
International Journal of Electronics Signals and Systems International Journal of Electronics Signals and Systems

Volume 2 Issue 1 Article 8

July 2012

AN INTELLIGENT SCHEDULER APPROACH TO MULTIPROCESSOR AN INTELLIGENT SCHEDULER APPROACH TO MULTIPROCESSOR

SCHEDULING OF APERIODIC TASKS SCHEDULING OF APERIODIC TASKS

R. P. INDURAJ
Department of electronics and communication, Bharath university, BIST selaiyur- India.,
induraj.gandhian@yahoo.com

Follow this and additional works at: https://www.interscience.in/ijess

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
INDURAJ, R. P. (2012) "AN INTELLIGENT SCHEDULER APPROACH TO MULTIPROCESSOR SCHEDULING
OF APERIODIC TASKS," International Journal of Electronics Signals and Systems: Vol. 2 : Iss. 1 , Article 8.
DOI: 10.47893/IJESS.2012.1063
Available at: https://www.interscience.in/ijess/vol2/iss1/8

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Electronics Signals and Systems by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijess
https://www.interscience.in/ijess/vol2
https://www.interscience.in/ijess/vol2/iss1
https://www.interscience.in/ijess/vol2/iss1/8
https://www.interscience.in/ijess?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijess/vol2/iss1/8?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

42

AN INTELLIGENT SCHEDULER APPROACH TO
MULTIPROCESSOR SCHEDULING OF APERIODIC TASKS

INDURAJ. P. R

Department of electronics and communication, Bharath university, BIST selaiyur- India.

E-mail : induraj.gandhian@yahoo.com

Abstract - This paper presents a new scheduler capable of scheduling aperiodic tasks at real time in multiprocessor system.
The algorithm proposes a new way to determine dynamically tasks of high priority and low priority finding the elapsed
execution time and remaining execution time, and the amount of resource availability and deadline of task, with no prior
knowledge of task arrival time and also ensures that no processor remains ideal thus utilizing processors at all times.

Keywords-remaining execution time, elapsed execution time.

I. INTRODUCTION

 The periodic tasks and a periodic tasks are more
common in real time systems. Periodic task are those
that appear at regular intervals, while a periodic tasks
are those that appear at any instant i.e. at irregular
time intervals.

 The classic book on real time systems by
C.M.Krishna & Kang G.Shin[3] details the
scheduling of both periodic and aperiodic tasks using
static priority algorithms and dynamic priority
algorithms. The static priority algorithms are based
on scheduling tasks with least period by assigning
them highest priority and those tasks with highest
period the lowest priority. While the dynamic priority
algorithm schedule’s tasks based on deadlines.

 The EDF and least laxity first algorithms that are
uniprocessor online scheduling algorithms are
optimal algorithms, which means any a set of tasks if
schedulable by them then the same set of job can be
feasibly schedulable by other algorithms. But in the
case of multiprocessor systems there are no online
scheduling algorithms that are optimal. This was
shown by simplest multiprocessor model by HONG
& LEUNG [2].

 In this study job, consideration of new
scheduling algorithm for a multiprocessor system that
can deal with responding to a periodic tasks and
dynamically assigning priority to tasks by taking into
account the execution time of arriving task based on
resource availability, the elapsed & remaining
execution time of the task executing in processor.

 We relax the assumption that tasks need to start
essentially at the same time to coordinate their
execution and computation put forward by gang
scheduling algorithm, since gang scheduling demands
that no task execute unless other tasks in gang starts
executing, this would cause processor to remain idle
irrespective of some high priority task ought to be
run.

 This algorithm demonstrates online scheduling of
tasks and assigning priority to tasks dynamically for
preemption based on the elapsed execution time and
the execution time remaining. Unlike static priority
based algorithms which utilize the processors only
70% or less, This algorithm schedules task
dynamically so it can be viewed that processor is
utilized to its great extent i.e. 100% theoretically
proving through a theorem derived to prove that EDF
algorithm utilizes processors to maximum extent [1].

II. DESCRIPTION

 The dynamic algorithms give high priority to
tasks with least deadline, but the execution time for
that particular task can high or low. If we take into
consideration that a task with least deadline but with
highest execution time is given highest priority then if
the processor is scheduled to complete this task by
preemption it takes greater execution time equal to
the execution time of least dead lined task. Thus
causing the processor to stall in only one task
executing all the way to complete it within deadline,
thus we relax this idea of giving priority to task with
least deadline and highest execution time. The
execution time a task takes is dependent on various
factors like resource availability and the number of
lines in the task which constitutes the length of task,
etc.

 We consider here a stochastic model with a set of
M processors in the multiprocessor system.
Stochastic model is the one with uncertainties in both
arrival rate and service rate and let job with infinite
number of tasks ranging from T0 to T∞ arrives. We
also consider that the average service rate of
processor is more than the average arrival rate of
tasks to prevent building up infinite queue. I.e. for
average service rate to be more than the average
arrival rate, the processors are to be operating at
higher frequencies.

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-1

 An Intelligent Scheduler Approach to Multiprocessor Scheduling of Aperiodic Tasks

43

Assumption:

1. No task starts executing at the same time.

2. No task within the same gang execute for same
time.

3. Task preemption is possible for satisfying
conditions.

4. Scheduler is capable of handling the both
periodic and aperiodic tasks arriving.

5. Addition of new processor to a set of M
processor is tolerable.

6. The time for comparisons made among
processors is negligible.

7. Processor is capable of completing maximum
percentage of tasks total execution time before next
job arrives.

 For M set of processor, scheduler is scheduling
T0 to Tm+i where i=0 for initial scheduling of task to
M processor. As soon as the T0 task is scheduled on a
processor it starts executing independent of other
task, the same applies for other task scheduled in
other processors. After initial scheduling of Tm+i (i=0
for initial schedule of M processors), when new tasks
Tm+i (i=1 to ∞) arrivers the following need to be
answered,

1. How this new task is to be scheduled?

2. Whether by preempting previous task or by
scheduling the new task to execute as soon as the
previous task is completed?

3. Based on what the high priority task is chosen for
the scheduler to allow preemption of previous task?

4. Whether there are sufficient resources available
for successful execution of the task.

 The block diagram of intelligent scheduling is
shown in figure 1.

Figure 1. Block diagram

When new task arrives the compiler estimates and
announces the execution time Et that a task would
take respective of resource availability as resource
availability would seriously affect the execution of
task to the scheduler, a comparison is done among
processor by the intelligent scheduler as to which

processor has zero utilization and how much
execution time has elapsed and how much execution
time is remaining, where the remaining execution
time is the difference between the total execution
time Et and the elapsed executed time Et-k. The
execution time is directly related to the time taken to
execute instruction counts on the processor running at
certain clock rate and resource availability.

Case1:

Theorem1:

 A set of task represented by T (Ai, Et, Di) is
readily schedulable in the processor if the utilization
of the processor is found zero i.e. U (nth) =0;

 A processor is said to be in zero utilization only
if it has completed executing its task and no task are
in queue waiting to execute or no task are scheduled
to run.

 In our case after initial scheduling on M
processor only chance for any of our M processor to
be in zero utilization is due to task completion. If
such processor with zero utilization is found then new
task with execution time Et is scheduled to run on it

Theorem 2:

 A set of task represented by T (Ai, Et, Di) is
schedulable in the processor if the utilization of the
processor is less than one i.e. U (nth) < 1

The utilization of a processor is found by

 Where U (nth) is utilization of nth processor in set
a set of M processor and Et-Et-k is the remaining time
to finish a task, Dj-t is the remaining deadline at the
instant new task arrives.

 But other than this condition for scheduling tasks
in a processor the condition to be satisfied are given
in case 2.

Case 2:

 When new task arrives if the processors are busy
executing their previous task, the remaining
execution time Et-Et-k for every processor is
calculated,

Condition 1:

 Consider we have the remaining execution time
Et-Et-k of tasks executing in processors to be both
lesser and greater than the execution time of new task
found by intelligent scheduler considering the
resource availability. Then the processor executing
task with least remaining execution time Et-Et-k within
multiprocessor and task with highest execution time
within the job is chosen.

I.S
 Queue Task

arrival

 Multiprocessor

 Feedback

 C Compiler

0
1

Et-E (t-k) = u (nth)

 Dj-t

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-1

 An Intelligent Scheduler Approach to Multiprocessor Scheduling of Aperiodic Tasks

44

Condition 1a:

 If this least remaining execution time Et-E(t-k) is
less than the execution time Et of new task then
schedule is made such that new task is scheduled to
execute after the task on corresponding processor is
complete. This guarantees continuous and quick
output since the preemptions of task about to
complete would result in longer waiting for result of
the task.

Condition1b:

 If the remaining execution time is same as the
execution time of new task then previous task can
either preempted or new task can be scheduled to run
after the task executing by comparing the deadline of
both task, i.e. if the new task is found to have lowest
deadline then it is given higher priority so it preempts
the executing task, if the new task is found to have
higher deadline compared to executing task then it is
scheduled to run after completion of the task.

Condition2:

 If this remaining execution time Et-E(t-k) is more
than the execution time in all cases, then the
processor executing task with least remaining
execution time among all processor is preempted
such that the processors with high remaining
execution time are allowed to execute with their own
task thus not overloading the processor. If it is
considered that another new task i.e aperiodic task
arrives at the very next moment then the new
remaining execution time in corresponding processor
at that very moment is the sum of the remaining
execution time of previous task and the execution
time of new task scheduled,

I.e. New remaining time is

∑ [Et-E(t-k) (previous) + Et (new)]

This new remaining execution time is then compared
with other processor.

III. ALGORITHM:

1) Initially tasks are scheduled to run on M
processor with no conditions Loop;

2) when new task with Et arrives

2.1 If U (nth) = 0 for a processor

 Schedule processor with new task

2.2 If U (nth) = 0 for many processor

 Schedule task randomly until no processor is
ideal

2.3 If U (nth) ≠ 0 for all processor, Compare
processors for Et-E(t-k)

2.3.1 If Et-E(t-k) is both more and less in
different processor, Find processor with least Et-E(t-k)

a) If Et-E(t-k) < Et (new task)

Schedule new task to run after completion of previous
task

b) If Et-E(t-k) = Et (new task)

If deadline of new task < executing task

 Preempt executing task & schedule new task

Else

 Schedule new task to run after completion

 of executing task

2.3.2 If Et-E(t-k) in different processor is only
more than Et of new task,

Find processor with least Et-E(t-k) such that

Et-E(t-k) > Et (new task)

 Preempt previous task by new task

New Et-E(t-k) is

 ∑ [Et-E(t-k) (previous) + Et (new)]

Continue loop;

Example:

Lets consider a multiprocessor system with M set of
processor (M=3) and a job with the following tasks
arrives.

Task T1 T2 T3 T4 T5 T6 T∞
et 10 9 5 6 3 4 ..
Dj 5 8 1 2 6 5 ..

Figure a. describes the initial schedule in M
processors

a. Initial schedule of Tm tasks

 Figure b. represents the comparison of remaining
execution time during arrival of new task tm+i (i=1)
with execution time 6 as soon as 3 second elapses.

9

10

5

 Et

M

3

2

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-1

 An Intelligent Scheduler Approach to Multiprocessor Scheduling of Aperiodic Tasks

45

 b. Arrival of new task Tm+i (i=1)

 Figure c. represents the schedule of new task
tm+i satisfying condition 2.3.1.a

c. Schedule of new task -Tm+i (i=1)

Figure d. represents the comparison of remaining
execution time during arrival of new task tm+i (i=2)
with execution time of 3 as soon as 2 second elapses.

 d. Arrival of new task Tm+i (i=2)

Figure e. represents the schedule of task tm+i (i=2)
satisfying condition 2.3.2.
e. Scheduling of task Tm+i (i=2)

Figure f. represents the comparison of remaining
execution time during arrival of new task

tm+i (i=3) as soon as 1 second elapses.
f. At the arrival of task Tm+i (i=3)

Figure g. represents the schedule of task tm+i (i=3)
satisfying condition 2.3.1.b

g. Scheduling of task Tm+i (i=3)

IV. IMPLEMENTATION

 To schedule tasks based on execution time and
resources, the algorithm must know prior to
scheduling the execution time a code will take and
the amount of resource present to schedule. Execution
time of any task can be found only by either running
the task or by tracing the entire source code. The
number of lines to be traced can vary from tens to
several thousands; making it impossible to trace the
entire source code. Due to impossibility in tracing the
source code, we emphasize the method of running the
code in a fictitious environment comparable to the
real environment called virtual scheduler. The
execution time and remaining execution time are
found by using the concepts of virtual scheduler
approach and are given to scheduler to schedule the
tasks as per our algorithm. The virtual scheduler is
run on the same machine running actual scheduler.
Initially tasks are made to run on the virtual scheduler
in the order of arrival even though two or more task
arrives at same time, but the tasks arriving at the
same time are notified to actual scheduler to make it
schedule tasks considering the remaining execution
time to be found by virtual scheduler. While a task is
executing if a task arrives, a timestamp in respective
timers is made denoting the elapsed time. The
remaining execution time is consequently found from
the total execution time and the elapsed time. This
information’s such as remaining execution time and

 Et

M

3

2

7

6

2

 Et

M

3

2

7

6

2+6=9

 Et

M

3

2

5

4

 7

 Et

M

3

2

5

 7

 Et

M

3

2

 4

 6

 Et

M

3

2

 4+4=8

 6

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-1

 An Intelligent Scheduler Approach to Multiprocessor Scheduling of Aperiodic Tasks

46

total execution time are conveyed to actual scheduler
to schedule tasks.

 Virtual scheduler on cloud network accessing
clouds services such as platform as service and
software as service is another alternative for
implementation where virtual scheduler processes
tasks at a remote location accessed by cloud and
returns the remaining execution time and the
execution time to the scheduling environment.

REFERENCE

 [1] C.L.Liu and James W. Layland, “scheduling algorithms for

multiprogramming in a hard real time environment”
published in journal of ACM (JACM) volume 20 issue 1 -
1973.

[2] Hong, K. and Leung.J, “online scheduling of real time tasks”.

Appeared in IEEE transaction on computers, volume 41,
issue 10, page 1326.

[3] C.M.Krishna and Kang G.shin “real time systems” -

international edition 1997.

[4] Damir isovic and Gerhard fohler “Efficient scheduling of

sporadic, aperiodic and periodic task with complex
constraints” at the proceeding of 21st IEEE real-time system
symposium, 2000.

[5] inki hing, miodrag potkonjak and mani B. srivastava “On-line

scheduling of hard real time tasks on variable voltage
processor” appeared in IEEE/ACM international conference
on nov-1998 in page 653.

[6] Bhaskar dasgupta and Michael A. Palis, “online real-time

preemptive scheduling of jobs with deadlines on multiple
machines” published in APPROX`00 proceedings of third
international workshop on Approximation Algorithms for
Combinatorial Optimization.

[7] yi-ping you, chingren lee, jenq-kuen lee and wei-kuan shih

“Real-time task scheduling for dynamically variable voltage
processors” IEEE workshop on power management for real
time and embedded systems.

[8] Christopher Clarke and Julie Howrath, “Intelligent Scheduler,

Prioritize on Fly”.

[9] wei zhao,Krithi ramamritham and john A. Stankovi,

“Preemptive scheduling under time and resource constraints”,
IEEE transaction on computers, Vol c-36, No 8, August
1987, page 949.

[10] Kamaljit Kaur, Amit Chhabra and Gurvinder Singh,

“Heuristics Based Genetic Algorithm for Scheduling Static
Tasks in Homogeneous Parallel System”, international

journal of computer science and security 2010, volume 4,
issue 2, page 183-198.

[11] Ramamritham. K and Stankovic. J.A., “Scheduling

algorithms and operating systems support for real-time
systems” proceedings of the IEEE jan 1994, volume 82, issue
1, page 55-67.

[12] Jovanovic.N and bender.M.A, “Task scheduling in distributed

systems by work stealing and mugging - a simulation study”
24th international conference on information technology
interfaces, 2002, ITI 2002, volume 1, page 259-264.

[13] Oliver Sinnen- “Task Scheduling for Parallel Systems-

Wiley Series on Parallel and Distributed Computing”.

[14] Alejandro Masrur, Sebastian Drossler, Thomas Pfeuffer and

Samarjit Chakraborty, “VM-Based Real-Time Services for
Automotive Control Applications” Proceedings of the 2010
IEEE 16th International Conference on Embedded and Real-
Time Computing Systems and Applications.

[15] Jun Fang, shoubao yang, wenyu zhou and hu song,

“Evaluating I/O Scheduler in Virtual Machines for
Mapreduce Application” 2010 9th International Conference
on grid and cooperative computing (GCC), page 64-69.

[16] Jia tian, yuyang du and hongliang yu, “Characterizing SMP

Virtual Machine Scheduling in Virtualization Environment”,
2011 international conference on internet of things
(iThings/CPScom) and 4th international conference on cyber,
physical and social computing, page 402-408.

[17] Forsberg.N, Nolte.T, Kato.S and Asberg.M, “Towards real-

time scheduling of virtual machines without kernel
modifications”, 2011 IEEE 16th Conference on Emerging
Technologies & Factory Automation (ETFA), page 1- 4.

[18] khalid.o, Maljevic.I., Anthony.R, Petridis.M, Parrott.K, and

Schulz.M, “Deadline Aware Virtual Machine Scheduler for
Grid and Cloud Computing”, 2010 IEEE 24th International
Conference on Advanced Information Networking and
Applications Workshops (WAINA), page 85-90.

[19] yoginath.S.B and perumalla.K.S, “Efficiently Scheduling

Multi-Core Guest Virtual Machines on Multi-Core Hosts in
Network Simulation”, 2011 IEEE Workshop on Principles of
Advanced and Distributed Simulation (PADS), page 1-9.

[20] Castrillon.J, Shah.A, Murillo.L.G, Leupers.R and Ascheid.G,

“Backend for virtual platforms with hardware scheduler in
the MAPS framework”, 2011 IEEE Second Latin American
Symposium on Circuits and Systems (LASCAS), page 1- 4.

[21] Mohammad I.Daoud and Nawwaf kharma, “A hybrid

heuristic-genetic algorithm for task scheduling in
heterogeneous processor networks” Journal of Parallel and
Distributed Computing, Volume 71, Issue 11, November,
2011.

VIRTUAL SCHEDULER

ACTUAL SCHEDULER

TASKS QUEUE

RESOURCE EXECUTION TIME

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-1

	AN INTELLIGENT SCHEDULER APPROACH TO MULTIPROCESSOR SCHEDULING OF APERIODIC TASKS
	Recommended Citation

	AN INTELLIGENT SCHEDULER APPROACH TO MULTIPROCESSOR SCHEDULING OF APERIODIC TASKS

