
Graduate Research in Engineering and Technology (GRET) Graduate Research in Engineering and Technology (GRET)

Volume 1 Issue 1 Article 4

July 2013

LEARNING HYPERPLANES THAT CAPTURES THE GEOMETRIC LEARNING HYPERPLANES THAT CAPTURES THE GEOMETRIC

STRUCTURE OF CLASS REGIONS STRUCTURE OF CLASS REGIONS

PRAMOD PATIL
Dept. of Computer Engineering, College of Engineering, Pune, pdpatiljune@gmail.com

ALKA LONDHE
PG, Student (ME), Dept. of Computer Engineering, DYPIET, Pune, alka_londhe@rediffmail.com

PARAG KULKARNI
Dept. of Computer Engineering, College of Engineering, Pune, parag.india@gmail.com

Follow this and additional works at: https://www.interscience.in/gret

 Part of the Aerospace Engineering Commons, Business Commons, Computational Engineering

Commons, Electrical and Computer Engineering Commons, Industrial Technology Commons, Mechanical

Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
PATIL, PRAMOD; LONDHE, ALKA; and KULKARNI, PARAG (2013) "LEARNING HYPERPLANES THAT
CAPTURES THE GEOMETRIC STRUCTURE OF CLASS REGIONS," Graduate Research in Engineering and
Technology (GRET): Vol. 1 : Iss. 1 , Article 4.
DOI: 10.47893/GRET.2013.1003
Available at: https://www.interscience.in/gret/vol1/iss1/4

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in Graduate Research in Engineering and Technology (GRET) by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/gret
https://www.interscience.in/gret/vol1
https://www.interscience.in/gret/vol1/iss1
https://www.interscience.in/gret/vol1/iss1/4
https://www.interscience.in/gret?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1062?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/gret/vol1/iss1/4?utm_source=www.interscience.in%2Fgret%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Graduate Research in Engineering and Technology (GRET): An International Journal

7

LEARNING HYPERPLANES THAT CAPTURES THE GEOMETRIC
STRUCTURE OF CLASS REGIONS

PRAMOD PATIL1, ALKA LONDHE2 & PARAG KULKARNI3

1,3Dept. of Computer Engineering, College of Engineering, Pune

2PG, Student (ME), Dept. of Computer Engineering, DYPIET, Pune
E-mail: pdpatiljune@gmail.com, alka_londhe@rediffmail.com, parag.india@gmail.com

Abstract- Most of the decision tree algorithms rely on impurity measures to evaluate the goodness of hyperplanes at each
node while learning a decision tree in a top-down fashion. These impurity measures are not differentiable with relation to the
hyperplane parameters. Therefore the algorithms for decision tree learning using impurity measures need to use some search
techniques for finding the best hyperplane at every node. These impurity measures don’t properly capture the geometric
structures of the data. In this paper a Two-Class algorithm for learning oblique decision trees is proposed. Aggravated by
this, the algorithm uses a strategy, to evaluate the hyperplanes in such a way that the (linear) geometric structure in the data
is taken into consideration. At each node of the decision tree, algorithm finds the clustering hyperplanes for both the classes.
The clustering hyperplanes are obtained by solving the generalized Eigen-value problem. Then the data is splitted based on
angle bisector and recursively learn the left and right sub-trees of the node. Since, in general, there will be two angle
bisectors; one is selected which is better based on an impurity measure gini index. Thus the algorithm combines the ideas of
linear tendencies in data and purity of nodes to find better decision trees. This idea leads to small decision trees and better
performance.

Keywords- Oblique decision tree; generalized eigenvalue; optimization proble; clustering hyperplanes

I. INTRODUCTION

Decision tree is a well known and widely used method
for classification. The popularity of decision tree is
because of its simplicity and easy interpretability as a
classification rule. In a decision tree classifier, every
non-leaf node is associated with a so called split rule
or a decision function which is a function of the
attribute vector and is commonly binary-valued. Each
leaf node in the tree is associated with a class label. To
classify an attribute vector using a decision tree, at
every non-leaf node that is encountered a branch is
taken to one of the children of that node based on the
value assumed by the split rule of that node on the
given attribute vector. This process follows a path in
the tree and when a leaf is reached, the class label of
the leaf is assigned to that attribute vector. Decision
trees can be broadly classified into two types [1]:

 Axis – Parallel Decision Trees
 Oblique Decision Trees

In an axis parallel decision tree, the split rule at
every node is a function of only one of the
components of the attribute vector. For example, at
each node a test may do whether a chosen component
of the attribute vector belongs to some interval. Axis-
parallel decision trees are mostly attractive when all
features are nominal (i.e., take only finitely many
values); in such cases we can have a non-binary tree
where at each node we test one feature value and the
node can have as many children as the values assumed
by that feature. In general, axis-parallel decision trees
represent class boundaries by piecewise linear
segments where each segment will be a line parallel to
one of the feature axes. Axis-parallel decision trees

are good when the decision boundaries are actually
axis parallel. However, in more general situations, we
have to approximate even arbitrary linear segments in
the class boundary with many axis-parallel pieces and
hence the size of the resulting tree becomes large.

The oblique decision trees, conversely, use a decision
function that depends on a linear combination of all
feature components. Thus an oblique decision tree is a
binary tree where the hyperplane is associated (in the
feature space) with each node. To classify a pattern, a
path is followed in the tree by taking the left or right
child at each node based on which side of the
hyperplane (of that node) that the attribute vector falls
within. Oblique decision trees represent the class
margin as a general piecewise linear surface. Oblique
decision trees are more adaptable (and hence are more
popular) when features are real-valued.

In a decision tree, each hyperplane at a non-leaf node
should split the data in such a way that it aids further
classification; the hyperplane itself need not be a good
classifier at that stage. In view of this, many top down
decision tree learning algorithms are based on rating
hyperplanes using the so called impurity measures.
The core idea is as follows. Given the set of training
patterns at a node and a hyperplane, the set of patterns
are known that join the left and right child of this
node. If each of these two sets of patterns has
predominance of one class over others, then,
presumably, the hyperplane can be considered to have
contributed positively to further classification. At any
step in the learning process, the level of purity of a

Learning Hyperplanes That Captures The Geometric Structure of Class Regions

Graduate Research in Engineering and Technology (GRET): An International Journal

8

node is some measure of how skewed is the
distribution of different classes within the set of
patterns landing at that node. If the class distribution is
nearly uniform then the node is highly impure; if
number of patterns of one class is much larger than
that of all others then the purity of the node is high.

The impurity measures used in the algorithms give
higher rating to a hyperplane which results in higher
purity of child nodes [4]. Gini index, Entropy and
Towing rule are some of the frequently used impurity
measures. Many of the impurity measures are not
differentiable with respect to the hyperplane
parameters. Thus the algorithms for decision tree
learning using impurity measures need to use some
search techniques for finding the best hyperplane at
each node. All top down decision tree algorithms
employ greedy search and a hyperplane learned at a
node once, is never changed. If a bad hyperplane is
learned at some node, it cannot be corrected afterword
and the effect of it may be a large sub-tree at that
node. To overcome such over-fitting, the learnt
decision tree should be pruned.

A problem with all impurity measures is that they
depend only on the number of (training) patterns of
different classes on either side of the hyperplane.
Thus, if the class regions are changed without
changing the effective areas of class regions on either
side of a hyperplane, the impurity measure of the
hyperplane will not change. Thus the impurity
measures do not truly capture the geometric structure
of class distributions (or the class regions in the
feature space). Also, all the algorithms need to
optimize on some average of impurity of the child
nodes and often it is not clear what kind of average is
proper.

In this paper a Two-Class decision tree learning
algorithm is presented, which is based on the idea of
capturing, to some extent, the geometric structure of
the underlying class regions. For this the ideas from
some recent variants of the SVM method are used,
which are quite good at capturing (linear) geometric
structure of the data. The rest of this paper is
organized as follows: The Mathematical Model is
given in Section 2. Section 3 presents the proposed
Algorithm. Experimental setup and Result Analysis
are given in Section 4. We conclude this paper in
Section 5.

II. MATHEMATICAL MODEL

The presented algorithm for learning oblique decision
trees is based on the idea of capturing, to some extent,
the (linear) geometric structure of the underlying class
regions. Given a set of training patterns at a node,
algorithm first finds two clustering hyperplanes, one
for each class. Each hyperplane is such that it is
closest to all patterns of one class and is farthest from

all patterns of the other class. This formulation leads
to two generalized eigenvalue problem. These are the
solutions of a general optimization problem [2-3]. The
mathematical model for the presented system is given
here.

Let’s consider the problem of classifying m points in
the n–dimension-al real space ℝ . A word about some
notations:

 All vectors will be column vectors unless
transposed to a row vector by a prime
superscript .

 The scalar product of two vectors x and y
within the n–dimensional real space ℝ will
be denoted by x′y.

 The two–norm of x will be denoted by ‖x‖.
 For a matrix A ∈ ℝ , A is the ith row of

A which is a row vector in ℝ .
 An arbitrary dimension column vector of

ones will be denoted by e.
 The arbitrary order identity matrix will be

denoted by I.

Given some training data S, a set of m points of the
form
S = {(x , y)} ; x ϵ ℝ ; y ϵ {−1,1} i = 1 … m}
where the yi is either 1 or −1, indicating the class to
which the point xi belongs. Each xi is an n-
dimensional real vector.

Let, A ∈ ℝ represent the data set of class -1 and
B ∈ ℝ represent the data set of class 1. Then, by
referring [3], get

G ≔ [A− e]′[A− e] + I
H ≔ [B− e]′[B− e]

By solving generalized eigenvalue equation Gz =
λHz , get

 w : = x′ω − γ = 0 (1)

Similarly,
L ≔ [B− e]′[B− e] + I

M ≔ [A− e]′[A− e]

By solving generalized eigenvalue equation Lz =
λMz , get

w : = x′ω − γ = 0 (2)

Once clustering hyperplanes are found, the hyperplane
that associate with the current node will be one of the
angle bisectors of these two hyperplanes.

Let w : = x′ω − γ = 0 and w : = x′ω − γ =
0 be the angle bisectors of x′ω − γ = 0 and
x′ω − γ = 0 . It is easily shown that these
hyperplanes are given by (in the case ω ≠ ω)

w = w + w (3)

Learning Hyperplanes That Captures The Geometric Structure of Class Regions

Graduate Research in Engineering and Technology (GRET): An International Journal

9

w = w − w (4)

As mentioned earlier, the angle bisector is chosen
which has lower impurity. Here the gini index is used
to measure impurity. Let w be a hyperplane which is
used for dividing the set of patterns St in two parts S
and S . Let m and m denote the number of
patterns of the two classes in the set S and m and
m denote the number of patterns of the two classes
in the set S . Then gini index of hyperplanew is
given by,

Gini(w) = 1 − − +

 1− −
(5)

The algorithm chooses w or w to be the split rule
for S based on which of the two gives lesser value of
gini index given by (5).

When the clustering hyperplanes are parallel (that is,
when ω = ω) the hyperplane is chosen midway
between them as the splitting hyperplane. It is given
by w = (ω, γ) = (ω , (γ + γ)/2).

As is easy to see, in this method, the optimization
problem of finding the best hyperplane at each node is
solved exactly rather than by relying on a search
technique based on local perturbations of the
hyperplane parameters. These clustering hyperplanes
are obtained by solving the generalized eigenvalue
problem. Afterward, to find the hyperplane at the
node, it is needed to compare only two hyperplanes
based on gini index.

III. PROPOSED ALGORITHM

The performance of any top down decision tree
algorithm depends on the measure used to rate
different hyperplanes at every node. The accuracy of
the learned tree depends on the size of the tree (depth
and the number of leaf nodes) which is also a function
of how the example set is splitted at every non-leaf
node of the decision tree. If the split rule is such that it
misses the right geometry of the classification
boundary then the resulting decision tree is likely to
be of large size. The issue of having a suitable
algorithm to find the hyperplane that optimizes the
chosen measure or rating function at each node is also
vital. For example, for all impurity measures, the
optimization is difficult because finding the gradient
of the impurity function with respect to the parameters
of the hyperplane is impossible. Motivated by these
considerations, here a new criterion function is
presented to assess suitability of a hyperplane at a
node that can capture the geometric structure of the
class regions. For the criterion function, the
optimization problem can also be solved more easily.
The method of finding the best hyperplane at each
node, by considering a 2-class problem is first

discussed. Given the set of training patterns at a node,
algorithm first finds two hyperplanes, one for each
class. Each hyperplane is such that it is closest to all
patterns of one class and is farthest from all patterns of
the other class. These hyperplanes are called as the
clustering hyperplanes (for the two classes).

Algorithm: Two Class Oblique Decision Tree

Input :S = {(x , y)} i = 1 … m, Max-Depth,
Min-Threshold

Output : Pointer to root of the decision tree
Begin
 Root:=GrowTree_TwoClass(S);
 Return Root;
End
GrowTree_TwoClass(S)
Input : S
Output: Pointer to a subtree

Begin
 Find matrices A and B of the set S of

patterns at node t;;
 Find clustering hyperplanes (solutions of

optimization problems);
 Computer angle bisectors ;
 Choose the angle bisector which gives

lesser value of gini index;
 Let w denote the split rule at node t;
 Divide the set S . Such that S = {w ′x <

0} and S = {w ′x ≥ 0} ;
 Define Threshold = (,) for S and

S ;
 If (Threshold < Min_Threshold) or

(Max_TreeDepth =TreeDepth) then
 Prune_Tree
 Get a node t and make it leaf

node;
 Allot class label associated to the

majority class to t ;
 Make t left child of t;
 Else
 t = GrowTree_TwoClass(S);
 Make t left child of t;
 End
 If (Threshold < Min_Threshold) or

(Max_TreeDepth =TreeDepth) then
 Prune_Tree
 Get a node t and make it leaf

node;
 Allot class label associated to the

majority class to t ;
 Make t right child of t;
 Else
 t = GrowTree_TwoClass(S);
 Make t right child of t;
 End
 Return t;
End

Learning Hyperplanes That Captures The Geometric Structure of Class Regions

Graduate Research in Engineering and Technology (GRET): An International Journal

10

Because of the way they are outlines, these clustering
hyperplanes capture the dominant linear tendencies in
the examples of each class that are useful for
discriminating between the classes. Hence a
hyperplane that passes in between them could be good
for splitting the feature space. So, the hyperplane is
taken that bisects the angle between the clustering
hyperplanes as the split rule at this node. Since,
normally, there would be two angle bisectors; the
bisector is chosen which is better, based on an
impurity measure, i.e. the gini index. If the two
clustering hyperplanes happen to be parallel to each
other, then a hyperplane is taken midway between the
two clustering hyperplanes as the split rule.

A complete description of this is provided as
Algorithm-Two Class Oblique Decision Tree.
Algorithm recursively calls the procedure
GrowTree_TwoClass(St) which will return a subtree
at node t.

At any given node, given the set of patterns St, the
two clustering hyperplanes (by solving the generalized
eigenvalue problem) are found. Choose one of the
two angle bisectors, based on the gini index, as the
hyperplane to be associated with this node. This
hyperplane is used to split St into two sets, i.e. the
ones that go into the left and right child nodes of this
node. Then recursively did the same at the two child
nodes. The method starts at the root node of the tree
where St is the complete set of example patterns.

The recursion stops when the set of patterns at a node
are such that the fraction of patterns belonging to the
minority class of this set are below a user-specified
threshold or the depth of the tree reaches a pre-
specified maximum limit.

IV. EXPERIMENTAL SETUP AND RESULT
 ANALYSIS

In this section the empirical results are presented to
show the effectiveness of the proposed algorithm. The
performance of algorithm is tested on synthetic and
several real datasets.

The performance of algorithm is compared with OC1
[4], CART [1], C4.5 [8] which are among the standard
decision tree algorithms at present. The performance
is also compared with SVM classifier which is among
the best generic classifiers today. The experimental
comparisons are presented on one synthetic datasets
and six ‘real’ datasets from UCI ML repository [6].

A. Dataset Description
One synthetic piecewise-linearly-separable dataset is
generated in two dimensions which is described
below:

2 × 2 checkerboard data set:

2000 points are sampled uniformly from [−1 1] × [−1
1]. A point is labeled +1 if it is in ([−1 0] × [0 1])
([0 1] × [0 − 1]); otherwise, it is labeled −1. Out of
2000 sampled points, 990 points are labeled +1, and
1010 points are labeled −1. Now, all the points are
rotated by an angle of /6 with respect to the first axis
in anti-clockwise direction. That is the final training
set.

Apart from this 2x2 checkerboard synthetic dataset,
the algorithm is also tested on several bench-mark
datasets downloaded from UCI ML repository [6].
The datasets available on UCI ML repository has
many observations with missing values of some
features. For this experiment those observations are
chosen for which there are no missing values for any
feature.

TABLE-1 DETAIL OF REAL-WORLD DATA
SETS USED FROM UCI ML REPOSITORY

Data Set Dimensi
ons

Points

Class
Distribution

Breast-
Cancer 10 683 444, 239

Bupa
Liver
Disorder

6 345 200, 145

Pima
Indian
(diabetes)

8 768 500, 268

Heart 13 270 150, 120

Magic 10 190
20 12332, 6688

Votes 16 232 124, 108

B. Experimental Setup
The proposed algorithm is implemented in Java. For
OC1, the downloadable package available on Internet
is used [4]. For CART, C4.5 the weka package
available on Internet is used [7]. Weka is a collection
of machine learning algorithms for solving real-world
data mining problems. It is written in Java and runs on
nearly all platforms. The algorithms can either be
applied on to a dataset or called from Java code.

To learn SVM classifiers, the libsvm code is used [5].
Libsvm-2.84 uses the one-versus-rest approach for
multiclass classification.

Proposed Algorithm has only two user-defined
parameters which are Max-Depth, Min-Threshold (the
threshold on fraction of points of minority class to
decide any node a leaf node). For all experiments
value is chosen between 0.05 and 0.2. This range of
appears quite robust on all the datasets.

SVM has two user defined parameters: penalty
parameter C and the width parameter σ for Gaussian
kernel. Best values for these parameters are found

Learning Hyperplanes That Captures The Geometric Structure of Class Regions

Graduate Research in Engineering and Technology (GRET): An International Journal

11

using 5-fold cross-validation and the results reported
are with these parameters. Both OC1 and CART use
90% of the total number of points for training and
10% points for pruning. OC1 needs two more user-
defined parameters. These parameters are number of
restarts (R) and number of random jumps (J). For
experiments it is set R = 20 and J = 5 which are the
default values suggested in the package.

C. Results and Discussion
In this section the performance of proposed algorithm
for learning oblique decision tree with other
approaches on different datasets is discussed. The
results provided are based on 10-fold cross validation.
Table 2 shows average values of the performance
parameters such as accuracy, time taken and the
number of leaf nodes and depth of the tree, for each of
the algorithms for each of the problems.

TABLE-2: COMPARISON RESULTS BETWEEN
PROPOSED ALGORITHM AND OTHER

DECISION TREE APPROACHES

Data
Set

Met
hod

Accur
acy

Time
(Sec)

Leav

es

Tre
e

dep
th

2x2
Chec
ker-
board

2-
Class

98.20 0.031 4.0 2.0
OC1 97.70 2.730 13.5 8.0
C4.5 96.70 0.041 35.6 7.0
CAR
T

96.65 0.254 41.0 13.
0

Breas
t-
Canc
er

2-
Class

97.07 0.014 2.0 1.0
OC1 94.44 1.520 5.4 3.0
C4.5 95.16 0.016 12.9 5.0
CAR
T

94.29 0.070 5.0 3.0
Bupa
–
Liver
Disor
der

2-
Class

71.01 0.014 6.0 5.0
OC1 70.43 3.190 5.2 2.8
C4.5 68.13 0.008 27.1 8.0
CAR
T

67.82 0.050 3.0 2.0

Pima
–
India
n

2-
Class

76.30 0.030 5.0 5.0
OC1 71.61 3.880 8.2 5.2
C4.5 73.70 0.017 22.6 9.0
CAR
T

74.87 0.148 6.0 5.0

Heart

2-
Class

86.30 0.014 2.0 1.0
OC1 73.70 0.077 7.4 3.4
C4.5 77.41 0.008 18.3 7.0
CAR
T

82.59 0.033 6.0 3.0

Magi
c

2-
Class

82.92 0.655 24.0 6.0
OC1 - - - -
C4.5 85.06 3.242 320.2 21.

0 CAR
T

85.23 13.157 128 12.
0

Votes
2-
Class

96.98 0.013 2.0 1.0
OC1 94.83 0.170 2.0 1.0
C4.5 96.97 0.003 2.0 1.0

CAR
T

96.97 0.017 2.0 1.0

From Table 2 it can be seen that, over all the
problems, proposed algorithm performs significantly
better than all the other decision tree approaches in
accuracy except on Magic and Pima – Indian datasets.
On these datasets, the performance of the proposed
algorithm is comparable with the best other decision
tree method. The average accuracy of proposed
algorithm is better than other decision tree approaches
on Breast-Cancer dataset, Bupa–Liver Disorder
Dataset, Heart Dataset and Votes dataset. Thus,
overall, performance of proposed algorithm is better
than or comparable to any other decision tree
approach in terms of accuracy.

In majority of the cases proposed algorithm generates
trees with smaller depth with lesser number of leaves
as compared to other decision tree approaches. This
supports idea that proposed algorithm better exploits
geometric structure of the dataset while generating
decision trees. Normally if smaller trees are learnt, the
generalization error of the decision tree is likely to be
small.

Time wise proposed algorithm is much faster than
other decision tree approaches in all cases as can be
seen from the results in the table. In all cases, the time
taken by proposed algorithm is less by at least a factor
of five to ten. This is because the problem of obtaining
the best split rule at each node is solved using an
efficient linear algebra algorithm in case of proposed
algorithm while the other approaches have to resort to
search techniques because optimizing impurity-based
measures is tough.

TABLE 3: COMPARISON RESULTS OF
PROPOSED ALGORITHM WITH SVM

Data Set Meth
od

Accur
acy

Time
(Sec)

Kerne
l

2x2
checkerb
oard

2-
Class

98.20 0.031 -

SVM 97.35 0.218 Gauss
ian Breast-

Cancer

2-
Class

97.07 0.014 -

SVM 65.59 0.159 Gauss
ian Bupa

Liver
Disorder

2-
Class

71.01 0.014 -

SVM 59.74 0.040 Gauss
ian Pima

Indian

2-
Class

75.39 0.030 -

SVM 65.11 0.169 Gauss
ian

Heart
2-
Class

86.30 0.014 -
SVM 55.93 0.042 Gauss

ian
Magic

2-
Class

82.92 0.655 -

SVM 65.87 285.139 Gauss
ian

Votes
2-
Class

96.98 0.013 -

SVM 96.97 0.0232 Gauss
ian

Learning Hyperplanes That Captures The Geometric Structure of Class Regions

Graduate Research in Engineering and Technology (GRET): An International Journal

12

 Now next consider comparisons of proposed
algorithm with SVM. Table 3 shows comparison
results of proposed algorithm with SVM.

The performance of proposed algorithm is comparable
to that of SVM in terms of accuracy. Proposed
algorithm performs comparable to SVM on 2×2-
checkerboard dataset, Breast Cancer Dataset, Bupa–
Liver dataset, Pima Indian dataset, Magic dataset,
Heart dataset and Votes dataset.

In terms of the time taken to learn the classifier,
proposed algorithm is faster than SVM on all cases.
At every node of the tree, a generalized Eigen-value
problem is solved which takes time of the order of (d
+1)3, where d is the dimension of the feature space.
On the other hand, SVM solves a quadratic program
whose time complexity is O(nk), where k is between 2
and 3 and n is the number of points. So in general,
when number of points is large compare to the
dimension of the feature space, proposed algorithm
learns faster than SVM. Thus, overall, proposed
algorithm performs better than SVM.

V. CONCLUSION

In this paper a Two-Class algorithm for learning
oblique decision trees is presented. The novelty is in
learning hyperplanes (at each node in the top-down
induction of a decision tree) that captures the
geometric structure of the class regions. At each node
of the decision tree, algorithm finds the clustering
hyperplanes for both the classes and chooses one of
the angle bisector as the split rule. Classification
accuracy results of proposed algorithm are comparable
to those of classical decision tree induction algorithms
and support vector classification algorithms and, in
some cases, they are better. As well, the method

performs better than the other classic decision tree
approaches in terms of size of the tree and time. The
simple program formulation, computational
efficiency, and accuracy of proposed algorithm on real
world data indicate that it is an effective algorithm for
classification. Analysis of the statistical properties of
proposed algorithm and extensions to Multi–Class
classification are promising areas of future research.

REFERENCES

[1] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone.

“Classification and Regression Trees.” Statistics /
Probability Series. Wadsworth and Brooks, Belmont,
California, U.S.A., 1984.

[2] Naresh Manwani, P. S. Sastry, Senior Member, IEEE,
“Geometric Decision Tree”, Sept. 2010.

[3] O. L. Mangasarian and E.W.Wild, “Multisurface proximal
support vector machine classification via generalized
eigenvalues,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
28, no. 1, pp. 69–74, Jan. 2006.

[4] Sreerama K. Murthy, Simon Kasif, Steven Salzberg, “A
System for Induction of Oblique Decision Trees”, Jmynal of
Artificial Intelligence Research2 (1994)

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM : a library
for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[6] D.J. Newman A. Asuncion. ”UCI Machine Learning
Repository”. University of California, Irvine, School of
Information and Computer Sciences, 2007.
http://www.ics.uci.edu/~mlearn/ MLRepository.html.

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, Ian H. Witten (2009); The
WEKA Data Mining Software: An Update; SIGKDD
Explorations, Volume 11, Issue 1.
http://www.cs.waikato.ac.nz/ml/weka/

[8] Quinlan, J. R. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, 1993

	LEARNING HYPERPLANES THAT CAPTURES THE GEOMETRIC STRUCTURE OF CLASS REGIONS
	Recommended Citation

	LEARNING HYPERPLANES THAT CAPTURES THE GEOMETRIC STRUCTURE OF CLASS REGIONS

