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Abstract— Motion estimation (ME) has been widely used in many computer vision applications, such as object tracking, object 
detection, pattern recognition and video compression. The most popular block based similarity measures are the sum of absolute 
differences (SAD), the sum of squared differences (SSD) and the normalized cross correlation (NCC). Similarity measure obtained 
using NCC is more robust under varying illumination changes as compared to SAD and SSD. However NCC is computationally 
expensive and application of NCC using full or exhaustive search method further increases required computational time. Relatively 
efficient way of calculating the NCC is to pre-compute sum-tables to perform the normalization referred to as fast NCC (FCC). In this 
paper we propose real time implementation of full search FCC algorithm applied to gray scale videos using NVIDIA’s Compute 
Unified Device Architecture (CUDA). We present fine-grained optimization techniques for fully exploiting computational capacity of 
CUDA. Novel parallelization strategies adopted for extracting data parallelism substantially reduce computational time of exhaustive 
FCC. We show that by efficient utilization of global, shared and texture memories available on CUDA, we can obtain the speedup of 
the order of 10x as compared to the sequential implementation of FCC.  

Keywords- Motion detection; Fast Normalized Cross Correlation; CUDA; Gray scale videos; Block matching algorithm
  

I. INTRODUCTION

� The explosive growth of digital video content from 
commodity devices has precipitated a renewed interest in 
video processing technology, which broadly 
encompasses the compression, enhancement, analysis 
and synthesis of digital video. Foundation for many of 
computer vision and multimedia applications is efficient 
and robust motion estimation. Block based motion 
estimation (BMA) has proved to be one of the effective 
means to determine motion in video sequences. BMA 
was adopted by many video-coding standards such as 
MPEG-1/2/4, H.261, H.263 and H.264/AVC etc. [1] [2].  
In BMA, motion estimation is performed using a 
sequence of video frames. Each frame is divided into 
sub-blocks, called macroblocks (MBs), typically of size 
16 x 16 pixels. BMA estimates the amount of motion on 
a block by block basis, i.e. for each block in the current 
frame (CF), a block from the previous frame, called 
Reference Frame (RF) within the search window is 
found, that is said to match this block based on a certain 
matching criterion. Best match determines the location of 
macroblock within the search window (motion vectors). 
Full search (FS) or exhaustive search algorithms 
consider every pixel in the block to find out the best 
match. Although the FS is very efficient in finding out 
the best match, it is computationally very expensive. In 
order to reduce the computational complexity of FS 

many algorithms like three-step search [3], new three-
step search [4], four-step search [5], block-based 
gradient descent search [6], diamond search [7][8], 
Hexagon-Based Search [9] etc were proposed. These 
algorithms make use of heuristic measures to reduce the 
number of search points and thus obtain sub-optimal 
results as compared to FS algorithm.  

 Different measures have been proposed in the 
literature as matching criterions like mean of absolute 
difference (MAD), SAD, SSD and NCC. Choice of the 
correlation coefficient over alternative matching criteria, 
such as the sum of absolute differences, has been 
justified as maximum-likelihood estimation [10]. An 
empirical study of five template matching algorithms in 
the presence of various image distortions has found that 
NCC provides the best performance in all image 
categories [11]. NCC is also more robust against image 
variations such as illumination changes than the widely-
used SAD and MAD. Thus NCC is a most suitable 
measure to efficiently determine the motion in low 
resolution grayscale videos. Due to its effectiveness, 
NCC has been used in many applications like image 
registration [12], template matching [13], motion 
estimation [14] etc. 

 However, higher computational cost of NCC is a 
significant drawback in its real-time application.  For 
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correlation-based measures, such as cross-correlation, 
correlation-coefficient and NCC, there are limited 
proposals to reduce the search points. This is primarily 
because the reduction approaches based on distance 
measures, are not directly applicable to correlation 
measures. Different approaches have been proposed for 
reducing the computational complexity of NCC. 
Approach presented in [15][16] computes standard cross 
correlation (CC) in the frequency domain using fast 
Fourier transform and then to compute denominator 
using sum tables. However, the calculation of the 
numerator dominates the computational cost even though 
the FFT is used. Approached proposed in [17] describes 
the method of approximation of template matching using 
K-basis functions specifically for applications like 
template matching that allows the use of sum tables for 
efficient use of numerator. Though the use of sum-tables 
reduces the overall computational complexity to a 
greater extent, the ever pressing need to improve upon 
robustness of the computer vision systems now demand 
for processing inputs obtained from multiple cameras 
rather than a single camera and still expect the results 
within the real-time deadlines.  This poses a challenge 
for further improving the speedup of these 
computationally expensive algorithms that will pave the 
way for processing higher number of frames per second 
obtained from multiple cameras 

 Recently, multicore processors have emerged as co-
processing units for central processing units (CPUs) to 
accelerate various compute intensive applications. For 
example IBM‘s PowerXCell 8i based on Cell BE 
architecture has eight SPEs and one PPE delivering an 
effective peak performance of more than 230 GFLOPs 
(single precision) and 102 GFLOPs (double precision) 
[18]. NVIDIA‘s Compute Unified Device Architecture 
(CUDA) based GTX280 can provide theoretical peak 
performance of around 933 GFLOPs (single precision) 
and 78 GFLOPs (double precision) [19]. These have also 
proven to be quite economical compared to traditional 
cluster or grid based solutions. Many researchers have 
implemented, assessed feasibility and analyzed the 
performance gain that can be obtained by successfully 
parallelizing compute intensive image processing 
algorithms. CUDA enabled device GeForce GTX 260 
has been used in [19] to implement the Mixture of 
Gaussians (MoG) technique. Parallel implementation 
runs 26 times faster than a sequential algorithm 
implemented on AMD Opteron 2218 at 2.6 GHz for an 
image size of 320 x 240 pixels. Other computer vision 
application like optical flow [20], edge detection, 
threshold filtering and image resizing [21] have been 
implemented on multicore processors. The work done till 
date, demonstrates unprecedented opportunities for 
researchers to develop strategies to deal with large 
datasets with acceptable computing performance. 

 In this paper we present efficient parallelization 
strategies for full search implementation of FCC applied 
to grayscale images for motion detection on graphics 
processing units (GPU’s). We demonstrate that by 
successfully exploiting computational power of 
multicore processors we can achieve impressive speedup 
as compared to the sequential implementation. We make 
use of sum table scheme proposed by [16] which allows 
the calculations of mean, image variance and cross 
correlation between images. To the best of our 
knowledge this is the first proposal for parallel 
implementation of FCC on multicore processors. The 
discussion mainly focuses on the parallel implementation 
of FCC on CUDA architecture. Main contributions of 
this paper are summarized as follows: 

• We present a novel strategy for parallel calculation 
of sum-tables by making use of prefix-sum algorithm 
that optimally makes use of texture and shared 
memories. 

• We demonstrate an efficient approach for kernel 
configuration that can be used to exploit optimum 
computational capacity of streaming multiprocessors 
(SMPs) by making use of host of memories. 

• We  extract data parallelism in the algorithms by 
dividing computationally intensive tasks for parallel 
and scalable execution on the multiple cores such 
that it meets the real-time requirements 

• Image processing involves lot of data transfer 
between GPU (device) and CPU (host) which 
becomes bottleneck leading to poor parallelization 
performance. To mitigate this overhead we map host 
memory to device memory (pinned memory) to 
exploit full     duplex bandwidth of PCIe bus. 

Experiments are conducted on different sizes of video 
frames with varying characteristics to assess scalability, 
performance gain etc. The rest of the paper is organized 
as follows. Section II provides a brief overview of the 
CUDA. In Sections III we discuss normalized and fast 
normalized cross correlation algorithms. Section IV 
details strategy adopted for parallel implementation FCC 
algorithm. Section V provides experimental details with 
performance evaluation and section VI summarizes the 
discussion and indicates some possible future work. 

II.  NVIDIA’s Compute Unified Device Architecture  

 NVIDIA’s CUDA [23], a general purpose 
computing architecture on a GPU, provides avenues for 
active research to tackle compute intensive tasks. The 
CUDA parallel programming model is designed for 
writing highly scalable parallel code that can run across 
tens of thousands of concurrent threads and hundreds of 
processor cores. A CUDA program is organized into a 
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host program, consisting of one or more sequential 
threads running on the host CPU, and one or more 
parallel kernels that are suitable for execution on a 
parallel processing device like the GPU. The three key 
abstractions of CUDA are the thread hierarchy, shared 
memories and barrier synchronization, which render it as 
only an extension of C. All the GPU threads run the 
same code, are very light weight and have a low creation 
overhead. A kernel executes a scalar sequential program 
on a set of parallel threads. The programmer organizes 
these threads into a grid of thread blocks. 

 A kernel can be executed by a 1-D or 2-D grid of 
multiple, equally-shaped thread blocks. A thread block is 
a 3, 2 or 1-D group of threads.  

 Threads of a single thread block are allowed to 
synchronize with each other via barriers and have access 
to a high-speed, per-block shared on-chip memory for 
inter-thread communication. Threads from different 
blocks in the same grid can coordinate only via 
operations in a shared global memory space visible to all 
threads. CUDA requires that thread blocks be 
independent, meaning that a kernel must execute 
correctly no matter the order in which blocks are run, 
even if all blocks      are executed sequentially in 
arbitrary order without preemption. This restriction on 
the dependencies between blocks of a kernel provides 
scalability. It also implies that the need for global 
communication or synchronization amongst threads is 
the main consideration in decomposing parallel work 
into separate kernels. On current GPUs, a thread block 
may contain up to 512 threads. The multiprocessor 
executes threads in groups of 32 parallel threads called 
warps. Threads have access to different types of 
memories as shown in Fig. 1. The constant memory is 
useful only when it is required that the entire warp may 

read a single memory location. The shared memory is 
on-chip and the accesses are 100x-150x faster than 
accesses to local and global memory. 

The shared memory, for high bandwidth, is divided into 
equal sized memory modules called banks, which can be 
accessed simultaneously. However, if two addresses of a 
memory request fall in the same memory bank, there is a 
bank conflict and the access has to be serialized. The 
banks are organized such that successive 32-bit words 
are assigned to successive banks and each bank has a 
bandwidth of 32 bits per two clock cycles. The texture 
memory space is cached so a texture fetch costs one 
memory read from device memory only on a cache miss, 
otherwise it just costs one read from the texture cache. 
The local and global memories are not cached and their 
access latencies are high.  CUDA 2.2 release provides 
page-locked host memory and helps in increasing the 
overall bandwidth when the memory is required to be 
read or written exactly once. It can be mapped (pinned) 
to device address space so no explicit memory transfer 
required. Pinned memory accessed using cudaHostAlloc
function delivers high bandwidth performance. This can 
be 2x faster than non-pinned memory accessed by using 
cudaMemcpy because mapped memory is able to exploit 
the full duplex capability of the PCIe bus by reading and 
writing at the same time. 

III. NORMALIZED CROSS CORRELATION  

 NCC has been commonly used as a metric to 
evaluate the similarity (or dissimilarity) measure 
between two compared images. Given a template t it 
determines the location of t in two-dimensional image f. 
In this section we provide a brief overview of NCC and 
FCC [16][24]. 

 Consider a template t  of size   ×  to be 

matched  with an  image  of size ×  where,  ≤

 and  ≤ . Let denote the intensity value at 

pixel location  in  where  ∈ {0, . . ., },  

∈{0, . . ., } and  be the intensity value at 

pixel location  in . The position  of the 

template  in image is determined by calculating the 
NCC value  at every step by shifting through  
steps in  direction and  steps in  direction. Where  

∈{0, 1, 2, . . ., − } and    ∈ {0, 1, 2, ...,  − }. 

The basic equation for NCC is as given in (1). 
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area of template t shifted by (u,v) and is calculated as: 

 Similarly  denotes the mean value of template . 
Direct computation of (1) involves the order of  

( − )(  − calculations [24], which is very 

computationally expensive. For example, to match a 
small 16×16 pixel template with a 250×250 pixel image 
would require a total of more than 14 million 
calculations. 

A. Fast Normalized Cross Correlation 

In order to overcome the computational 
complexity of NCC, an efficient method proposed by 
[16] was to calculate the denominator of (1) using the 
concept of sum-tables as discussed below. This approach 
makes use of two sum tables  and  over 
the image function  and image energy . 
The sum-tables of image function and image energy are 
computed recursively as given below. 

When either u,v=0, s(u,v)=s2(u,v)=0 

IV. Parallel Implementation of Fast Normalized 
Cross Correlation   

Computation time of FCC can be further reduced by 
efficient utilization of multicore processors. In this 
section we present the parallelization strategies adopted 
for implementation of FCC on NVIDIA’s CUDA 
architecture. In order to obtain motion vectors we 

compute correlation between RF and CF. We adopt two 
stage approach for parallelizing the algorithm. In the first 
stage we compute the sum-tables and then in the second 
stage we compute normalized cross correlation by 
utilizing the sum-tables as a look up. 

A. Computation of sum-tables 

The sum tables are generated by first calculating the 
cumulative sum over the image points and then 
computing the square values.  We make use of parallel 
prefix-sum algorithm as shown in Figure 2, to optimally 
compute the sum-tables. 

Here n corresponds to image width and j 
corresponds to the number of threads. Each row of an 
image has been assigned to a single thread block and 
there would be as many blocks as the number of rows. 
On current GPUs, a thread block may contain up to 
maximum of 512 threads and every streaming multi-
processor (SMP) can process maximum 768 threads in 
parallel from maximum 12 thread blocks, in the warps of 
32 threads. Block size of 256 threads has been chosen so 
that every SMP can schedule three blocks by optimum 
resource utilization. To overcome global memory access 
latency, we load RF and CF in texture memory and 
subsequently every thread block dynamically caches a 
row of an image in the shared memory. All the threads in 
a thread block begin by cooperatively computing pre-fix 
sum of each row using the parallel prefix-sum algorithm. 
Next step to calculate cumulative sum involves 
computing pre-fix sum column wise. However, the 
consecutive indices would be image width apart.  In 
order to keep the locality of references we take a 
transpose of the partial sum-table calculated up to this 
point and bring them in row major order.  Parallel prefix-
sum algorithm is again applied to each row followed by a 
transpose to obtain the complete sum table. 

B. Computation of normalized cross correlation  

We divide computational tasks as follows. Frames to be 
compared are divided into sub blocks and motion vectors 
are computed by applying NCC as a block matching 
criteria for each sub block. We divide CF into a motion 
window of 16x16 pixels and RF into a search window of 
32x32 pixels. The cross correlation value is calculated by 
utilizing the sum-tables as lookup by moving the motion 
block over the referenced search window pixel by pixel, 
such that it covers the entire search window and the 
highest correlation representing the motion vector i.e. the 
displacement relative to current block is stored. 
Subsequent motion block (shifted by 16 pixels) is used to 
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obtain the next highest correlation as shown in Figure 3. 
This procedure is repeated for the entire frame. We carry 
out the computation of best match for each motion block 
in parallel using data parallelism. We assign the task of 
computing best match for each motion block to a single 
thread. Thus every thread computes the best match by 
searching the search window pixel by pixel and stores 
the result. Grouping of threads into thread blocks and 
thread blocks into grids has been carried out quite 
efficiently to exploit host of memories.  

for each i in 0 to     do

      for each j in 0 to n − 1 do in parallel

             if            then

                  

end if����

                   end parallel for

               end for 

Fig. 2 : Parallel pre-fix sum algorithm 

Figure 14. Strategy for memory allocation and  thread 
block configuration 

Intricacies of our strategy are discussed as below. 
The crucial aspect of thread configuration is utilization 
of faster shared and texture memories to mitigate the 
higher memory latency involved in accessing global 
memory. The memory layout of our proposed strategy is 
as shown in Figure 4. The shared memory available per 
multiprocessor is limited to    16 KB.  The number of 
threads per block is therefore restricted by the limited 
memory resources of a processor core. Thus it is a 
challenge to develop the thread configuration for 
addressing the limitations of CUDA. In order to 
efficiently utilize the available shared memory, we are 
caching 64  macroblocks of RF amounting to 16 KB in 
shared memory and arranging threads in 2-D of size 8 x 
4 totaling 32 threads per thread block. Thus every SMP 
can optimally schedule two thread blocks and make use 
of full shared memory.  

Further the CF is loaded into texture memory. The 
texture memory space is cached, so a texture fetch costs 
one memory read from device memory only on a cache 
miss, otherwise it just costs one read from the texture 
cache. The texture cache is optimized for 2D spatial 
locality, so threads of the same warp that read texture 
addresses that are close together will achieve best 
performance.  

For example, a frame size of 1024×1024 has 64×64 
macroblocks of 16×16 pixels each. These are allocated to 
64×64 thread blocks having 32 threads each, arranged in 
to a 2-D grid of size 8×16. Since data must be transferred 
to and from the GPU, the memory transfer time affects 
performance. To mitigate overhead of data transfer, we 
make use of “mapped" pinned buffers that map host 
memory into the CUDA address space. Pinned memory 
is able to exploit the full duplex capability of the PCIe 
bus by reading and writing at the same time [25]. 

V. EXPERIMENTAL DETAILS AND 
PERFORMANCE EVALUATION 
We evaluated and measured the execution time and 

speedup of our proposed parallel implementation FCC 
algorithm for images of different sizes. The sequential 
code was implemented on Intel Xeon 3.2 GHz processor 
with 1 GB of DRAM and 32 bit Windows XP OS. 
Parallel code was implemented on NVIDIA GTX 280 
having 1 GB of DDR3 onboard Intel Xeon 3.2 GHz 
processor with 1 GB of DRAM and 32 bit Windows XP 
OS. GTX 280 has 30 multiprocessors with 8 cores each, 
totaling 240 cores and having single precision floating 
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point capability of 933 GFLOFS with compute capability 
of 1.3. Visual Studio 2005 was used as the development 
environment and the CUDA profiler version 2.2 was 
used for profiling the CUDA implementation. Image 
sizes of 256 x191, 320 x 240, 512x 512, 640 x 480, 1024 
x 1024, were used for performance evaluation [26]. 

Table I tabulate the execution time required for 
sequential and parallel implementation of FCC algorithm 
for different frame sizes. It can be observed that for the 
frame size of 1024x1024 we could achieve the 
considerable reduction in execution time from 852 ms to 
90 ms yielding a speedup of around 10x. We have 
efficiently utilized shared and texture memories to 
overcome the memory access latencies which have 
contributed to the overall performance gain.  The 
computation load is varied by changing the size of the 
image and it is observed that the implementation scales 
well with higher image sizes. We have developed total 
five kernel functions for computation of motion vectors. 
We retain the device memory pointers on host that map 
the calculations carried out by individual kernels. 
Different kernel functions are launched from host by 
passing only memory references between the kernel 
calls. This overcomes need for transferring the results 
from device to host and vice-versa. We have made use of 
pinned buffers for mapping host memory with device 
memory which resulted into avoiding explicit copying of 
resultant motion vectors from device to host. Referring 
to the profiler output tabulated in Table II, we find the 
appreciable GPU occupancy of 0.75 for prefix-sum 
computation and maximum i.e. 1 for transpose operation. 
Further during sum-table calculations, the ratio of 
divergent branches to total branches is also quite low. 
For the CC kernel, as every thread computes the best 
match for entire search window, GPU occupancy 
remains low. However it is evident that every thread 
block uses maximum shared memory and drastically 
reduces the divergent branches. 

From the above discussion it can be observed that 
every thread has been assigned an independent task of 
computing the motion vector which eliminates inter-
thread communication, inter-thread dependencies and 
synchronization. The arrangement of threads into blocks 
and grids has been done to exploit the optimal 
computational capacity of CUDA architecture. Further, 
we have also devised efficient strategies to make use of 
the faster shared and texture memories to overcome 
memory access latency. Major overhead associated with 

data transfer has been eliminated by using pinned 
memory. 

Figure 6 : First row RF, second row CF and third row motion 
vectors 



 Motion Detection in Low Resolution Grayscale Videos Using Fast Normalized Cross Correrelation on GP-GPU �

�

International Journal of Electronic Signals and Systems 
111�

�

Required number of thread blocks can be easily 
arranged by varying the grid size to match low resolution 
or high resolution frames. Figure 6 shows the motion 
vectors plotted for two sets of frames. A noise 
component due to distortion is also introduced. 
Morphological operations like dilation and erosion can 
be used to reduce the noise and the results can be used in 
further processing. 

VI. CONCLUSION 
The results show that significant reduction in 

computation time can be obtained by exploiting 
computational power of multicore processors. Fast 
normalized cross correlation has been used as an 
efficient measure for detecting motion in low resolution 
grayscale videos. Our strategy was to pre-compute sum-
tables that act as a look up table for computation of 
correlation measure. For computing the cross correlation, 
our approach was to divide the task such that every 
thread works on independent data that avoided sharing of 
computational results and inter thread synchronization. 
While calculating the cross correlation, computational 
load has been equally distributed amongst the threads 
eliminating idling of any thread. Motion vector space in 
CPU memory is mapped to GPU memory that reduces 
the execution time by avoiding explicit data transfer. 
Efficient usage of shared and texture memories coupled 
with optimal thread block and grid formation has further 
improved the performance gain. Many-core processors 
are proving to be a cost effective alternative to cluster 
based solutions for real-time computer vision 
applications, especially in video surveillance systems.  
Our future work will include implementation of image 
registration and template matching using above 
algorithm on GPUs. 
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