
International Journal of Electronics Signals and Systems International Journal of Electronics Signals and Systems

Volume 2 Issue 2 Article 11

October 2012

A HARD REAL-TIME SCHEDULER ALGORITHM FOR SOLID STATE A HARD REAL-TIME SCHEDULER ALGORITHM FOR SOLID STATE

DEVICE DEVICE

R. P. INDURAJ
Department of electronics and communication, Bharath university, BIST selaiyur- India.,
induraj.gandhian@yahoo.com

Follow this and additional works at: https://www.interscience.in/ijess

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
INDURAJ, R. P. (2012) "A HARD REAL-TIME SCHEDULER ALGORITHM FOR SOLID STATE DEVICE,"
International Journal of Electronics Signals and Systems: Vol. 2 : Iss. 2 , Article 11.
DOI: 10.47893/IJESS.2012.1079
Available at: https://www.interscience.in/ijess/vol2/iss2/11

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Electronics Signals and Systems by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijess
https://www.interscience.in/ijess/vol2
https://www.interscience.in/ijess/vol2/iss2
https://www.interscience.in/ijess/vol2/iss2/11
https://www.interscience.in/ijess?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijess/vol2/iss2/11?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

A HARD REAL-TIME SCHEDULER ALGORITHM FOR SOLID
STATE DEVICE

INDURAJ.P.R

Department of electronics and communication,Bharath university,BIST, selaiyur- India.

Email: induraj.gandhian@yahoo.com

 Abstract: This paper presents an approach to use the solid state devices in hard real time application where delay in
retrieval or write of data to and fro to them can result in a catastrophe. This new algorithm proposes a new approach of
scheduling by considering the deadline’s associated with data’s, multiple synchronous read or write requests along with the
algorithm for overcoming the problem of performing new block writes resulting in I/O bottleneck.

Keywords: Deadlines, multiple synchronous requests, new block writing.

I. INTRODUCTION

Two Decade ago when magnetic storage

devices were introduced they started influencing
themselves in the area of storing large set of data’s
like entertainment files, etc. due to this invention of
many algorithm’s to make them effectively efficient
was at the peek. So far many algorithms have been
proposed as to how to make write and read in a
magnetic storage device and even many have been
proposed in order to reduce the seek time and
rotational latency due to spin of magnetic head in
order to make read or write, some algorithms
considerably notable are FCFS, STFS, SCAN, C-
SCAN, LOOK algorithm, etc [1, 2, 3, 4].

But with the advent of solid state devices,
their reduced size and higher data capacity and higher
data transfer rate became a notable factor that led to
the use of solid state device considerably go high in
the vast fields. With their high data capacity, no seek
time, reduced size and reduction in prices they are to
create an era where magnetic disk will rarely seen as
of tape recording devices & gramophones now.

With the portable and efficient nature of
solid state devices like flash drives they even tend to
replace magnetic storage devices used in black box of
avionics today and in other crucial applications where
role of magnetic storage devices is significant[5,6,7].

As the solid state drives do not possess a
rotating head or a rotating disk the algorithms
proposed to reduce seek rate, rotational latency for
magnetic storage devices as mentioned in the
operating system concept book cannot be
implemented. Considerably other operational
characteristics like FTL, different policies in FTL
have adverse effects on the performance of solid state
devices.

Even though deadline based disk scheduling
algorithm EDF [8] was proposed, considering the
deadline alone ignoring the relative position of data
will not produce satisfactory result in hard real time
system, many schedulers based on algorithms had
been
proposed with one considering to being better than
other by overcoming the limitation of its predecessor

algorithm. Some of the scheduling mechanism that
have been proposed like priority scan (PSCAN),
earliest deadline scan, feasible deadline scan (FD-
SCAN), scan-EDF, shortest earliest deadline by
order/value (SSEDO, SSEDV), etc [9, 10, 11, 12] all
these apply for a magnetic device and are not directly
applicable to solid state devices.

With modern system with high end
processor, the use of magnetic storage device results
in performance deterioration. With Moore’s law
stating that number of transistors used doubles every
decade resulting in increase of processor performance
but there exist a severe limitation in terms of data
transfer rate involved between processor and
magnetic storage device as the data transfer rate is
increasing only at the rate of half compared to that of
processors.
 With deadline’s involved in highly sensitive
hard real time systems, the idleness caused by
anticipatory algorithm [13] for overcoming deceptive
idleness would cause building of infinite queue, loss
of request, loss of data and even in catastrophe as the
scheduler tends to wait anticipating a request to be
received for a service to be performed on the same
block. And in order to achieve accurate performance
the resources must be used efficiently and effectively.
This becomes not possible due to erase on write
policy and many other policies being implemented on
solid state devices. There is also a need to schedule
the requests to acquire the device thus here we
propose an algorithm considering the case of both
multiple read and write requests that would appear in
real time application and to overcome the
disadvantage of writing to new block for each
request.
 In section II we introduce the description of
algorithm that have been previously proposed
depicting their incapability in highly sensitivity
environments and in section III we describe our
algorithm to be implemented on scheduler and
section IV being the conclusion

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-2

121

An Hard Real-time Scheduler Algorithm For Solid State Device

II. SCHEDULERS

 The mechanical disks in general cause i/o
bottle necks in large performance oriented data
intensive applications, this is due to those poor
read/write performance but flash based solid state
devices eliminate the i/o bottle neck problem. With
the stress on attaining performance and reliability
many scheduling methods were proposed.
Conventional scheduling methods to achieve
fairness[14, 15] and quanta based scheduling[16,17]
fail to recognize unique flash characteristics like
substantial read blocked by write, although i/o
anticipation was proposed as performance enhanced
seek reduction technique for mechanical drives, but
its role for maintaining farness has been largely
ignored. The quanta based scheduling suppress the i/o
parallelism between concurrent tasks which degrades
the i/o efficiency of flash devices.
 Many file system approaches such as log
structured file systems have been proposed to use the
special characteristics of the solid state devices and to
alleviate the problem of large seek times. SSD’s are
generally organized as multiple banks [18] with each
block size ranging from a minimum of 512 byte;
hence here data’s are stored and accessed in blocks
with a minimum granularity of 512 byte. To a data to
be written, an erase on write policy needs to be
implemented by which necessary blocks are
completely erased and a new data’s are written. Other
than this, process may request data to be written to a
new block forsaking the last used block in which
further operation can be carried out. Because of
which the performance efficiency of flash device
reduces.
 Adaptive disk scheduling [19] tends to
overcome a phenomenon called deceptive idleness. It
is made clear that disk schedulers are work
consuming, meaning that they select a request for
service before the previous requests are completed, so
when synchronous requests are received, each
process maintains at least one outstanding request’s at
any time. When schedulers make decision too early it
selects a request from other process with no prior
knowledge that the last processor itself will request
for service as soon as the current service is finished.
Thus causing the incoming request’s to wait for
service. To overcome the deceptive idleness, concept
of adaptive scheduling was used in which scheduler
after finishing a request; the scheduler tends to wait
anticipating a request to be received for a service to
be performed on the same block. Though it has been
assumed here that time spent on anticipating is
negligible, in hard real time systems expecting
multiple synchronous requests, even a small time
spent on anticipating by making requests from other
process to wait, could lead to building of infinite
queue and even in a catastrophe.

 The method proposed in [18] although
achieves performance by anticipating and looking
forward and backward of the block serviced. This
doesn’t provide a methodology to tackle building of
queues and applicability in hard real time system
becomes a questionnaire. Even many algorithms like
noop scheduler, deadline scheduler, complete fair
queuing has been proposed for magnetic disks they
become applicable with certain constraints like seek
time, rotational latency being omitted, but suffice for
applicability in hard real time.

III. ALGORITHM

 In the advent of proposing algorithm for
solid state devices used in highly sensitive real time
environments to overcome the problem of new block
write we develop this new algorithm for multiple
read/write requests satisfying hard real time
constraints.
 Our algorithm considers two entirely
different cases, one in which the write request to solid
state devices is asynchronous and another with
multiple synchronous request. Here we propose an
algorithm providing solutions to both cases
considering the way of satisfying real time constraints
like deadline associated with each requests.

Case I:

 When the solid state device receives
asynchronous write request (Rn=1) from different
processes as in fig (a) and fig (b), the solid state
device implemented by our algorithm checks whether
the received request are to write a data to the same
block (B) that was used lately or to a different block
(DB). If the request is to write a data to new block we
anticipate for a certain time till the time of arrival of
the next request which is negligible, the algorithm
proposed by[18] anticipates for a request to same
block during each time a new request arrives
irrespective of the request waiting to be served in
different block thus resulting in further idleness
which is not suitable for hard real time system but our
algorithm here anticipates only when there are no
multiple synchronous request thereby not making
other request to wait on queue i.e. building up an
infinite request queue, resulting in successful
schedule of all hard real time requests.

 In general, if two requests to write data
within the same are made, the algorithm by [18]
chooses the largest of the request received, writes the
data to the block and proceeds to the next waiting
smallest request. This scheduling of multiple request
based on the largest of request received will prove
wrong in real time if the largest request possessing
larger deadline is scheduled to be serviced other than
the smallest request with small deadline resulting in
the miss of the request with least deadline and also
this method works fine with multiple requests staked

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-2

122

An Hard Real-time Scheduler Algorithm For Solid State Device

Rxk Rxk+1 Scheduler Block

Rxk Scheduler Block Rxk+1

New
Block

 A. Asynchronous Request to same block

B. Asynchronous Request to new block

in the queue it doesn’t when multiple synchronous
requests are issued.

Thus we propose the idea of deadline based
scheduling along with the methodology to overcome
the new block write problem.

Here if a request is made to write within the
same block, our algorithm services the request and
then service the other request, and if the request is
made to write data outside the block, the algorithm
anticipates staying in the same block for a time by
which no queues are build and no requests are
missed, if the deadline of the anticipated request
(DARn+1 where n=xk) has the deadline greater than
the received request (DRxk), we service the received
request requesting the write of data in different block
and return to the previous block to service the
anticipated request.

while if the case is such that the if the
deadline of the anticipated request is lesser than the
deadline of the received request, then our scheduler
serves the anticipated request and then serves the
received request, after servicing the received request
if no new requests are received the scheduler waits to
receive a request in this new block and acts
accordingly.

Case II:

 Here we depict the case of how our
algorithm would handle when multiple synchronous
requests are received as in fig c and fig d.

 When multiple requests are made we assume
that for each request there exists a deadline associated
with it. So while scheduling, the deadlines associated
with each request are taken into account with the
knowledge of preventing new block write operation,
i.e. say that two simultaneous requests are made. The
scheduler first determines which of the two new
requests are made to the same block.

 If the two requests are made to the same
block then scheduler finds the request with least
deadline and responds to it first and then serves the
request with larger deadline.

If the two requests made are to write their
own data to different blocks other than the last
operated block, then our scheduler finds the request
with the least deadline serves it and then starts
servicing the request with larger deadline. If the first
request served is in different block it returns to the
previous block continues to serve the request made to
the same block and when the deadline of the request
made to the same block is least it services it and
moves to service the request made to write in
different block.

If requests are made to write into both within
the block and outside the block at the same time, the
scheduler first compares the deadline associated with
each request’s. If the deadline associated with the
request to write within the same block has the least
deadline the scheduler responds allowing a write to
be carried in the same block, but if the deadline
associated with the request to write outside the block
has the least deadline then our scheduler services the
request to write the data outside the block and returns
to the previous block thus servicing the waiting
request to write on the same block.

ALGORITHM:

1. Determine the latest serviced block (B)

2. If R=1 i.e. R={Rxk @ t1, Rxk+1 @

t2,…,R= Rxk+n @ tn }, where xk= {0,1,..n}
 If (Rxk = =B)

 Serve Rxk
 If (Rxk+1 != B)
 If (DARn+1>DRxk+1) where n = xk+1

 Serve Rxk+1 then
 Serve ARn+1

 If (DARn+1< DRxk+1)
 Serve ARn+1 then
 Serve Rxk+1

3. If Rn=0 i.e. R={Rxk,Rxk+1..Rn}@t1

 If (Rxk && Rx+1 ==B)
3.1.1 If (DRxk < DRxk+1)

 Serve Rxk then
 Serve Rxk+1

3.1.2 Else If (DRxk+1 > DRxk)
 Serve Rxk+1 then

Rxk

Rxk+1

Scheduler Block

Rxk Scheduler
Block

Rxk+1 New
Block

 C. Synchronous Request to same block

D. Synchronous Request to new block

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-2

123

An Hard Real-time Scheduler Algorithm For Solid State Device

 Serve Rxk
 If (Rxk && Rxk+1 != B)

3.2.1 If (DRxk<DRxk+1)
 Serve Rxk then
 Serve Rxk+1

3.2.2 Else If (DRxk+1 < DRx)
 Serve Rxk+1 then
 Serve Rxk

 If (Rx= =B && Rx+1 != B)
3.3.1 If (DRx < DRxk+1)

 Serve Rxk then
 Serve Rxk+1

3.3.2 Else If (DRxk+1 < DRxk)
 Serve Rxk+1
 Return to previous block
 Serve Rx

IV. CONCLUSION

 The same algorithm also applies to solving
the case of read on write block where multiple read
requests will cause a write request to be bypassed and
write on read block in which multiple write requests
will cause a read request to be bypassed in order to
avoid I/O bottle neck and also in the cases of multiple
read requests. It is evident from our algorithm that
multiple synchronous write request situations in hard
real time system can be handled effectively by
proceeding with our algorithm considering the
deadline, multiple request situations and anticipation.

REFERENCES

[1] EG.Coffmanand, M.Hofri.Onthe, “Expected Performance of

Scanning Disks” SIAM Journal of Computing, 10(1):60–70,
February 1982.

[2] EG.Coffman, LA.Klimko, and B.Ryan. ”Analysis of Scanning

Policies for Reducing Disk Seek Times” SIAM Journal of
Computing, 1(3): 269–279, September1972.

[3] PJ.Denning “Effects of Scheduling on File Memory

Operations” In Proceedings of AFIPSSJCC, page 9–21,
1967.

[4] R.Geistand, S.Daniel, “A Continuum of Disk Scheduling

Algorithms” ACM Transactions on Computer Systems,
5(1):77–92, February 1987.

[5] P. Reiher, A. Wang, G. Kuenning and G. Popek, “The

Conquest file system: Better performance through
disk/persistent-ram hybrid design”, ACM Trans on Storage,
2006.

[6] M.Wu and W.Zwaenpoel, “eNVY: A non-volatile, main

memory storage system”, ACM ASPLOS, 1994.

[7] E. Miller, S. Brandt and D. Long, “High performance reliable

MRAM enabled file system”, Proc. of USENIX HOTOS, May
2001

[8] CL.Liuand, JW.Layland, “Scheduling Algorithms for Multi-

programming in a Hard Real Time Environment”. Journal of
the ACM, 30:47–61, 1973

[9] R.K.Abbottand, H.Garcia-Molina, “Scheduling I/O Requests
with Deadlines: A Performance Evaluation” In Proceedings
of RTSS, page 113–124, December1990

[10] MJ.Carey, R.Jauhari, and M.Linvy.Priorityin, “DBMS

Resource Scheduling” In Proceedings of the 15th VLDB
Conference, 1989.

[11] S.Chen, J.A.Stankovic, J.F.Kurose, and D.Towsley

“Performance Evaluation of Two New Disk Scheduling
Algorithms for Real-Time Systems”, Journal of Real-Time
Systems, 3:307–336, 1991

[12] A.L.Narasimha Reddy and J.Wyllie, “Disk Scheduling in

Multimedia I/O System” In Proceedings of ACM
Multimedia’93, Anaheim, CA, page 225–234, August1993

[13] S. Iyer and P. Druschel, “Anticipatory scheduling: a disk

scheduling framework to overcome deceptive idleness in
synchronous I/O”, Proc of ACM SOSP, 2001

[14] J.Bruno, J.Brustoloni, E.Gabber, B.Ozden, and

A.Silberschatz. “Disk scheduling with quality of service
quarantees”.In IEEE Int’ lConf.on Multimedia Computing
and Systems, pages 400–405, Florence, Italy, June1999

[15] W.Jin,J.S.Chase,andJ.Kaur “Interposed proportional sharing

for a storage service utility” In ACMSIGMET-RICS,
pages37–48, NewYork, NY, June2004

[16] J.Axboe, “Linux block I/O—present and future” In Ottawa

Linux Symp, page 51–61, Ottawa, Canada, July2004

[17] M.Wachs, M.Abd-El-Malek, E.Thereska and G.R.Ganger

Argon “Performance insulation for shared storage servers”
.In FAST’07 : 5th USENIX Conf.on File and Storage
Technologies, pages 61–76, SanJose, CA, Feb 2007.

[18] Marcus Dunn and A. L. Narasimha Reddy, “A New IO

scheduler for solid state devices” Publisher by Texas A&M
University

[19] Sitaram Iyer, Peter Druschel “Anticipatory scheduling: A disk

scheduling framework to overcome deceptive idleness in
synchronous I/O” in proceedings of 18th ACM symposium on
operating systems principles (SOSP 2001).

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-2

124

	A HARD REAL-TIME SCHEDULER ALGORITHM FOR SOLID STATE DEVICE
	Recommended Citation

	A HARD REAL-TIME SCHEDULER ALGORITHM FOR SOLID STATE DEVICE

