network data take advantage of these issues 
in subverting the privacy of the data.Host profiling 
attacks [37, 5, 6, 12], for instance, use some of the ports 
and IP pseudonyms in the data as key attributes to link 
the hosts to their real identities, and then use the 
remaining ports to infer the hosts hidden services. 
Rather than attempt to adapt the static notions of key 
and sensitive attributes to multifaceted network data, 
current approaches to measuring privacy of network 
data (e.g., [37, 13, 23]) instead focus on the uniqueness 
of a piece of data as an indicator for sensitivity. 

 The underlying assumption is that a sufficiently 
unique behavior encoded within the data is likely to be 
unavailable from other data sources. 

4.3.  Defining Utility for Network Data 

 An area of considerable interest for both microdata 
and network data anonymization is the development of 
metrics that measure the utility of the data after it has 
been anonymized.These metrics are especially important 
in the case of network data, where the inherent 
difficulties of defining sensitivity and entities within the 
data may lead to essentially useless data. For instance, if 
we follow the definition that sensitive information in 
network data is any piece of information that is 
sufficiently unique, then it is easy to imagine a scenario 
in which the network data contains only homogenous 
behavior. This type of homogenous data would be 
useless to researchers who are interested in investigating 
anomalous incidents or who want to get an accurate 
estimation of traffic characteristics. In these types of 
scenarios, it is imperative that researchers have access to 
utility metrics with respect to certain properties of the 
data so that they, and those that review their work, can 
adequately gauge its appropriateness to the task at hand. 

 Specific utility measures may provide an adequate 
short term solution to the problem. In general, a utility 
measure can be derived by comparing the results of a 
particular utility on the anonymized data to those of the 
unanonymized data. The problem, of course, lies in 
predicting the utilities that will be used. One simple way 
to address this concern is for the data publisher to 
publish a set of metrics for standard  utilities on the data, 

and allow researchers to request additional utility 
measures as necessary. However, this type of 
arrangement is a significant burden on data publishers 
and researchers, since data publishers would need to run 
various analyses on the data and researchers would be 
unable to perform exploratory analyses in a timely 
fashion. A slightly different approach might be to adapt 
the concept of a remote verification server, such as the 
one proposed by Reiter et al. [36], to allow researchers 
to automatically compare their results from the 
anonymized data with those from the original data with 
respect to a specific utility. 

V. CONCLUSION 

 The uncertainties that currently exist about the 
efficacy of network data anonymization, from both 
technical and policy perspectives, leave the research 
community in a vulnerable position. Even as the field 
marches forward, it does so with little understanding of 
the implications of publishing anonymized network data 
on the privacy of the networks being monitored and the 
utility to researchers. Without that understanding, data 
publishers are left to wonder what fields must be 
anonymized to avoid legal fallout, while researchers 
question the confidence of results gained from the data. 
However, the extensive work done on microdata 
anonymity provides the network research community 
with several useful insights about how to effectively 
apply anonymization to published data. At the same 
time, this prior wisdom cannot be applied directly 
without first overcoming several challenges, including 
the development of appropriate privacy and utility 
definitions for the more complex case of network data. 
Addressing these challenges is essential, in our view, to 
ensure the continued, yet responsible, availability of 
network trace data to support security research. 
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