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Anti-synchronization of discrete-time chaotic 
systems using optimization algorithms 

Mahdieh Adeli1, Hassan Zarabadipoor2

Department of Electrical Engineering, IKI University, Qazvin, Iran 
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Abstract - In this paper, anti-synchronization of discrete chaotic system based on optimization algorithms are investigated. Different 
controllers have been used for anti-synchronization of two identical discrete chaotic systems. A proportional-integral-derivative (PID) 
control is used and its parameters is tuned by the four optimization algorithms, such as genetic algorithm (GA), particle swarm 
optimization (PSO), modified particle swarm optimization (MPSO) and improved particle swarm optimization (IPSO). Simulation 
results of these optimization methods to determine the PID controller parameters to anti-synchronization of two chaotic systems are 
compared. Numerical results show that the improved particle swarm optimization has the best result.

Keywords:  chaotic system; anti-synchronization; Particle swarm optimization; genetic algorithm
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I. INTRODUCTION

 Many nonlinear dynamical systems have been found 
to show a kind of behavior known as chaos. A chaotic 
dynamical system has complex dynamical behaviors that 
possess some special features such as being extremely 
sensitive to tiny variations of initial conditions, broad 
spectra of Fourier transforms, and fractal properties of 
the motion in phase space [1]. Since synchronization of 
two coupled chaotic systems with different initial values 
was demonstrated, there has been an increasing interest 
in the study of chaos synchronization and its applications 
in various fields ranging from physics, biology, 
chemistry, mathematics to engineering [2].  

 A basic configuration for chaos synchronization is 
the master–slave (drive-response) pattern, where the 
response chaotic system must track the drive chaotic 
trajectory [1]. To synchronize chaotic systems, many 
kinds of controllers have been presented such as 
feedback control [3], fuzzy control [4], adaptive control 
[5] and impulsive control [6]. And there are many 
optimization methods such as ant colony, harmony 
search, genetic algorithm, particle swarm optimization, 
random search, etc. 

 The concept of synchronization has been extended 
to the scope, such as generalized synchronization [7, 8], 
phase synchronization [7], lag synchronization [9], and 
even anti phase synchronization (APS) [10, 11]. APS can 
also be interpreted as anti-synchronization (AS), which is 
a phenomenon that the state vectors of the synchronized 
systems have the same amplitude but opposite signs as 
those of the driving system. Therefore, the sum of two 
signals are expected to converge to zero when either AS 
or APS appears [12]. Recently, several control method 
has been applied to anti-synchronize chaotic systems 
[13–17]. 

  In this paper a proportional–integral–derivative 
(PID) control as a controller and for tuning the values of 
the controller’s parameters the methods of genetic 
algorithm (GA), particle swarm optimization (PSO), 
modified particle swarm optimization (MPSO) and 
improved particle swarm optimization (IPSO) are used. 

The paper is organized as follows: 

 The problem and control formulation are studied in 
Section 2. In section 3 optimization algorithms are 
presented. Numerical results and conclusion are given in 
section 4 and 5, respectively. 

II. PROBLEM DESCRIPTION 

 In this study, the goal is anti-synchronization of two 
delayed identical discrete systems by using PID. The 
master and slave systems are described as follows: 

,               (1) 

,   (2) 

where   is the control. 

A. PID Control  

PID controllers have been used for decades because they 
are simple and easy to implement. They are widely 
applied in industry to solve various control problems. 
During this time, many modifications have been 
presented in the literature. In this paper, the transfer 
function of PID controller is described in the continuous 
s-domain (Laplace operator) [18] by the following 
equation 

 ,                              (3) 
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where U(s) and E(s) are the control and tracking error 
signals in s-domain, respectively; ��is the proportional 
gain, �� is the integral gain, and ��  is the derivative gain. 
��  is the integral action time and ��is referred to as the 
derivative action time or rate time. The output of the PID 
controller in time domain is given by 

���� � �� . 
��� � �� � 
�
��
 � �� . �����
��

�
	  ,                 (4) 

where u(t) and e(t) are the control and tracking error 
signals in time domain, respectively. Using trapezoidal 
approximations for  (4) to obtain the discrete control law, 
we have 

���� � ��� � 1� � �� . �
��� � 
�� � 1��

          ��� .
�

2

. �
��� � 
�� � 1��

          ��� . ��
� . �
��� � 2
�� � 1� � 
�� � 2��,           (5) 

where T
 is the sampling period. The proportional part of 
the PID controller reduces error responses to 
disturbances. The integral term of the error eliminates 
steady state error and the derivative term of error 
dampens the dynamic response and thereby improves 
stability of the system. How to solve these three gains to 
meet the required performance is the most key in the PID 
control system. However, it is difficult to find the optimal 
set of PID gains for nonlinear dynamical systems. 

B. Nonlinear Discrete Chaotic System  

 In this section, we illustrate the anti-synchronization 
by the proposed methods for chaotic systems. We 
employ Lozi’s model as an example of discrete chaotic 
systems that are considered to be anti-synchronized 
using the proposed PID control. The master system is 
given by 

���� � 1� � 1 � �. |�����| � ����,                           (6) 

��� � 1� � �. �����,                                                  (7) 

where a = 1.7, b = 0.5, and x is the master state. The 
corresponding slave system is described by 

���� � 1� � 1 � �. |�����| � ���� � ����,              (8) 

���� � 1� � 1 � �. |�����| � ���� � ����,              (9) 

where y is the slave state and u is the external control 
force that adopts the PID control of (5). For the identical 
discrete chaotic systems (7) and (9) without control u, the 
state trajectories of these chaotic systems will separate 
each other if their initial conditions are not the same. 
However, the state trajectories can approach anti-
synchronization for any initial condition if an appropriate 
controller is utilized. Hence the purpose of this paper is to 
apply the discussed optimization methods approaches to 
find out the optimal PID control gains such that chaos 

anti-synchronization for two Lozi’s chaotic systems is 
achieved. 

III. REVIEW OF OPTIMIZATION ALGORITHMS  

A. Genetic Algorithms  

 The genetic algorithm is a method for solving both 
constrained and unconstrained optimization problems 
that is based on natural selection, the process that drives 
biological evolution. The genetic algorithm repeatedly 
modifies a population of individual solutions. Each 
individual of population is called chromosome. At each 
step, the genetic algorithm selects individuals at random 
from the current population to be parents and uses them 
produce the children for the next generation. Over 
successive generations, the population "evolves" toward 
an optimal solution. You can apply the genetic algorithm 
to solve a variety of optimization problems that are not 
well suited for standard optimization algorithms, 
including problems in which the objective function is 
discontinuous, non-differentiable, stochastic, or highly 
nonlinear. 

 The genetic algorithm uses three main types of rules 
at each step to create the next generation from the current 
population: 

• Selection rules select the individuals, called parents, 
that contribute to the population at the next 
generation.  

• Crossover rules combine two parents to form 
children for the next generation.  

• Mutation rules apply random changes to individual 
parents to form children. 

Evaluation of each chromosome is based on a fitness 
function that is problem-dependent. Given an initial 
population of elements, GAs use the feedback from the 
evaluation process to select fitter solution, eventually 
converging to a population of high-performance 
solutions. It is necessary to know that GAs do not 
guarantee a global optimum solution [19]. 

B. Partial Swarm Optimization  

 Particle Swarm Optimization (PSO) is a population-
based optimization method which is inspired by life of 
natural swarms such as birds and fishes [20, 21]. PSO is 
basically developed through simulation of bird flocking 
in two-dimensional space [22]. The position of each agent 
is represented by XY axis position and also the velocity is 
expressed by V� (velocity of X axis) and V� (velocity of Y 
axis). Modification of the agent (particle) position is 
realized by the position and velocity information. In PSO 
algorithm first an initial population of particles with 
random positions and velocities is created. In subsequent 
iterations every particle adjusts its position and velocity 
by its own experience and other particles’ information. A 
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fitness function determines how good the position of each 
particle which is a potential solution of the problem is. 
Based on this information the motion of every particle is 
a combination of the following terms: 

• Current velocity of the particle (inertia term). 
• Motion toward the best position of the particle 

obtained until current iteration (p��
�) (cognitive 
term). 

• Motion toward the best position of the group 
obtained until current iteration (g��
�) (social 
learning term). 

Therefore, if the position and velocity of particle i are 
denoted, respectively, by X� � �x�,�, x�,�, … , x�,�� and 
V� � �v�,�, v�,�, … , v�,��, where d is the dimension of the 
search space, the velocity and position of that particle at 
iteration � � 1 will be as follows [12] 

$�,��� � w & $�,� � c� & r�,� & )p��
�,�,� � *�,�+

          �c� & r�,� & )g��
�,�,� � *�,�+,                     (10) 

*�,��� � *�,� � k� & $�,���, 

i � 1,2, … , n,  (11) 

where ‘n’ is the population size, ‘t’ is the current 
iteration, X is the inertia weight, /�,� and /�,� are random 
numbers between 0 and 1, the 0 1 �0,1�. 3� , 3� and k�
are constants and is the constriction coefficient. Suitable 
values for X, 3�, 3�, and �� may be chosen depending on 
problem. 

Using the below equation, 

w � w��� � ���������

�������

& iter,  (12) 

where w��� � 0.9, w��� � 0.4, a certain velocity, which 
gradually gets close to p��
� and g��
�, can be calculated. 
This method is called Modified PSO (MPSO).  

As the development of PSO method, we propose 
Improved PSO (IPSO). The main differences between 
proposed IPSO and conventional PSO are: 

1)  Velocity strategy equation employed in 
conventional PSO is not suitable for large systems. Also 
in MPSO the range of minimum and maximum velocity 
limit is quite large which makes the approach slow rate 
of convergence, and takes more computational time and 
local convergence. In order to overcome above 
difficulty, a new velocity strategy equation is formulated 
suitably for any number of systems in the proposed IPSO 
method. 

2)  The basic system equation of PSO can be considered 
as a kind of difference equations. Therefore, the system 
dynamics, namely, search procedure, can be analyzed by 
the eigen value analysis. The Improved PSO (IPSO) 
utilizes the eigen value analysis and controls system 

behaviour so that the system behaviour has the following 
features: 

• The system does not diverge in a real value region 
and finally converge. 

• The system can search different regions efficiently. 

The velocity of IPSO can be expressed as given below: 

$�,��� � K & $�,� � c� & r�,� & )p��
�,�,� � *�,�+ 

          �c� & r�,� & )g��
�,�,� � *�,�+,  (13) 

where 

K � �
 ��!�"!��#$! 

 ,   (14) 

such that 9 � 3� � 3�;  9 ; 4; < � 1,2, … , =; ‘n’ is the 
population size. The convergence characteristics of the 
system are controlled by 9. IPSO examines the 
convergence of the search procedure based on the 
mathematical theory. The amplitude of the each agent’s 
oscillation decreases as it focuses on a previous best 
point. The IPSO could generate higher quality solutions 
than the conventional PSO method. So the proposed 
approach has stable convergence characteristics, avoids 
premature convergence and takes less computational 
time.  

C. Fitness Function  

 In each optimization process there is a fitness 
function that should reach its optimum value. In this 
paper the fitness function F is defined as [18],  

> � ∑ |���� � ����| � ∑ |
���|%
&'�

%
&'� ,  (15) 

where e(k) is the error signal between the master and 
slave states and N is the total number of sampling. The 
optimization problem involves finding [��

(, ��
(, ��

(] in 
PID control such that the F fitness function of the system 
is minimized. 

IV. NUMERICAL SIMULATION 

 Here we will illustrate the anti-synchronization PID 
controller design for the above two Lozi chaotic systems 
given by equations (7) and (9) with different initial value 
conditions, x��0� � x�0� � 0.1, and y��0� � y�0� �
0.6. We solved the optimization problem with N = 25 and 
T
 � 0.01 sec. 

 The GA optimization characteristics are as 
following: 

 Binary representation with an individual length of 16 
bits for each design variable, population size of 150 
chromosomes, mutation probability of 0.2, crossover 
probability of 0.6, keep percent of 0.2, roulette wheel 
selection with elitism, maximum iterations 1000 and 
number of initialization 10. 
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 The PSO characteristics are as follows:  

Population size of 150, maximum iterations 500, 
)K) , K�, K�+ 1 �0,4�, w=0.3, c� � c� � 2 and  number of 
initialization 10. 

The MPSO characteristics are chosen as: 

Population size of 150, maximum iterations 500, 
)K) , K�, K�+ 1 �0,4�, w 1 �0.4 , 0.9�, c� � c� � 2 and 
number of initialization 10. 

The IPSO characteristics are chosen as: 

Population size of 150, maximum iterations 500, 
)K) , K�, K�+ 1 �0,4�, c� � 2, c� � 3, w=K=0.38 and 
number of initialization 10.  

 Convergence results for anti-synchronization of Lozi 
map via PID control based on fitness function are given 
in table (1) and table (2) is determining the optimal values 
of the parameters of PID control of the discussed system 
via GA, PSO, MPSO and IPSO. 

 Fig. 1 shows the state responses of the master and 
slave systems and the error signals using IPSO for tuning 
the parameters of the controller for Lozi chaotic system. 
As it can be seen in table (1) the IPSO optimization 
method gives the best results, because the values of 
minimum, maximum and mean of fitness function are 
less than other methods. 

TABLE II. CONVERGENCE RESULTS

Optimization 
method   

Minimum F Mean F maximum F 

GA 

PSO 

MPSO 

IPSO 

8.9642 

8.9638 

8.9638 

8.9638 

8.9817 

8.9734 

8.9737 

8.9684 

8.9710 

8.9782 

8.9780 

8.9782 

TABLE III. PID PARAMETRS

Parameter  GA PSO MPSO IPSO 
K�  
K�  
K�  
Minimum F

0.0172 
2.4396 
0.0396 
8.9642 

0.0185 
2.2302 
0 
8.9638 

0.0236 
1.2102 
0.0016 
8.9638 

0.0277 
0.3869 
1.0000e-004 
8.9638 

V.  CONCLUSION 

 In this paper, the methods IPSO, MPSO, PSO and 
GA are proposed to tune PID controller gains in anti-
synchronization application of two chaotic systems. The 
numerical simulation shows that the well-known Lozi 
mapping with different initial conditions for the master 
and slave are chosen to illustrate the proposed scheme, 
and simulations are also given to verify the effectiveness 

of the proposed improved particle swarm optimization 
algorithm. 

 According to our results the proposed method based 
on IPSO can be successfully applied to control and anti-
synchronization problems of discussed systems. Finally, 
the optimal values of PID control are achieved and it is 
compared with other optimization algorithms such as 
PSO, MPSO and GA. The results show that IPSO has 
better performance than the other methods. 
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