
International Journal of Electronics Signals and Systems International Journal of Electronics Signals and Systems

Volume 3 Issue 1 Article 15

July 2013

SELF OPTIMIZING KERNEL WITH HYBRID SCHEDULING SELF OPTIMIZING KERNEL WITH HYBRID SCHEDULING

ALGORITHM ALGORITHM

AMOL VENGURLEKAR
Department of Electronics Engineering, D J. Sanghavi College of Engineering, Mumbai, India,
amol_1991@gmail.com

ANISH SHAH
Department of Electronics Engineering, D J. Sanghavi College of Engineering, Mumbai, India,
shahanish001@yahoo.com

AVICHAL KARIA
Department of Electronics Engineering, D J. Sanghavi College of Engineering, Mumbai, India,
avichalkaria@gmail.com

Follow this and additional works at: https://www.interscience.in/ijess

Digital

Commons

Network

Logo

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
VENGURLEKAR, AMOL; SHAH, ANISH; and KARIA, AVICHAL (2013) "SELF OPTIMIZING KERNEL WITH
HYBRID SCHEDULING ALGORITHM," International Journal of Electronics Signals and Systems: Vol. 3 : Iss.
1 , Article 15.
DOI: 10.47893/IJESS.2013.1141
Available at: https://www.interscience.in/ijess/vol3/iss1/15

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Electronics Signals and Systems by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijess
https://www.interscience.in/ijess/vol3
https://www.interscience.in/ijess/vol3/iss1
https://www.interscience.in/ijess/vol3/iss1/15
https://www.interscience.in/ijess?utm_source=www.interscience.in%2Fijess%2Fvol3%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=www.interscience.in%2Fijess%2Fvol3%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijess/vol3/iss1/15?utm_source=www.interscience.in%2Fijess%2Fvol3%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

SELF OPTIMIZING KERNEL WITH HYBRID
SCHEDULING ALGORITHM

AMOL VENGURLEKAR1, ANISH SHAH2 & AVICHAL KARIA3

1,2&3Department of Electronics Engineering, D J. Sanghavi College of Engineering, Mumbai, India
E-mail: amol_1991@gmail.com, shahanish001@yahoo.com, avichalkaria@gmail.com

Abstract— In this paper an operating system with a unique Hybrid scheduling algorithm (HSA) is proposed. The HSA
incorporates the scheduling policies of both Round robin and priority based scheduling techniques along with a smart kernel
which will self-optimize the system by providing a variable time slice to the tasks. The objective of developing this operating
system is to improve the system efficiency and with an optimized usage of the resources available for the tasks, radically in
terms of context switches and average waiting time.

Keywords: Operating system, Hybrid scheduling algorithm, Self-optimize , variable time slice, context switcing.

I. INTRODUCTION

An operating system is basically an interface between
applications and physical resources. Operating
Systems are basically classified under two major
categories, Real Time Operating Systems and General
Purpose Operating Systems.

A Real Time Operating System is the one which is
deterministic in terms of its application and is very
time sensitive whereas, General Purpose Operating
System is the one which is non-deterministic, time
insensitive and the one which can use virtual memory
concept. Here an RTOS should be pre-emptible to
enable multi-tasking. A system of priority inheritance
has to exist along with a proper estimate of the
interrupt latency so that we can have an optimized
scheduling algorithm with which we can carry out two
major functions of multi-tasking and resource
guarding which will in turn affect the task handling
capacity and improve the efficiency of the operating
system making it more reliable.

II. FUNCTIONS OF KERNEL

A. Context Switching:
Context Switching is the process of switching over
from one process to another in as operating system
environment. The context consists of all the things
that define the state of the process and the processor.
This varies depending upon the architecture of the
processor and the operating system constraints.
Usually the context consists of the Program Counter,
the Stack Pointer, all CPU registers. The entire
context is saved on the process stack during the
context switch.

Steps of Context Switching:

 Scheduler Interrupt arrives.
 All context of the current process is saved

onto current process stack.

 The kernel is executed and scheduler is
called.

 The scheduler determines the next process to
be executed.

 The stack pointer is changed to the top of
stack of the new process

 The context of the new process is popped
from the process stack.

 Return from Scheduler Interrupt

B. Resources Guarding:
Resource guarding is a critical function of any
operating system kernel. The kernel has to allocate
resources to processes as and when the processes
request them. If a particular resource is not available
then the kernel cannot allow the process access to that
resource. The process will then take appropriate
action or the kernel will block the process from
execution. For example if two processes request for a
USART access then only one (whichever requests
first) will get access to the USART. The kernel
cannot allow both the processes to access because
they will corrupt each other’s communication. This is
accomplished by programming practices like
semaphores and mutexes. Situations like the 'Dining
Philosophers Problem must also be handled by the
kernel by effective manipulation of the semaphores.

Figure (a) Dinning Philoshophers Problem

III. SCHEDULING ALGORITHMS

Whenever we have more than one task to handle, its
necessary to decide the task that has to be executed

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-3, ISS-1

66

Self Optimizing Kernel With Hybrid Scheduling Algorithm

and proper resource allocation so that we can avoid
the condition of deadlock. Some of the traditional
scheduling algorithms are:

A. Shortest Job First:
In SJF priority is associated with each process, and
the CPU is allocated to the process with the highest
priority. Equal-priority processes are scheduled in
FCFS order. An SJF algorithm is simply a priority
algorithm where the priority (p) is the inverse of the
(predicted) next CPU burst. The larger the CPU burst,
the lower the priority, and vice versa. Here the
execution of the task is also decided by the waiting
time of the task.

Here we can take the following as an example of the
SJF scheduling algorithm.

Figure (b) SJF

Thus according to the burst time and the waiting time
in the above example task P2 is executed first and P4
at the end.

B. Round Robin scheduling algorithm:
The round-robin (RR) scheduling algorithm is
designed especially for time-sharing systems. It is
similar to FCFS scheduling, but pre-emption is added
to switch between processes. A small unit of time,
called a time quantum or time slice, is defined. A
time quantum is generally from 10 to 100
milliseconds. The ready queue is treated as a circular
queue.

Figure(c) Round Robin

The above is an example which illustrates the round rin
scheduling algorithm in which the time slice for a task is of
four units. Here a task after being serviced for the provided
number of time slices will have the lowest priority. Thus
the above tasks will be executed in the order shown in
figure (c).

IV. HYBRID SCHEDULING ALGORITHM

Many of the traditional algorithms concentrate on
either varying the time slice provided or varying the
priority of the task in order to implement task
handling efficiently. Ours algorithm brings in a new
concept of combining static prioritized scheduling
with sub priorities to be executed in a round robin
pattern. Our novel Hybrid Algorithm expands the
domain to schedule to a high priority task in a
proficient way.

Figure (d) HSA

The above figure illustrates the Hybrid Scheduling
Algorithm, in which we have eight static priorities
and each static priority has eight sub-priorities. To
recognize the task which has the highest priority we
have a concept of array check.

A. Array Check
Here we have an 8x8 matrix to represent occurrence
of 64 different tasks. Further, to represent every row
we have an 8x1 array. The array check is used to
represent occurrence of a task in any row. According
to the figure (d) the priority of task in row P0 is the
highest and in P7 is the lowest.

B. Sub-Priority
In a row we have 8 different tasks with same priority.
These tasks are scheduled in a round robin pattern
based on the sub priority with C0 as the highest and
C7 to be the lowest.

Figure (e) Tasks

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-3, ISS-1

67

Self Optimizing Kernel With Hybrid Scheduling Algorithm

The above figure (e) shows the sorting of the tasks as
shown in figure (d) with respect to their priorities.
The bits in the array check shown in figure (d) are
used to identify the row in which tasks with the
highest priority are available. It then checks for
columns for the highest sub priority task which will
be then executed.

Tasks ready in the same row are circularly queued for
execution. Thus according to the algorithm P2,C1
will be executed first. The tasks P4,C2 and P4,C5 will
be executed in round robin pattern after execution of
P2,C1 and the task P5,C1 will be executed in the end.

V. SELF OPTIMIZATION IN HYBRID

ALGORITHM

A general idea of improving on scheduling policy in a
system seems inadequate. Hence we came up with a
concept of self-optimization. The unique and effective
idea of self-optimization during the task handling will
be removal of the time taken by the kernel to shift
between two tasks. Here, self-optimization will
require a large number of samples of time slices
required to get the task done or the amount of system
ticks after which the task terminates itself. Based on
these values factors like range, threshold and mean are
calculated. These values are used to decide the self-
optimizing factor.

Figure (f): Flow Chart for Self Optimization.

The following figure shows execution of the tasks as
per the suggested Hybrid Scheduling Algorithm with
self-optimization, taking into account the priorities in
both the rows and columns for problem in figure (e).

Figure (g)

Increasing the sample space and considering non-liner
factors we can further improve the self-optimization
factor. We are still working on process of
incorporating various other factors like event t_max,
event t_min and the above mentioned non-linear
factor to further improve the process of self-
optimization and implement it on a larger scale. Let us
consider an example as shown in the figure (h) below
for task1 to task4

Figure (h)

Taking modulous for all the system ticks we get

Figure(i)

The various deciding factors are:

Task Range Mean Standard Deviation

Task1 5 13 3.74
Task2 5 22.67 3.55
Task3 3 11 2.23
Task4 40 31.17 37.77

Table (1)
Considering linear system with factors like mean and
standard deviation:

Offset = Mean + Range
For the above tasks the offset values are

Table (2)

Task Offset Self-optimization

Task1 18 Yes

Task2 27.67 Yes

Task3 14 Yes

Task4 - Non-linear system

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-3, ISS-1

68

Self Optimizing Kernel With Hybrid Scheduling Algorithm

VI. PARAMETERS FOR SELF

OPTIMIZATION

 Range: After taking the modulus of the
system ticks (Burst- time) with the time slice
provided to the task , the maximum difference
between non-zero values is known as range.

 Mean: The average of non-zero entities after
taking the modulous is known as mean.

 Threshold (T_max): The maximum value of
the non-zero enity after taking the modulous
for which optimization is performed .

 Event T_max and Event T_min: The number
of occurances of T_max and T_min
respectively.

 Offset: Offset is self-optimizing factor which
is integrated with the time slice to achieve
optimization. The value of offset is the main
factor to increase the effeciency of the system.

VII. COMPARISION BETWEEN ROUN-

DROBIN, SJF & HSA WITH SELF
OPTIMIZATION

A. Optimised Hybrid (HSA)Vs round robin

Consider the example of four tasks taken earlier in
figure (e) where burst time is defined. The tasks will
be serviced in a different way for different
algorithms, it is as follows:

Figure (j)

As we can see that the number of system ticks
required for executing all the four tasks in round
robin type scheduling is more than the system ticks
required in HSA with optimization. Here in the above
example we have saved 30 system ticks, 0.024% of
the total system ticks is saved when we used HSA in
place of round robin for scheduling the tasks. For ‘n’
times execution of the tasks the saved ticks would be
‘30*n’.

B. Optimised Hybrid (HSA) Vs Shortest Job

First
Shown below in the figure (k) is the task scheduling
scheme using Optimized Hybrid Scheduling
Algorithm and Shortest Job First scheduling
algorithms for the problem in figure (e).

Figure (k)

Here the SJF alogirthm executes the tasks in less
number system ticks but it does not switching to the
other task untill it executes the task with
comparivtively low burst time first. This gives you
low flexibility as the programmer. Here the priority is
always decided by the burst time which might not
work well for various applications. All the above
drawbacks are covered well in the optimized HSA
algorithm.

Figure (l): Comparison

The above graph shows the comparison for the
various scheduling algorithms i.e. The SJF,
Optimized HSA and Round Robin.

VIII. EXPERIMENTAL AND THEROITICAL
RESEARCH

We are currently developing a Real Time Operating
System based on our hybrid scheduling algorithm.
We aim to be able to introduce a new task at runtime
without any change in current execution. We have
worked on an auto-optimization algorithm that will
increase the overall efficiency of the operating
system. We are trying to incorporate non-linear
factors and other variables like Event_Tmax and
Event_Tmin to further improve the efficiency of the
system. For our RTOS we have chosen an LPC1768
microcontroller by NXP. The LPC1768 uses the
ARM cortex-m3 architecture. This architecture
provides us with an on chip dedicated 24 bit system
tick timer which we use as our kernel timer. This
microcontroller has an NVIC (Nested Vectored
Interrupt Controller). It allows high priority interrupts
to preempt low priority interrupts. It also supports
Tail-Chaining and reduces the latency period.

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-3, ISS-1

69

Self Optimizing Kernel With Hybrid Scheduling Algorithm

IX. CONCLUSION

From the above experimental analysis it is clear that
the proposed Hybrid Scheduling algorithm has
advantages in terms of the user having more freedom
in terms of priorities and it is more efficient when
combined with the concept of self-optimization of the
system.

REFERENCES

[1] White Paper - An Introduction to the ARM Cortex-M3

Processor by Shyam Sadasivan October 2006.

[2] David B. Stewart and Pradeep K. Khosla: Real-
TimeScheduling of Dynamically Reconfigurable

Systems,Proceedings of the IEEE International Conference
on Systems pp 139-142, August, 1991.

[3] D. Probert, J.L. Bruno, and M. Karzaorman. SPACE: A new
approach to operating system abstraction. In International
Workshop on Object Orientation in Operating Systems, pages
133–137, October 1991.

[4] Yaashuwanth and R. Ramesh, : A New SchedulingAlgorithm
for Real Time System, International Journal of Computer
and Electrical Engineering (IJCEE), Vol. 2, No. 6,pp 1104-
1106, December, 2010

[5] Exokernel: An Operating System Architecture for
Application-Level Resource Management Dawson R. Engler,
M. Frans Kaashoek, and James O’Toole Jr.M.I.T. Laboratory
for Computer Science.

[6] http://www.quasarsoft.com/downloads/qKernelFeatureGuide.
pdf

 International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-3,,ISS-1

70

	SELF OPTIMIZING KERNEL WITH HYBRID SCHEDULING ALGORITHM
	Recommended Citation

	SELF OPTIMIZING KERNEL WITH HYBRID SCHEDULING ALGORITHM

