
International Journal of Electronics Signals and Systems International Journal of Electronics Signals and Systems

Volume 1 Issue 2 Article 7

September 2011

Motion Detection in Low Resolution Grayscale Videos Using Fast Motion Detection in Low Resolution Grayscale Videos Using Fast

Normalized Cross Correrelation on GP-GPU Normalized Cross Correrelation on GP-GPU

Durgaprasad Gangodkar
Dept. of Electronics and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, India,
dgangodkar@yahoo.com

Gurbinder Singh Gill
Dept. of Electronics and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, India,
gurbinder533@gmail.com

Sachin Gupta
Dept. of Electronics and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, India,
sachingupta006@gmail.com

Padam Kumar
Dept. of Electronics and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, India,
padamfec@iitr.ernet.in

Ankush Mittal Dr.
Dept. of Computer Science and Engineering, College of Engineering Roorkee, Roorkee, India,
dr.ankush.mittal@gmail.com
Follow this and additional works at: https://www.interscience.in/ijess

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Gangodkar, Durgaprasad; Gill, Gurbinder Singh; Gupta, Sachin; Kumar, Padam; and Mittal, Ankush Dr.
(2011) "Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation
on GP-GPU," International Journal of Electronics Signals and Systems: Vol. 1 : Iss. 2 , Article 7.
DOI: 10.47893/IJESS.2011.1021
Available at: https://www.interscience.in/ijess/vol1/iss2/7

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Electronics Signals and Systems by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijess
https://www.interscience.in/ijess/vol1
https://www.interscience.in/ijess/vol1/iss2
https://www.interscience.in/ijess/vol1/iss2/7
https://www.interscience.in/ijess?utm_source=www.interscience.in%2Fijess%2Fvol1%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=www.interscience.in%2Fijess%2Fvol1%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijess/vol1/iss2/7?utm_source=www.interscience.in%2Fijess%2Fvol1%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Available online at www.interscience.in�
�

�

International Journal of Electronic Signals and Systems
- 105 -

�

Motion Detection in Low Resolution Grayscale
Videos Using Fast Normalized Cross

Correrelation on GP-GPU

Durgaprasad Gangodkar1, Gurbinder Singh Gill2, Sachin Gupta3, Padam Kumar4, Ankush Mittal5

1234Dept. of Electronics and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, India
5Dept. of Computer Science and Engineering, College of Engineering Roorkee, Roorkee, India
 E-mail : 1dgangodkar@yahoo.com, 2gurbinder533@gmail.com, 3sachingupta006@gmail.com,

4padamfec@iitr.ernet.in, 5dr.ankush.mittal@gmail.com
�
Abstract— Motion estimation (ME) has been widely used in many computer vision applications, such as object tracking, object
detection, pattern recognition and video compression. The most popular block based similarity measures are the sum of absolute
differences (SAD), the sum of squared differences (SSD) and the normalized cross correlation (NCC). Similarity measure obtained
using NCC is more robust under varying illumination changes as compared to SAD and SSD. However NCC is computationally
expensive and application of NCC using full or exhaustive search method further increases required computational time. Relatively
efficient way of calculating the NCC is to pre-compute sum-tables to perform the normalization referred to as fast NCC (FCC). In this
paper we propose real time implementation of full search FCC algorithm applied to gray scale videos using NVIDIA’s Compute
Unified Device Architecture (CUDA). We present fine-grained optimization techniques for fully exploiting computational capacity of
CUDA. Novel parallelization strategies adopted for extracting data parallelism substantially reduce computational time of exhaustive
FCC. We show that by efficient utilization of global, shared and texture memories available on CUDA, we can obtain the speedup of
the order of 10x as compared to the sequential implementation of FCC.

Keywords- Motion detection; Fast Normalized Cross Correlation; CUDA; Gray scale videos; Block matching algorithm

I. INTRODUCTION

� The explosive growth of digital video content from
commodity devices has precipitated a renewed interest in
video processing technology, which broadly
encompasses the compression, enhancement, analysis
and synthesis of digital video. Foundation for many of
computer vision and multimedia applications is efficient
and robust motion estimation. Block based motion
estimation (BMA) has proved to be one of the effective
means to determine motion in video sequences. BMA
was adopted by many video-coding standards such as
MPEG-1/2/4, H.261, H.263 and H.264/AVC etc. [1] [2].
In BMA, motion estimation is performed using a
sequence of video frames. Each frame is divided into
sub-blocks, called macroblocks (MBs), typically of size
16 x 16 pixels. BMA estimates the amount of motion on
a block by block basis, i.e. for each block in the current
frame (CF), a block from the previous frame, called
Reference Frame (RF) within the search window is
found, that is said to match this block based on a certain
matching criterion. Best match determines the location of
macroblock within the search window (motion vectors).
Full search (FS) or exhaustive search algorithms
consider every pixel in the block to find out the best
match. Although the FS is very efficient in finding out
the best match, it is computationally very expensive. In
order to reduce the computational complexity of FS

many algorithms like three-step search [3], new three-
step search [4], four-step search [5], block-based
gradient descent search [6], diamond search [7][8],
Hexagon-Based Search [9] etc were proposed. These
algorithms make use of heuristic measures to reduce the
number of search points and thus obtain sub-optimal
results as compared to FS algorithm.

 Different measures have been proposed in the
literature as matching criterions like mean of absolute
difference (MAD), SAD, SSD and NCC. Choice of the
correlation coefficient over alternative matching criteria,
such as the sum of absolute differences, has been
justified as maximum-likelihood estimation [10]. An
empirical study of five template matching algorithms in
the presence of various image distortions has found that
NCC provides the best performance in all image
categories [11]. NCC is also more robust against image
variations such as illumination changes than the widely-
used SAD and MAD. Thus NCC is a most suitable
measure to efficiently determine the motion in low
resolution grayscale videos. Due to its effectiveness,
NCC has been used in many applications like image
registration [12], template matching [13], motion
estimation [14] etc.

 However, higher computational cost of NCC is a
significant drawback in its real-time application. For

 Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU �

�

International Journal of Electronic Signals and Systems
106�

�

correlation-based measures, such as cross-correlation,
correlation-coefficient and NCC, there are limited
proposals to reduce the search points. This is primarily
because the reduction approaches based on distance
measures, are not directly applicable to correlation
measures. Different approaches have been proposed for
reducing the computational complexity of NCC.
Approach presented in [15][16] computes standard cross
correlation (CC) in the frequency domain using fast
Fourier transform and then to compute denominator
using sum tables. However, the calculation of the
numerator dominates the computational cost even though
the FFT is used. Approached proposed in [17] describes
the method of approximation of template matching using
K-basis functions specifically for applications like
template matching that allows the use of sum tables for
efficient use of numerator. Though the use of sum-tables
reduces the overall computational complexity to a
greater extent, the ever pressing need to improve upon
robustness of the computer vision systems now demand
for processing inputs obtained from multiple cameras
rather than a single camera and still expect the results
within the real-time deadlines. This poses a challenge
for further improving the speedup of these
computationally expensive algorithms that will pave the
way for processing higher number of frames per second
obtained from multiple cameras

 Recently, multicore processors have emerged as co-
processing units for central processing units (CPUs) to
accelerate various compute intensive applications. For
example IBM‘s PowerXCell 8i based on Cell BE
architecture has eight SPEs and one PPE delivering an
effective peak performance of more than 230 GFLOPs
(single precision) and 102 GFLOPs (double precision)
[18]. NVIDIA‘s Compute Unified Device Architecture
(CUDA) based GTX280 can provide theoretical peak
performance of around 933 GFLOPs (single precision)
and 78 GFLOPs (double precision) [19]. These have also
proven to be quite economical compared to traditional
cluster or grid based solutions. Many researchers have
implemented, assessed feasibility and analyzed the
performance gain that can be obtained by successfully
parallelizing compute intensive image processing
algorithms. CUDA enabled device GeForce GTX 260
has been used in [19] to implement the Mixture of
Gaussians (MoG) technique. Parallel implementation
runs 26 times faster than a sequential algorithm
implemented on AMD Opteron 2218 at 2.6 GHz for an
image size of 320 x 240 pixels. Other computer vision
application like optical flow [20], edge detection,
threshold filtering and image resizing [21] have been
implemented on multicore processors. The work done till
date, demonstrates unprecedented opportunities for
researchers to develop strategies to deal with large
datasets with acceptable computing performance.

 In this paper we present efficient parallelization
strategies for full search implementation of FCC applied
to grayscale images for motion detection on graphics
processing units (GPU’s). We demonstrate that by
successfully exploiting computational power of
multicore processors we can achieve impressive speedup
as compared to the sequential implementation. We make
use of sum table scheme proposed by [16] which allows
the calculations of mean, image variance and cross
correlation between images. To the best of our
knowledge this is the first proposal for parallel
implementation of FCC on multicore processors. The
discussion mainly focuses on the parallel implementation
of FCC on CUDA architecture. Main contributions of
this paper are summarized as follows:

• We present a novel strategy for parallel calculation
of sum-tables by making use of prefix-sum algorithm
that optimally makes use of texture and shared
memories.

• We demonstrate an efficient approach for kernel
configuration that can be used to exploit optimum
computational capacity of streaming multiprocessors
(SMPs) by making use of host of memories.

• We extract data parallelism in the algorithms by
dividing computationally intensive tasks for parallel
and scalable execution on the multiple cores such
that it meets the real-time requirements

• Image processing involves lot of data transfer
between GPU (device) and CPU (host) which
becomes bottleneck leading to poor parallelization
performance. To mitigate this overhead we map host
memory to device memory (pinned memory) to
exploit full duplex bandwidth of PCIe bus.

Experiments are conducted on different sizes of video
frames with varying characteristics to assess scalability,
performance gain etc. The rest of the paper is organized
as follows. Section II provides a brief overview of the
CUDA. In Sections III we discuss normalized and fast
normalized cross correlation algorithms. Section IV
details strategy adopted for parallel implementation FCC
algorithm. Section V provides experimental details with
performance evaluation and section VI summarizes the
discussion and indicates some possible future work.

II. NVIDIA’s Compute Unified Device Architecture

 NVIDIA’s CUDA [23], a general purpose
computing architecture on a GPU, provides avenues for
active research to tackle compute intensive tasks. The
CUDA parallel programming model is designed for
writing highly scalable parallel code that can run across
tens of thousands of concurrent threads and hundreds of
processor cores. A CUDA program is organized into a

 Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU �

�

International Journal of Electronic Signals and Systems
107

host program, consisting of one or more sequential
threads running on the host CPU, and one or more
parallel kernels that are suitable for execution on a
parallel processing device like the GPU. The three key
abstractions of CUDA are the thread hierarchy, shared
memories and barrier synchronization, which render it as
only an extension of C. All the GPU threads run the
same code, are very light weight and have a low creation
overhead. A kernel executes a scalar sequential program
on a set of parallel threads. The programmer organizes
these threads into a grid of thread blocks.

 A kernel can be executed by a 1-D or 2-D grid of
multiple, equally-shaped thread blocks. A thread block is
a 3, 2 or 1-D group of threads.

 Threads of a single thread block are allowed to
synchronize with each other via barriers and have access
to a high-speed, per-block shared on-chip memory for
inter-thread communication. Threads from different
blocks in the same grid can coordinate only via
operations in a shared global memory space visible to all
threads. CUDA requires that thread blocks be
independent, meaning that a kernel must execute
correctly no matter the order in which blocks are run,
even if all blocks are executed sequentially in
arbitrary order without preemption. This restriction on
the dependencies between blocks of a kernel provides
scalability. It also implies that the need for global
communication or synchronization amongst threads is
the main consideration in decomposing parallel work
into separate kernels. On current GPUs, a thread block
may contain up to 512 threads. The multiprocessor
executes threads in groups of 32 parallel threads called
warps. Threads have access to different types of
memories as shown in Fig. 1. The constant memory is
useful only when it is required that the entire warp may

read a single memory location. The shared memory is
on-chip and the accesses are 100x-150x faster than
accesses to local and global memory.

The shared memory, for high bandwidth, is divided into
equal sized memory modules called banks, which can be
accessed simultaneously. However, if two addresses of a
memory request fall in the same memory bank, there is a
bank conflict and the access has to be serialized. The
banks are organized such that successive 32-bit words
are assigned to successive banks and each bank has a
bandwidth of 32 bits per two clock cycles. The texture
memory space is cached so a texture fetch costs one
memory read from device memory only on a cache miss,
otherwise it just costs one read from the texture cache.
The local and global memories are not cached and their
access latencies are high. CUDA 2.2 release provides
page-locked host memory and helps in increasing the
overall bandwidth when the memory is required to be
read or written exactly once. It can be mapped (pinned)
to device address space so no explicit memory transfer
required. Pinned memory accessed using cudaHostAlloc
function delivers high bandwidth performance. This can
be 2x faster than non-pinned memory accessed by using
cudaMemcpy because mapped memory is able to exploit
the full duplex capability of the PCIe bus by reading and
writing at the same time.

III. NORMALIZED CROSS CORRELATION

 NCC has been commonly used as a metric to
evaluate the similarity (or dissimilarity) measure
between two compared images. Given a template t it
determines the location of t in two-dimensional image f.
In this section we provide a brief overview of NCC and
FCC [16][24].

 Consider a template t of size × to be

matched with an image of size × where, ≤

 and ≤ . Let denote the intensity value at

pixel location in where ∈ {0, . . ., },

∈{0, . . ., } and be the intensity value at

pixel location in . The position of the

template in image is determined by calculating the
NCC value at every step by shifting through
steps in direction and steps in direction. Where

∈{0, 1, 2, . . ., − } and ∈ {0, 1, 2, ..., − }.

The basic equation for NCC is as given in (1).

 Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU �

�

International Journal of Electronic Signals and Systems
108

∑ ∑

∑

−−−−

−−−−

=

yx yxvu

yx vu

vu
tvyuxtfyxf

tvyuxtfyxf

,

2

,

2
,

, ,

,
)),(()),((

)),()(),((
γ

where, vuf , denotes the mean value of),(yxf within the

area of template t shifted by (u,v) and is calculated as:

 Similarly denotes the mean value of template .
Direct computation of (1) involves the order of

(−)(− calculations [24], which is very

computationally expensive. For example, to match a
small 16×16 pixel template with a 250×250 pixel image
would require a total of more than 14 million
calculations.

A. Fast Normalized Cross Correlation

In order to overcome the computational
complexity of NCC, an efficient method proposed by
[16] was to calculate the denominator of (1) using the
concept of sum-tables as discussed below. This approach
makes use of two sum tables and over
the image function and image energy .
The sum-tables of image function and image energy are
computed recursively as given below.

When either u,v=0, s(u,v)=s2(u,v)=0

IV. Parallel Implementation of Fast Normalized
Cross Correlation

Computation time of FCC can be further reduced by
efficient utilization of multicore processors. In this
section we present the parallelization strategies adopted
for implementation of FCC on NVIDIA’s CUDA
architecture. In order to obtain motion vectors we

compute correlation between RF and CF. We adopt two
stage approach for parallelizing the algorithm. In the first
stage we compute the sum-tables and then in the second
stage we compute normalized cross correlation by
utilizing the sum-tables as a look up.

A. Computation of sum-tables

The sum tables are generated by first calculating the
cumulative sum over the image points and then
computing the square values. We make use of parallel
prefix-sum algorithm as shown in Figure 2, to optimally
compute the sum-tables.

Here n corresponds to image width and j
corresponds to the number of threads. Each row of an
image has been assigned to a single thread block and
there would be as many blocks as the number of rows.
On current GPUs, a thread block may contain up to
maximum of 512 threads and every streaming multi-
processor (SMP) can process maximum 768 threads in
parallel from maximum 12 thread blocks, in the warps of
32 threads. Block size of 256 threads has been chosen so
that every SMP can schedule three blocks by optimum
resource utilization. To overcome global memory access
latency, we load RF and CF in texture memory and
subsequently every thread block dynamically caches a
row of an image in the shared memory. All the threads in
a thread block begin by cooperatively computing pre-fix
sum of each row using the parallel prefix-sum algorithm.
Next step to calculate cumulative sum involves
computing pre-fix sum column wise. However, the
consecutive indices would be image width apart. In
order to keep the locality of references we take a
transpose of the partial sum-table calculated up to this
point and bring them in row major order. Parallel prefix-
sum algorithm is again applied to each row followed by a
transpose to obtain the complete sum table.

B. Computation of normalized cross correlation

We divide computational tasks as follows. Frames to be
compared are divided into sub blocks and motion vectors
are computed by applying NCC as a block matching
criteria for each sub block. We divide CF into a motion
window of 16x16 pixels and RF into a search window of
32x32 pixels. The cross correlation value is calculated by
utilizing the sum-tables as lookup by moving the motion
block over the referenced search window pixel by pixel,
such that it covers the entire search window and the
highest correlation representing the motion vector i.e. the
displacement relative to current block is stored.
Subsequent motion block (shifted by 16 pixels) is used to

���

∑∑
−+

=

−+

=

=

11

,),(
1 yx

Nv

vy

Nu

uxyx
vu yxf

NN
f ���

����

����

�	��

�
��

 Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU �

�

International Journal of Electronic Signals and Systems
109

obtain the next highest correlation as shown in Figure 3.
This procedure is repeated for the entire frame. We carry
out the computation of best match for each motion block
in parallel using data parallelism. We assign the task of
computing best match for each motion block to a single
thread. Thus every thread computes the best match by
searching the search window pixel by pixel and stores
the result. Grouping of threads into thread blocks and
thread blocks into grids has been carried out quite
efficiently to exploit host of memories.

for each i in 0 to do

 for each j in 0 to n − 1 do in parallel

 if then

end if����

 end parallel for

 end for

Fig. 2 : Parallel pre-fix sum algorithm

Figure 14. Strategy for memory allocation and thread
block configuration

Intricacies of our strategy are discussed as below.
The crucial aspect of thread configuration is utilization
of faster shared and texture memories to mitigate the
higher memory latency involved in accessing global
memory. The memory layout of our proposed strategy is
as shown in Figure 4. The shared memory available per
multiprocessor is limited to 16 KB. The number of
threads per block is therefore restricted by the limited
memory resources of a processor core. Thus it is a
challenge to develop the thread configuration for
addressing the limitations of CUDA. In order to
efficiently utilize the available shared memory, we are
caching 64 macroblocks of RF amounting to 16 KB in
shared memory and arranging threads in 2-D of size 8 x
4 totaling 32 threads per thread block. Thus every SMP
can optimally schedule two thread blocks and make use
of full shared memory.

Further the CF is loaded into texture memory. The
texture memory space is cached, so a texture fetch costs
one memory read from device memory only on a cache
miss, otherwise it just costs one read from the texture
cache. The texture cache is optimized for 2D spatial
locality, so threads of the same warp that read texture
addresses that are close together will achieve best
performance.

For example, a frame size of 1024×1024 has 64×64
macroblocks of 16×16 pixels each. These are allocated to
64×64 thread blocks having 32 threads each, arranged in
to a 2-D grid of size 8×16. Since data must be transferred
to and from the GPU, the memory transfer time affects
performance. To mitigate overhead of data transfer, we
make use of “mapped" pinned buffers that map host
memory into the CUDA address space. Pinned memory
is able to exploit the full duplex capability of the PCIe
bus by reading and writing at the same time [25].

V. EXPERIMENTAL DETAILS AND
PERFORMANCE EVALUATION
We evaluated and measured the execution time and

speedup of our proposed parallel implementation FCC
algorithm for images of different sizes. The sequential
code was implemented on Intel Xeon 3.2 GHz processor
with 1 GB of DRAM and 32 bit Windows XP OS.
Parallel code was implemented on NVIDIA GTX 280
having 1 GB of DDR3 onboard Intel Xeon 3.2 GHz
processor with 1 GB of DRAM and 32 bit Windows XP
OS. GTX 280 has 30 multiprocessors with 8 cores each,
totaling 240 cores and having single precision floating

 Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU �

�

International Journal of Electronic Signals and Systems
110

point capability of 933 GFLOFS with compute capability
of 1.3. Visual Studio 2005 was used as the development
environment and the CUDA profiler version 2.2 was
used for profiling the CUDA implementation. Image
sizes of 256 x191, 320 x 240, 512x 512, 640 x 480, 1024
x 1024, were used for performance evaluation [26].

Table I tabulate the execution time required for
sequential and parallel implementation of FCC algorithm
for different frame sizes. It can be observed that for the
frame size of 1024x1024 we could achieve the
considerable reduction in execution time from 852 ms to
90 ms yielding a speedup of around 10x. We have
efficiently utilized shared and texture memories to
overcome the memory access latencies which have
contributed to the overall performance gain. The
computation load is varied by changing the size of the
image and it is observed that the implementation scales
well with higher image sizes. We have developed total
five kernel functions for computation of motion vectors.
We retain the device memory pointers on host that map
the calculations carried out by individual kernels.
Different kernel functions are launched from host by
passing only memory references between the kernel
calls. This overcomes need for transferring the results
from device to host and vice-versa. We have made use of
pinned buffers for mapping host memory with device
memory which resulted into avoiding explicit copying of
resultant motion vectors from device to host. Referring
to the profiler output tabulated in Table II, we find the
appreciable GPU occupancy of 0.75 for prefix-sum
computation and maximum i.e. 1 for transpose operation.
Further during sum-table calculations, the ratio of
divergent branches to total branches is also quite low.
For the CC kernel, as every thread computes the best
match for entire search window, GPU occupancy
remains low. However it is evident that every thread
block uses maximum shared memory and drastically
reduces the divergent branches.

From the above discussion it can be observed that
every thread has been assigned an independent task of
computing the motion vector which eliminates inter-
thread communication, inter-thread dependencies and
synchronization. The arrangement of threads into blocks
and grids has been done to exploit the optimal
computational capacity of CUDA architecture. Further,
we have also devised efficient strategies to make use of
the faster shared and texture memories to overcome
memory access latency. Major overhead associated with

data transfer has been eliminated by using pinned
memory.

Figure 6 : First row RF, second row CF and third row motion
vectors

 Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU �

�

International Journal of Electronic Signals and Systems
111�

�

Required number of thread blocks can be easily
arranged by varying the grid size to match low resolution
or high resolution frames. Figure 6 shows the motion
vectors plotted for two sets of frames. A noise
component due to distortion is also introduced.
Morphological operations like dilation and erosion can
be used to reduce the noise and the results can be used in
further processing.

VI. CONCLUSION
The results show that significant reduction in

computation time can be obtained by exploiting
computational power of multicore processors. Fast
normalized cross correlation has been used as an
efficient measure for detecting motion in low resolution
grayscale videos. Our strategy was to pre-compute sum-
tables that act as a look up table for computation of
correlation measure. For computing the cross correlation,
our approach was to divide the task such that every
thread works on independent data that avoided sharing of
computational results and inter thread synchronization.
While calculating the cross correlation, computational
load has been equally distributed amongst the threads
eliminating idling of any thread. Motion vector space in
CPU memory is mapped to GPU memory that reduces
the execution time by avoiding explicit data transfer.
Efficient usage of shared and texture memories coupled
with optimal thread block and grid formation has further
improved the performance gain. Many-core processors
are proving to be a cost effective alternative to cluster
based solutions for real-time computer vision
applications, especially in video surveillance systems.
Our future work will include implementation of image
registration and template matching using above
algorithm on GPUs.

REFERENCES

1. K. R. Rao and J. J Hwang, “Techniques and
standards for image, video and audio coding”,
Englewood Cliffs, NJ, Prentice Hall, 1996

2. T. Wiegand and G. Sullivan, “Joint video team
(JVT) of ISO/IEC MPEG and ITU-T VCEG.
Draft ITU-T recommendation and final draft
international standard of joint video specification
(ITU-T Rec. H.264|ISO/IEC 14496-10 AVC)”,
document JVTG050d35.doc, 7th Meeting:
Pattaya, Thailand, March 2003

3. T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T.,
Ishiguro, “Motion compensated interframe coding
for video conferencing” in Proc. Nat.

Telecommun. Conf., New Orleans, LA, pp.
G5.3.1–G5.3.5., November 29–December 3, 1981

4. R. Li, B. Zeng and M. L. Liou “A new three-step
search algorithm for block motion estimation”,
IEEE Trans. Circuits Syst. Video Technol., Vol.
4, No. 4, pp. 438–442, Aug. 1994.

5. L. M. Po and W. C. Ma, “A novel four-step search
algorithm for fast block motion estimation”, IEEE
Trans. Circuits Syst. Video Technol., Vol. 6, No.
3, pp. 313–317, June 1996.

6. L. K. Liu and E. Feig, “A block-based gradient
descent search algorithm for block motion
estimation in video coding”, IEEE Trans. Circuits
Syst. Video Technol., Vol. 6, No. 4, pp. 419–423,
Aug. 1996.

7. S. Zhu and K. K. Ma, “A new diamond search
algorithm for fast block matching motion
estimation”, IEEE Trans. Image Processing, Vol.
9, No. 2, pp. 287–290, Feb. 2000.

8. J. Y. Tham, S. Ranganath, M. Ranganath, and A.
A. Kassim, “A novel unrestricted center-biased
diamond search algorithm for block motion
estimation,” IEEE Trans. Circuits Syst. Video
Technol., Vol. 8, No. 4, pp. 369–377, Aug. 1998

9. Ce Zhu, Xiao Lin and Lap-Pui Chau, “Hexagon-
based search pattern for fast block motion
estimation”, IEEE Trans. Circuits Syst. Video
Technol., Vol. 12, No. 5, pp. 349-355 MAY 2002,

10. T. W. Ryan, “The prediction of cross-correlation
accuracy in digital stereo-pair images”, PhD
thesis, University of Arizona, 1981.

11. P. J. Burt, C. Yen, and X. Xu. “Local correlation
measures for motion analysis: A comparative
study”, Procd. of IEEE Conf. Pattern Recognition
Image Processing, Las Vegas, pp. 269-274, June
14-17, 1982.

12. L. Essannouni, E. Ibn-Elhaj and D. Aboutajdine,
“Fast cross-spectral image registration using new
robust correlation”, Journal of Real-Time Image
Processing, Springer, Vol. 1, No. 2, pp. 123-
129, Dec. 2006

13. M. Minoru and K. Kunio, “Fast template
matching based on normalized cross correlation
using adaptive block partitioning and initial
threshold estimation”, Procd. of IEEE
International Symposium on Multimedia,
Taichung, Taiwan, pp. 196 – 203, 13-15 Dec.
2010

14. J. Luo, E.E Konofagou, “A fast normalized cross-
correlation calculation method for motion
estimation”, IEEE Trans. on Ultrasonics,
Ferroelectrics and Frequency Control, Vol. 57,
No. 6, pp. 1347 - 1357, Jun. 2010

 Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU �

�

International Journal of Electronic Signals and Systems
112�

�

15. J. P. Lewis, “Fast template matching”, Vision
Interface 95, Procd. Canadian Image Processing
and Pattern Recognition Society, Quebec City,
Canada, pp. 120–123, May 15– 19, 1995

16. J. P. Lewis, “Fast normalized cross-correlation”,
Industrial Lights and Magic

17. K. Briechl and U. D. Hanebeck, “Template
matching using fast normalized cross correlation”,
Procd. of SPIE, Vol. 4387, No. 95, AeroSense
Symposium, Orlando, Florida, 19 April, 2001.

18. IBM BladeCenter QS22(2008), Available at:
http://www-07.ibm.com/systems
includes/content/bladecenter/hardware/servers/qs2
2/BLD03019USEN.PDF,

19. Nvidia GTX280 documents,
www.nvidia.com/content/GTC/documents/
SC09_Dongarra.pdf

20. T. Fábian and J. Gaura, “Parallel implementation
of recursive background modeling technique in
CUDA for tracking moving objects in video
traffic surveillance”, Proceedings of 4th Doctoral
Workshop on Mathematical and Engineering
Methods in Computer Science, Znojmo, Czech
Republic, November 14 -16, 2008

21. H. K. Kidwai, T. Rabie and F. N. Sibai, “Parallel
video processing performance evaluation on the
IBM Cell Broadband Engine processor”,
International Journal of Computer Science and
Applications, Technomathematics Research
Foundation, Vol. 6, No. 1, pp. 13 – 25, Jan. 2009

22. H. K. Kidwai, F. N. Sibai and T. Rabie ,“Highly
parallel image processing on the STI Cell”, Procd.
of IEEE/ACS International Conference on
Computer Systems and Applications, AICCSA,
Rabat, Morocco, pp. 849 – 852, May 10 -13, 2009

23. NVIDIA CUDA Programming Guide, Version
2.2, page 10, 27-35, 75-97, 2009

24. A. J. H. Hii, C. E. Hann, J. G. Chase and E. E. W.
Van Houten, “Fast normalized cross correlation
for motion tracking using basis functions”,
Journal of Computer Methods and Programs in
Biomedicine, Elsevier, Vol. 82, No. 2, pp. 144–
156, 2006

25. Rob Farber, “CUDA, Supercomputing for the
Masses”- Part 12: http://www.drdobbs.com/high-
performance-computing/217500110

26. Image Sequence Server: http://i21www.ira.uka.de/
image_sequence

	Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU
	Recommended Citation

	Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU

