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Abstract- Most of the decision tree algorithms rely on impurity measures to evaluate the goodness of hyperplanes at each 
node while learning a decision tree in a top-down fashion. These impurity measures are not differentiable with relation to the 
hyperplane parameters. Therefore the algorithms for decision tree learning using impurity measures need to use some search 
techniques for finding the best hyperplane at every node. These impurity measures don’t properly capture the geometric 
structures of the data. In this paper a Two-Class algorithm for learning oblique decision trees is proposed. Aggravated by 
this, the algorithm uses a strategy, to evaluate the hyperplanes in such a way that the (linear) geometric structure in the data 
is taken into consideration. At each node of the decision tree, algorithm finds the clustering hyperplanes for both the classes. 
The clustering hyperplanes are obtained by solving the generalized Eigen-value problem.  Then the data is splitted based on 
angle bisector and recursively learn the left and right sub-trees of the node. Since, in general, there will be two angle 
bisectors; one is selected which is better based on an impurity measure gini index. Thus the algorithm combines the ideas of 
linear tendencies in data and purity of nodes to find better decision trees. This idea leads to small decision trees and better 
performance. 
 
Keywords- Oblique decision tree; generalized eigenvalue; optimization proble; clustering hyperplanes 
 

 
I. INTRODUCTION  

 
Decision tree is a well known and widely used method 
for classification. The popularity of decision tree is 
because of its simplicity and easy interpretability as a 
classification rule. In a decision tree classifier, every 
non-leaf node is associated with a so called split rule 
or a decision function which is a function of the 
attribute vector and is commonly binary-valued. Each 
leaf node in the tree is associated with a class label. To 
classify an attribute vector using a decision tree, at 
every non-leaf node that is encountered a branch is 
taken to one of the children of that node based on the 
value assumed by the split rule of that node on the 
given attribute vector. This process follows a path in 
the tree and when a leaf is reached, the class label of 
the leaf is assigned to that attribute vector. Decision 
trees can be broadly classified into two types [1]:  

 Axis – Parallel Decision Trees  
 Oblique Decision Trees 

 
In an axis parallel decision tree, the split rule at 
every node is a function of only one of the 
components of the attribute vector. For example, at 
each node a test may do whether a chosen component 
of the attribute vector belongs to some interval. Axis-
parallel decision trees are mostly attractive when all 
features are nominal (i.e., take only finitely many 
values); in such cases we can have a non-binary tree 
where at each node we test one feature value and the 
node can have as many children as the values assumed 
by that feature. In general, axis-parallel decision trees 
represent class boundaries by piecewise linear 
segments where each segment will be a line parallel to 
one of the feature axes. Axis-parallel decision trees  

 
 
are good when the decision boundaries are actually 
axis parallel. However, in more general situations, we 
have to approximate even arbitrary linear segments in 
the class boundary with many axis-parallel pieces and 
hence the size of the resulting tree becomes large.  
 
The oblique decision trees, conversely, use a decision 
function that depends on a linear combination of all 
feature components. Thus an oblique decision tree is a 
binary tree where the hyperplane is associated (in the 
feature space) with each node. To classify a pattern, a 
path is followed in the tree by taking the left or right 
child at each node based on which side of the 
hyperplane (of that node) that the attribute vector falls 
within. Oblique decision trees represent the class 
margin as a general piecewise linear surface. Oblique 
decision trees are more adaptable (and hence are more 
popular) when features are real-valued. 
 
In a decision tree, each hyperplane at a non-leaf node 
should split the data in such a way that it aids further 
classification; the hyperplane itself need not be a good 
classifier at that stage. In view of this, many top down 
decision tree learning algorithms are based on rating 
hyperplanes using the so called impurity measures. 
The core idea is as follows. Given the set of training 
patterns at a node and a hyperplane, the set of patterns 
are known that join the left and right child of this 
node. If each of these two sets of patterns has 
predominance of one class over others, then, 
presumably, the hyperplane can be considered to have 
contributed positively to further classification. At any 
step in the learning process, the level of purity of a 
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node is some measure of how skewed is the 
distribution of different classes within the set of 
patterns landing at that node. If the class distribution is 
nearly uniform then the node is highly impure; if 
number of patterns of one class is much larger than 
that of all others then the purity of the node is high. 
 
The impurity measures used in the algorithms give 
higher rating to a hyperplane which results in higher 
purity of child nodes [4]. Gini index, Entropy and 
Towing rule are some of the frequently used impurity 
measures. Many of the impurity measures are not 
differentiable with respect to the hyperplane 
parameters. Thus the algorithms for decision tree 
learning using impurity measures need to use some 
search techniques for finding the best hyperplane at 
each node. All top down decision tree algorithms 
employ greedy search and a hyperplane learned at a 
node once, is never changed. If a bad hyperplane is 
learned at some node, it cannot be corrected afterword 
and the effect of it may be a large sub-tree at that 
node. To overcome such over-fitting, the learnt 
decision tree should be pruned. 
 
A problem with all impurity measures is that they 
depend only on the number of (training) patterns of 
different classes on either side of the hyperplane. 
Thus, if the class regions are changed without 
changing the effective areas of class regions on either 
side of a hyperplane, the impurity measure of the 
hyperplane will not change. Thus the impurity 
measures do not truly capture the geometric structure 
of class distributions (or the class regions in the 
feature space). Also, all the algorithms need to 
optimize on some average of impurity of the child 
nodes and often it is not clear what kind of average is 
proper. 
 
In this paper a Two-Class decision tree learning 
algorithm is presented, which is based on the idea of 
capturing, to some extent, the geometric structure of 
the underlying class regions. For this the ideas from 
some recent variants of the SVM method are used, 
which are quite good at capturing (linear) geometric 
structure of the data. The rest of this paper is 
organized as follows: The Mathematical Model is 
given in Section 2. Section 3 presents the proposed 
Algorithm. Experimental setup and Result Analysis 
are given in Section 4. We conclude this paper in 
Section 5. 
 
II. MATHEMATICAL MODEL  

 
The presented algorithm for learning oblique decision 
trees is based on the idea of capturing, to some extent, 
the (linear) geometric structure of the underlying class 
regions. Given a set of training patterns at a node, 
algorithm first finds two clustering hyperplanes, one 
for each class. Each hyperplane is such that it is 
closest to all patterns of one class and is farthest from 

all patterns of the other class. This formulation leads 
to two generalized eigenvalue problem. These are the 
solutions of a general optimization problem [2-3]. The 
mathematical model for the presented system is given 
here. 
 
Let’s consider the problem of classifying m points in 
the n–dimension-al real space ℝ . A word about some 
notations:  
 

 All vectors will be column vectors unless 
transposed to a row vector by a prime 
superscript .  

 The scalar product of two vectors x  and y 
within the n–dimensional real space ℝ  will 
be denoted by x′y. 

 The two–norm of x will be denoted by ‖x‖.  
 For a matrix A ∈  ℝ , A  is the ith row of 

A which is a row vector in ℝ .  
 An arbitrary dimension column vector of 

ones will be denoted by e. 
 The arbitrary order identity matrix will be 

denoted by I.  
 
Given some training data S, a set of m points of the 
form 
S = {(x , y )}  ;   x  ϵ ℝ    ;  y  ϵ {−1,1}      i = 1 … m} 
where the yi is either 1 or −1, indicating the class to 
which the point xi belongs. Each xi is an n-
dimensional real vector. 
 
Let, A ∈  ℝ    represent the data set of class -1 and 
B ∈  ℝ    represent the data set of class 1. Then, by 
referring [3], get 
 

G ≔ [A− e]′[A− e] + I 
H ≔ [B− e]′[B− e] 

By solving generalized eigenvalue equation  Gz =
λHz , get   

 w   : =  x′ω − γ = 0 (1) 

Similarly,  
L ≔ [B− e]′[B− e] + I 

M ≔ [A− e]′[A− e] 
 

By solving generalized eigenvalue equation  Lz =
λMz , get   

w   : =  x′ω − γ = 0 (2) 

Once clustering hyperplanes are found, the hyperplane 
that associate with the current node will be one of the 
angle bisectors of these two hyperplanes.  
 
Let w   : =  x′ω − γ = 0  and w   : =  x′ω − γ =
0  be the angle bisectors of x′ω − γ = 0  and  
x′ω − γ = 0  . It is easily shown that these 
hyperplanes are given by (in the case ω ≠  ω ) 

w =  w +  w  (3) 
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w =  w −  w  (4) 

As mentioned earlier, the angle bisector is chosen 
which has lower impurity. Here the gini index is used 
to measure impurity. Let w  be a hyperplane which is 
used for dividing the set of patterns St in two parts S   
and S  . Let m  and m  denote the number of 
patterns of the two classes in the set S  and m  and 
m  denote the number of patterns of the two classes 
in the set S  . Then gini index of hyperplanew  is 
given by, 

Gini(w ) =   1 −  −   +

      1−  −     
(5) 

 
The algorithm chooses w  or w  to be the split rule 
for S   based on which of the two gives lesser value of 
gini index given by (5). 
 
When the clustering hyperplanes are parallel (that is, 
when ω =  ω ) the hyperplane is chosen midway 
between them as the splitting hyperplane. It is given 
by w = (ω, γ ) = (ω , (γ + γ )/2). 
 
As is easy to see, in this method, the optimization 
problem of finding the best hyperplane at each node is 
solved exactly rather than by relying on a search 
technique based on local perturbations of the 
hyperplane parameters. These clustering hyperplanes 
are obtained by solving the generalized eigenvalue 
problem. Afterward, to find the hyperplane at the 
node, it is needed to compare only two hyperplanes 
based on gini index. 
 
III. PROPOSED ALGORITHM 

 
The performance of any top down decision tree 
algorithm depends on the measure used to rate 
different hyperplanes at every node. The accuracy of 
the learned tree depends on the size of the tree (depth 
and the number of leaf nodes) which is also a function 
of how the example set is splitted at every non-leaf 
node of the decision tree. If the split rule is such that it 
misses the right geometry of the classification 
boundary then the resulting decision tree is likely to 
be of large size. The issue of having a suitable 
algorithm to find the hyperplane that optimizes the 
chosen measure or rating function at each node is also 
vital. For example, for all impurity measures, the 
optimization is difficult because finding the gradient 
of the impurity function with respect to the parameters 
of the hyperplane is impossible. Motivated by these 
considerations, here a new criterion function is 
presented to assess suitability of a hyperplane at a 
node that can capture the geometric structure of the 
class regions. For the criterion function, the 
optimization problem can also be solved more easily. 
The method of finding the best hyperplane at each 
node, by considering a 2-class problem is first 

discussed. Given the set of training patterns at a node, 
algorithm first finds two hyperplanes, one for each 
class. Each hyperplane is such that it is closest to all 
patterns of one class and is farthest from all patterns of 
the other class. These hyperplanes are called as the 
clustering hyperplanes (for the two classes). 
 

Algorithm: Two Class Oblique Decision Tree 

Input :S = {(x , y )}   i = 1 … m, Max-Depth,                  
Min-Threshold 

Output : Pointer to root of the decision tree 
Begin 
 Root:=GrowTree_TwoClass(S); 
 Return Root; 
End 
GrowTree_TwoClass(S ) 
Input : S  
Output: Pointer to a subtree 
 
Begin 
 Find matrices A and B of the set S  of 

patterns at node t;; 
 Find clustering hyperplanes (solutions of 

optimization problems); 
 Computer angle bisectors ; 
 Choose the angle bisector which gives 

lesser value of gini index; 
 Let w  denote the split rule at node t; 
 Divide the set S . Such that S = {w ′x <

0} and S = {w ′x ≥ 0} ; 
 Define Threshold = ( , ) for S  and 

S ; 
 If (Threshold < Min_Threshold) or 

(Max_TreeDepth =TreeDepth) then 
  Prune_Tree 
  Get a node t  and make it leaf 

node; 
 Allot class label associated to the 

majority class to t ; 
  Make t  left child of t; 
 Else 
  t  = GrowTree_TwoClass(S ); 
  Make t  left child of t; 
 End 
 If (Threshold < Min_Threshold) or 

(Max_TreeDepth =TreeDepth) then 
  Prune_Tree 
  Get a node t  and make it leaf 

node; 
 Allot class label associated to the 

majority class to t ; 
  Make t  right child of t; 
 Else 
  t  = GrowTree_TwoClass(S ); 
  Make t  right child of t; 
 End 
 Return t; 
End 
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Because of the way they are outlines, these clustering 
hyperplanes capture the dominant linear tendencies in 
the examples of each class that are useful for 
discriminating between the classes. Hence a 
hyperplane that passes in between them could be good 
for splitting the feature space. So, the hyperplane is 
taken that bisects the angle between the clustering 
hyperplanes as the split rule at this node. Since, 
normally, there would be two angle bisectors; the 
bisector is chosen which is better, based on an 
impurity measure, i.e. the gini index. If the two 
clustering hyperplanes happen to be parallel to each 
other, then a hyperplane is taken midway between the 
two clustering hyperplanes as the split rule. 
 
A complete description of this is provided as 
Algorithm-Two Class Oblique Decision Tree. 
Algorithm recursively calls the procedure 
GrowTree_TwoClass(St) which will return a subtree 
at node t.  
 
At any given node, given the set of patterns St, the 
two clustering hyperplanes (by solving the generalized 
eigenvalue problem) are found.  Choose one of the 
two angle bisectors, based on the gini index, as the 
hyperplane to be associated with this node. This 
hyperplane is used to split St into two sets, i.e. the 
ones that go into the left and right child nodes of this 
node. Then recursively did the same at the two child 
nodes. The method starts at the root node of the tree 
where St is the complete set of example patterns. 
 
The recursion stops when the set of patterns at a node 
are such that the fraction of patterns belonging to the 
minority class of this set are below a user-specified 
threshold or the depth of the tree reaches a pre-
specified maximum limit. 
 
IV. EXPERIMENTAL SETUP AND RESULT  
   ANALYSIS  
 
In this section the empirical results are presented to 
show the effectiveness of the proposed algorithm. The 
performance of algorithm is tested on synthetic and 
several real datasets. 
 
The performance of algorithm is compared with OC1 
[4], CART [1], C4.5 [8] which are among the standard 
decision tree algorithms at present. The performance 
is also compared with SVM classifier which is among 
the best generic classifiers today. The experimental 
comparisons are presented on one synthetic datasets 
and six ‘real’ datasets from UCI ML repository [6]. 
 
A. Dataset Description 
One synthetic piecewise-linearly-separable dataset is 
generated in two dimensions which is described 
below: 
 
2 × 2 checkerboard data set: 

2000 points are sampled uniformly from [−1 1] × [−1 
1]. A point is labeled +1 if it is in ([−1 0] × [0 1])  
([0 1] × [0 − 1]); otherwise, it is labeled −1. Out of 
2000 sampled points, 990 points are labeled +1, and 
1010 points are labeled −1. Now, all the points are 
rotated by an angle of /6 with respect to the first axis 
in anti-clockwise direction. That is the final training 
set. 
 
Apart from this 2x2 checkerboard synthetic dataset, 
the algorithm is also tested on several bench-mark 
datasets downloaded from UCI ML repository [6]. 
The datasets available on UCI ML repository has 
many observations with missing values of some 
features. For this experiment those observations are 
chosen for which there are no missing values for any 
feature.  
 

TABLE-1 DETAIL OF REAL-WORLD DATA 
SETS USED FROM UCI ML REPOSITORY 

Data Set Dimensi
ons 

# 
Points 

Class 
Distribution 

Breast-
Cancer 10 683 444,    239 

Bupa 
Liver 
Disorder 

6 345 200,    145 

Pima 
Indian 
(diabetes) 

8 768 500,    268 

Heart 13 270 150,    120 

Magic 10 190
20 12332,  6688 

Votes 16 232 124,    108 
 
B. Experimental Setup  
The proposed algorithm is implemented in Java. For 
OC1, the downloadable package available on Internet 
is used [4]. For CART, C4.5 the weka package 
available on Internet is used [7]. Weka is a collection 
of machine learning algorithms for solving real-world 
data mining problems. It is written in Java and runs on 
nearly all platforms. The algorithms can either be 
applied on to a dataset or called from Java code.  
 
To learn SVM classifiers, the libsvm code is used [5]. 
Libsvm-2.84 uses the one-versus-rest approach for 
multiclass classification.  
 
Proposed Algorithm has only two user-defined 
parameters which are Max-Depth, Min-Threshold (the 
threshold on fraction of points of minority class to 
decide any node a leaf node). For all experiments  
value is chosen between 0.05 and 0.2. This range of  
appears quite robust on all the datasets.  
 
SVM has two user defined parameters: penalty 
parameter C and the width parameter σ for Gaussian 
kernel. Best values for these parameters are found 
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using 5-fold cross-validation and the results reported 
are with these parameters. Both OC1 and CART use 
90% of the total number of points for training and 
10% points for pruning. OC1 needs two more user-
defined parameters. These parameters are number of 
restarts (R) and number of random jumps (J). For 
experiments it is set R = 20 and J = 5 which are the 
default values suggested in the package.  
 
C. Results and Discussion 
In this section the performance of proposed algorithm 
for learning oblique decision tree with other 
approaches on different datasets is discussed. The 
results provided are based on 10-fold cross validation. 
Table 2 shows average values of the performance 
parameters such as accuracy, time taken and the 
number of leaf nodes and depth of the tree, for each of 
the algorithms for each of the problems.  
 

TABLE-2: COMPARISON RESULTS BETWEEN 
PROPOSED ALGORITHM AND OTHER 

DECISION TREE APPROACHES 

Data 
Set 

Met
hod 

Accur
acy 

Time 
(Sec) 

# 
Leav

es 

Tre
e 

dep
th 

2x2 
Chec
ker-
board 

2-
Class 

98.20 0.031 4.0 2.0 
OC1 97.70 2.730 13.5 8.0 
C4.5 96.70 0.041 35.6 7.0 
CAR
T 

96.65 0.254 41.0 13.
0 

Breas
t-
Canc
er 

2-
Class 

97.07 0.014 2.0 1.0 
OC1 94.44 1.520 5.4 3.0 
C4.5 95.16 0.016 12.9 5.0 
CAR
T 

94.29 0.070 5.0 3.0 
Bupa 
–
Liver  
Disor
der 

2-
Class 

71.01 0.014 6.0 5.0 
OC1 70.43 3.190 5.2 2.8 
C4.5 68.13 0.008 27.1 8.0 
CAR
T 

67.82 0.050 3.0 2.0 

Pima 
– 
India
n 

2-
Class 

76.30 0.030 5.0 5.0 
OC1 71.61 3.880 8.2 5.2 
C4.5 73.70 0.017 22.6 9.0 
CAR
T 

74.87 0.148 6.0 5.0 

Heart 

2-
Class 

86.30 0.014 2.0 1.0 
OC1 73.70 0.077 7.4 3.4 
C4.5 77.41 0.008 18.3 7.0 
CAR
T 

82.59 0.033 6.0 3.0 

Magi
c 

2-
Class 

82.92 0.655 24.0 6.0 
OC1 - - - - 
C4.5 85.06 3.242 320.2 21.

0 CAR
T 

85.23 13.157 128 12.
0 

Votes 
2-
Class 

96.98 0.013 2.0 1.0 
OC1 94.83 0.170 2.0 1.0 
C4.5 96.97 0.003 2.0 1.0 

CAR
T 

96.97 0.017 2.0 1.0 
 
From Table 2 it can be seen that, over all the 
problems, proposed algorithm performs significantly 
better than all the other decision tree approaches in 
accuracy except on Magic and Pima – Indian datasets. 
On these datasets, the performance of the proposed 
algorithm is comparable with the best other decision 
tree method. The average accuracy of proposed 
algorithm is better than other decision tree approaches 
on Breast-Cancer dataset, Bupa–Liver Disorder 
Dataset, Heart Dataset and Votes dataset. Thus, 
overall, performance of proposed algorithm is better 
than or comparable to any other decision tree 
approach in terms of accuracy. 
 
In majority of the cases proposed algorithm generates 
trees with smaller depth with lesser number of leaves 
as compared to other decision tree approaches. This 
supports idea that proposed algorithm better exploits 
geometric structure of the dataset while generating 
decision trees. Normally if smaller trees are learnt, the 
generalization error of the decision tree is likely to be 
small. 
 
Time wise proposed algorithm is much faster than 
other decision tree approaches in all cases as can be 
seen from the results in the table. In all cases, the time 
taken by proposed algorithm is less by at least a factor 
of five to ten. This is because the problem of obtaining 
the best split rule at each node is solved using an 
efficient linear algebra algorithm in case of proposed 
algorithm while the other approaches have to resort to 
search techniques because optimizing impurity-based 
measures is tough. 
 

TABLE 3: COMPARISON RESULTS OF 
PROPOSED ALGORITHM WITH SVM 

Data Set Meth
od 

Accur
acy 

Time 
(Sec) 

Kerne
l 

2x2  
checkerb
oard 

2-
Class 

98.20 0.031 - 

SVM 97.35 0.218 Gauss
ian Breast-

Cancer 
  

2-
Class 

97.07 0.014 - 

SVM 65.59 0.159 Gauss
ian Bupa 

Liver 
Disorder 

2-
Class 

71.01 0.014 - 

SVM 59.74 0.040 Gauss
ian Pima 

Indian 
  

2-
Class 

75.39 0.030 - 

SVM 65.11 0.169 Gauss
ian 

Heart 
2-
Class 

86.30 0.014 - 
SVM 55.93 0.042 Gauss

ian 
Magic 

2-
Class 

82.92 0.655 - 

SVM 65.87 285.139 Gauss
ian 

Votes 
2-
Class 

96.98 0.013 - 

SVM 96.97 0.0232 Gauss
ian 
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 Now next consider comparisons of proposed 
algorithm with SVM. Table 3 shows comparison 
results of proposed algorithm with SVM. 
 
The performance of proposed algorithm is comparable 
to that of SVM in terms of accuracy. Proposed 
algorithm performs comparable to SVM on 2×2-
checkerboard dataset, Breast Cancer Dataset, Bupa–
Liver dataset, Pima Indian dataset, Magic dataset, 
Heart dataset and Votes dataset.  
 
In terms of the time taken to learn the classifier, 
proposed algorithm is faster than SVM on all cases. 
At every node of the tree, a generalized Eigen-value 
problem is solved which takes time of the order of (d 
+1)3, where d is the dimension of the feature space. 
On the other hand, SVM solves a quadratic program 
whose time complexity is O(nk), where k is between 2 
and 3 and n is the number of points. So in general, 
when number of points is large compare to the 
dimension of the feature space, proposed algorithm 
learns faster than SVM. Thus, overall, proposed 
algorithm performs better than SVM. 
 
V. CONCLUSION 

 
In this paper a Two-Class algorithm for learning 
oblique decision trees is presented. The novelty is in 
learning hyperplanes (at each node in the top-down 
induction of a decision tree) that captures the 
geometric structure of the class regions. At each node 
of the decision tree, algorithm finds the clustering 
hyperplanes for both the classes and chooses one of 
the angle bisector as the split rule. Classification 
accuracy results of proposed algorithm are comparable 
to those of classical decision tree induction algorithms 
and support vector classification algorithms and, in 
some cases, they are better. As well, the method 

performs better than the other classic decision tree 
approaches in terms of size of the tree and time. The 
simple program formulation, computational 
efficiency, and accuracy of proposed algorithm on real 
world data indicate that it is an effective algorithm for 
classification. Analysis of the statistical properties of 
proposed algorithm and extensions to Multi–Class 
classification are promising areas of future research. 
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