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Abstract—Computer systems and micro architecture researchers 
have proposed using hardware data compression units within the 
memory hierarchies of microprocessors in order to improve 
performance, energy efficiency, and functionality. However, most 
past work, and all work on cache compression, has made 
unsubstantiated assumptions about the performance, power 
consumption, and area overheads of the proposed compression 
algorithms and hardware. In this work, I present a lossless 
compression algorithm that has been designed for fast on-line 
data compression, and cache compression in particular. The 
algorithm has a number of novel features tailored for this 
application, including combining pairs of compressed lines into 
one cache line and allowing parallel compression of multiple 
words while using a single dictionary and without degradation in 
compression ratio. We reduced the proposed algorithm to a 
register transfer level hardware design, permitting performance,
power consumption, and area estimation. 

Index Terms—Cache compression, effective system-wide
compression ratio, hardware implementation, pair matching, 
parallel compression.

I. INTRODUCTION

THIS paper addresses the increasingly important issue of 
controlling off-chip communication in computer systems in 
order to maintain good performance and energy efficiency.
Microprocessor speeds have been increasing faster than off-
chip memory latency, raising a “wall” between processor and 
memory. The ongoing move to chip-level multiprocessors
(CMPs) is further increasing the problem; more processors
require more accesses to memory, but the performance of the 
processor-memory bus is not keeping pace. Techniques that 
reduce off-chip communication without degrading 
performance have the potential to solve this Problem. Cache 
compression is one such technique; data in last-level on-chip 
caches, e.g., L2 caches, are compressed, resulting in larger 
usable caches. In the past, researchers have reported that 
cache compression can improve the performance of 
uniprocessors by up to 17% for memory-intensive 
Commercial workloads [1] and up to 225% for memory-
intensive scientific workloads [2]. Researchers have also 
found that cache compression and pre fetching techniques can 
improve CMP throughput by 10%–51% [3]. However, past 
work did not demonstrate whether the proposed 
compression/decompression hardware is appropriate for cache
compression, considering the performance, area, and power
consumption requirements. This analysis is also essential to
permit the performance impact of using cache compression to
be estimated.

Cache compression presents several challenges. First,
decompression and compression must be extremely fast: a 
significant increase in cache hit latency will overwhelm the 
advantages of reduced cache miss rate. This requires an
efficient on-chip decompression hardware implementation 
second; the hardware should occupy little area compared to
the corresponding decrease in the physical size of the cache,
and should not substantially increase the total chip power
consumption. Third, the algorithm should losslessly compress
small blocks, e.g., 64-byte cache lines, while maintaining a
good compression ratio (throughout this paper we use the term
Compression ratio to denote the ratio of the compressed data
size over the original data size). Conventional compression
algorithm quality metrics, such as block compression ratio, are 
not appropriate for judging quality in this domain. Instead,
one must consider the effective system-wide compression 
ratio (defined precisely in Section IV.C). This paper will point 
out a number of other relevant quality metrics for cache
compression algorithms, some of which are new. Finally,
cache compression should not increase power consumption 
substantially. The above requirements prevent the use of high-
overhead compression algorithms such as the PPM family of 
algorithms [4] or Burrows-Wheeler transforms [5]. A faster 
and lower-overhead technique is required.

II. CACHE COMPRESSION ARCHITECTURE

In this section, we describe the architecture of a CMP 
system in which the cache compression technique is used. We 
consider private on-chip L2 caches, because in contrast to a 
shared L2 cache, the design styles of private L2 caches remain 
consistent when the number of processor cores increases. We
also examine how to integrate data prefetching techniques into 
the system.

Fig. 1 gives an overview of a CMP system with n 
processor cores. Each processor has private L1 and L2 caches. 
The L2 cache is divided into two regions: an uncompressed 
region (L2 in the figure) and a compressed region (L2C in the 
figure). For each processor, the sizes of the uncompressed 
region and compression region can be determined statically or 
adjusted to the processor’s needs dynamically. In extreme 
cases, the whole L2 cache is compressed due to capacity 
requirements, or uncompressed to minimize access latency. 
We assume a three-level cache hierarchy consisting of L1 
cache, uncompressed L2 region, and compressed L2 region. 
The L1 cache communicates with the uncompressed region of 
the L2 cache, which in turn exchanges data with the 
compressed region through the compressor and decompressor, 
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i.e., an uncompressed line can be compressed in the 
compressor and placed in the compressed region, and vice 
versa. Compressed L2 is essentially a virtual layer in the 
memory hierarchy with larger size, but higher access latency, 
than uncompressed L2. Note that no architectural changes are 
needed to use the proposed techniques for a shared L2 cache. 
The only difference is that both regions contain cache lines 
from different processors instead of a single processor, as is 
the case in a private L2 cache.

Fig. 1. System architecture in which cache compression is used.

III. C-PACK COMPRESSION ALGORITHM

This section gives an overview of the proposed C-
Pack compression algorithm. We first briefly describe the 
algorithm and several important features that permit an 
efficient hardware implementation, many of which would be 
contradicted for a software implementation. We also discuss 
the design trade-offs and validate the effectiveness of C-Pack 
in compressed-cache architecture.

A. Design Constraints and Challenges

We first point out several design constraints and 
challenges particular to the cache compression problem.

1) Cache compression requires hardware that can 
de/compress a word in only a few CPU clock cycles. 
This rules out software implementations and has 
great influence on compression algorithm design.

2) Cache compression algorithms must be lossless to 
maintain correct microprocessor operation.

3) The block size for cache compression applications is 
smaller than for other compression applications such 
as file and main memory compression. Therefore, 
achieving a low compression ratio is challenging.

4) The complexity of managing the locations of cache 
lines after compression influences feasibility.
Allowing arbitrary, i.e., bit-aligned, locations would 
complicate cache design to the point of infeasibility. 
A scheme that permits a pair of compressed lines to 
fit within an uncompressed line is advantageous.

B. C-Pack Algorithm Overview

C-Pack (for Cache Packer) is a lossless compression
algorithm designed specifically for high-performance 
hardware- based on-chip cache compression. It achieves a 
good compression ratio when used to compress data 
commonly found in microprocessor low-level on-chip caches, 
e.g., L2 caches. Its design was strongly influenced by prior 
work on pattern- based partial dictionary match compression. 
However, this prior work was designed for software-based 
main memory compression and did not consider hardware 
implementation.

C-Pack achieves compression by two means: (1) it 
uses statically decided, compact encodings for frequently 
appearing data words and (2) it encodes using a dynamically 
updated dictionary allowing adaptation to other frequently 
appearing words. The dictionary supports partial word 
matching as well as full word matching. The patterns and 
coding schemes used by C-Pack are summarized in Table I, 
which also reports the actual frequency of each pattern 
observed in the cache trace data. The ‘Pattern’ column 
describes frequently appearing patterns, where ‘z’ represents a 
zero byte, ‘m’ represents a byte matched against a dictionary 
entry, and ‘x’ represents an unmatched byte. In the ‘Output’ 
column, ‘B’ represents a byte and ‘b’ represents a bit.
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The C-Pack compression and decompression 
algorithms are illustrated in Fig. 2. We use an input of two 
words per cycle as an example in Fig. 2. However, the 
algorithm can be easily extended to cases with one, or more 
than two, words per cycle. During one iteration, each word is 
first compared with patterns “zzzz” and “zzzx”. If there is a 
match, the compression output is produced by combining the 
corresponding code and unmatched bytes as indicated in Table 
I. Otherwise; the compressor compares the word with all 
dictionary entries and finds the one with the most matched

Fig. 2. Compression examples for different input words.

bytes. The compression result is then obtained by combining 
code, dictionary entry index, and unmatched bytes, if any. 
Words that fail pattern matching are pushed into the 
dictionary. Fig. 2 shows the compression results for several 
different input words. In each output, the code and the 
dictionary index, if any, are enclosed in parentheses. Although 
we used a 4-word dictionary in Fig. 2 for illustration, the 
dictionary size is set to 64 B in our implementation. Note that 
the dictionary is updated after each word insertion, which is 
not shown in Fig. 2.

During decompression, the decompressor first reads 
compressed words and extracts the codes for analyzing the 
patterns of each word, which are then compared against the 
codes defined in Table I. If the code indicates a pattern match, 
the original word is recovered by combining zeroes and 
unmatched bytes, if any. Otherwise, the decompression output 
is given by combining bytes from the input word with bytes 
from dictionary entries, if the code indicates a dictionary 
match.

The C-Pack algorithm is designed specifically for 
hardware implementation. It takes advantage of simultaneous 

comparison of an input word with multiple potential patterns 
and dictionary entries. This allows rapid execution with good 
compression ratio in a hardware implementation, but may not 
be suitable for a software implementation. Software 
implementations commonly serialize operations. For example, 
matching against multiple patterns can be prohibitively 
expensive for software implementations when the number of 
patterns or dictionary entries is large. C-Pack’s inherently 
parallel design allows an efficient hardware implementation, 
in which pattern matching, dictionary matching, and 
processing multiple words are all done simultaneously. In 
addition, we chose various design parameters such as 
dictionary replacement policy and coding scheme to reduce 
hardware complexity, even if our choices slightly degrade the 
effective system-wide compression ratio.

In the proposed implementation of C-Pack, two 
words are processed in parallel per cycle. Achieving this,
while still permitting an accurate dictionary match for the 
second word, is challenging. Let us consider compressing two 
similar words that have not been encountered by the 
compression algorithm recently, assuming the dictionary uses 
first-in first-out (FIFO) as its replacement policy. The 
appropriate dictionary content when processing the second 
word depends on whether the first word matched a static 
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pattern. If so, the first word will not appear in the dictionary. 
Otherwise, it will be in the dictionary, and its presence can be 
used to encode the second word. Therefore, the second word 
should be compared with the first word and all but the first 
dictionary entry in parallel. This improves compression ratio 
compared to the more naïve approach of not checking with the 
first word. Therefore, we can compress two words in parallel 
without compression ratio degradation.

IV. EVALUATION

In this section, we present the evaluation of the C-
Pack hardware. We first present the performance, power 
consumption, and area overheads of the compression or 
decompression hardware when synthesized for integration 
within a microprocessor. Then, we compare the compression 
ratio and performance of C-Pack to other algorithms 
considered for cache compression: MXT [6], X-match, and 
FPC. Finally, we describe the implications of our findings on
the feasibility of using C-Pack based cache compression 
within a microprocessor.

A. C-Pack Synthesis Results

We synthesized our design using Synopsys Design 
Compiler with 180 nm, 90 nm, and 65 nm libraries. Table IV 
presents the resulting performance, area, and power 
consumption at maximum internal frequency. “Loc” refers to 
the compressed line locator/arbitrator in a pair-matching 
compressed cache and “worst-case delay” refers to the number 
of cycles required to compress, decompress, or locate a 64 B 
line in the worst case. As indicated in Table IV, the proposed 
hardware design achieves a throughput of 80 Gb/s (64 B x
1.25 GHz) for compression and 76.8 Gb/s (64 B x 1.20 GHz) 
for decompression in a 65 nm technology. Its area and power 
consumption overheads are low enough for practical use. The 
total power consumption of the compressor, decompressor, 
and compressed line arbitrator at 1 GHz is 48.82 mW (32.63 
mW/1.25 GHz + 24.14 mW/1.20 GHz + 5.20 mW/2.00 GHz) 
in a 65 nm technology. This is only 7% of the total power 
consumption of a 512 KB cache with a 64 B block size at 1 
GHz in 65 nm technology, derived using CACTI 5 .

B. Comparison of Compression Ratio

We compare C-Pack to several other hardware 
compression designs, namely X-Match, FPC, and MXT, that 
may be considered for cache compression. We exclude other 
compression algorithms because they either lack hardware 
designs or are not suitable for cache compression. Although 
the proposed hardware implementation mainly targets online 
cache compression, it can also be used in other high-
performance lossless data compression applications with few 
or no changes. We tested the compression ratios of different 
algorithms on four cache data traces gathered from a full 
system simulation of various workloads from the Media bench 
and SPEC CPU2000 benchmark suites. The block size and the 

dictionary size are both set to 64 B in all test cases. Since we 
are unable to determine the exact compression algorithm used 
in MXT, we used the LZSS Lempel-Ziv compression 
algorithm to approximate its compression ratio. The raw 
compression ratios and effective system-wide compression 
ratios in a pair-matching scheme are summarized in Table V. 
Each row shows the raw compression ratios and effective 
system-wide compression ratios using different compression 
algorithms for an application. As indicated in Table V, raw 
compression ratio varies from algorithm to algorithm, with X-
Match being the best and MXT is being the worst on average. 
The poor raw compression ratios of MXT are mainly due to 
its limited dictionary size. The same trend is seen for effective 
system-wide compression ratios: X-Match has the lowest 
(best) and MXT has the highest (worst) effective system-wide 
compression ratio. Since the raw compression ratios of X-
Match and C-Pack are close to 50%, they achieve better 
effective system-wide compression ratios than MXT and FPC. 
On average, C-Pack’s system-wide compression ratio is 
2.76% worse than that of X-Match, 6.78% better than that of 
FPC, and 10.3% better than that of MXT.

C. Comparison of Hardware Performance

This subsection compares the decompression latency, peak
frequency, and area of C-Pack hardware to that of MXT, X-
Match, and FPC. Power consumption comparisons are
excluded because they are not reported for the alternative
compression algorithms. Decompression latency is defined as
the time to decompress a 64 B cache line.

1) Comparing C-Pack with MXT: MXT has been
implemented in a memory controller chip operating 
at 133 MHz using 0.25 m CMOS ASIC technology. 
The decompression rate is 8 B/cycle with 4 
decompression engines. We scale the frequency up to 
511 MHz, i.e., its estimated frequency based on 
constant electrical field scaling if implemented in a 
65 nm technology. 511 MHz is below a modern high-
performance processor frequency. We assume an on-
chip counter/divider is available to clock the MXT 
decompressor. However, decompressing a 64 B 
cache line will take 16 processor cycles in a 1 GHz 
processor, twice the time for C-Pack. The area cost 
of MXT is not reported.

2)
3) Comparing C-Pack with X-Match: X-Match has been

implemented using 0.25 m field programmable gate array
(FPGA) technology. The compression hardware achieved a
maximum frequency of 50 MHz with a throughput of 200 
MB/s. To the best of our knowledge, the design was not 
synthesized using a flow suitable for microprocessors. 
Therefore, we ported our design for C-Pack for synthesis to 
the same FPGA used for X-Match in order to compare the 
peak frequency and the throughput. Evaluation results indicate 
that our C-Pack implementation is able to achieve the same 
peak frequency as X-Match and a throughput of 400 MB/s, 
i.e., twice as high as X-Match’s throughput. Note that in 
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practical situations; C-Pack should be implemented using an 
ASIC flow due to performance requirement for cache 
compression.

4) Comparing C-Pack with FPC: FPC has not been 
implemented on a hardware platform. Therefore, no 
area or peak frequency numbers are reported. To 
estimate the area cost of FPC, we observe that the 
FPC compressor and decompressor are decomposed
into multiple pipeline stages as described in its 
tentative hardware design. Each of these stages 
imposes area overhead. For example, assuming each 
2-to-1 multiplexer takes 5 gates, the fourth stage of 
the FPC decompression pipeline takes approximately 
290 K gates or 0.31 mm in 65 nm technology, more 
than the total area of our compressor and 
decompressor. Although this work claims that time-
multiplexing two sets of barrel shifters could help 
reduce area cost, our analysis suggest that doing so 
would increase the overall latency of decompressing 
a cache line to 12 cycles, instead of the claimed 5 
cycles. In contrast, our hardware implementation 
achieves much better compression ratio and a 
comparable worst-case delay at a high clock
frequency, at an area cost of 0.043 mm compressor 
and 0.043 mm decompressor in 65 nm technology.

D. Implications on Claims in Prior Cache Compression 
Work

Many prior publications on cache compression 
assume the existence of lossless algorithms supporting a 
consistent good compression ratio on small (e.g., 64-byte) 
blocks and allowing decompression within a few 
microprocessor clock cycles (e.g., 8 ns) with low area and 
power consumption overheads. Some publications assume that 
existing Lempel-Ziv compression algorithm based hardware 
would be sufficient to meet these requirements [2]; these 
assumptions are not supported by evidence or analysis. Past
work also placed too much weight on cache line compression 
ratio instead of effective system-wide compression ratio. As a 
result, compression algorithms producing lower compressed
line sizes were favored.

However, the hardware overhead of permitting 
arbitrary locations of these compressed lines prevents 
arbitrary placement, resulting in system-wide compression 
ratios much poorer than predicted by line compression ratio. 
In fact, the compression ratio metric of merit for cache
compression algorithms should be effective system-wide 
compression ratio, not average line compression ratio. 
Alameldeen et al. proposed segmented compression ratio, 
an idea similar to system-wide compression ratio. However, 
segmented compression ratio is only defined for a 
segmentation-based approach with fixed-size segments. 
Effective system-wide compression ratio generalizes this idea 
to handle both fixed size segments (segmentation-based 

schemes) and variable length segments (pair-matching based 
schemes). C-Pack was designed to optimize performance, 
area, and power consumption under a constraint on effective 
system-wide compression ratio. C-Pack meets or exceeds the 
requirements assumed in former micro-architectural research 
on cache compression. It therefore provides a proof of concept 
supporting the system-level conclusions drawn in much of this 
research. Many prior system-wide cache compression results 
hold, provided that they use a compression algorithm with 
characteristics similar to C-Pack.

V. CONCLUSION

This paper has proposed and evaluated an algorithm 
for cache compression that honors the special constraints this 
application imposes. The algorithm is based on pattern 
matching and partial dictionary coding. Its hardware 
implementation permits parallel compression of multiple 
words without degradation of dictionary match probability. 
The proposed algorithm yields an effective system-wide 
compression ratio of 61%, and permits a hardware 
implementation with a maximum decompression latency of 
6.67 ns in 65 nm process technology. These results are
superior to those yielded by compression algorithms 
considered for this application in the past. Although the 
proposed hardware implementation mainly targets online 
cache compression, it can also be used in other high-
performance lossless data compression applications with few 
or no modifications.
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