
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 8 Issue 2 Article 13

April 2017

Cigarette-Smokers’ Problem with STM Cigarette-Smokers’ Problem with STM

Rup Kamal
Department of Information Technology, Jadavpur University Kolkata, India, rupkamal@gmail.com

Ryan Saptarshi Ray
Department of Information Technology Jadavpur University, Kolkata, India, ryan.ray@rediffmail.com

Utpal Kumar Ray
Department of Information Technology, Jadavpur University Kolkata, India, utpalkumarray@gmail.com

Parama Bhaumik
Department of Information Technology, Jadavpur University Kolkata, India, paramabhaumik@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Kamal, Rup; Ray, Ryan Saptarshi; Ray, Utpal Kumar; and Bhaumik, Parama (2017) "Cigarette-Smokers’
Problem with STM," International Journal of Computer and Communication Technology: Vol. 8 : Iss. 2 ,
Article 13.
DOI: 10.47893/IJCCT.2017.1414
Available at: https://www.interscience.in/ijcct/vol8/iss2/13

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol8
https://www.interscience.in/ijcct/vol8/iss2
https://www.interscience.in/ijcct/vol8/iss2/13
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol8%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol8/iss2/13?utm_source=www.interscience.in%2Fijcct%2Fvol8%2Fiss2%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Cigarette-Smokers’ Problem with STM

Rup Kamal, Ryan Saptarshi Ray, Utpal Kumar Ray & Parama Bhaumik

Department of Information Technology,
Jadavpur University Kolkata, India

Abstract - The past few years have marked the start of a
historic transition from sequential to parallel computation. The
necessity to write parallel programs is increasing as systems
are getting more complex while processor speed increases are
slowing down. Current parallel programming uses low-level
programming constructs like threads and explicit
synchronization using locks to coordinate thread execution.
Parallel programs written with these constructs are difficult to
design, program and debug. Also locks have many drawbacks
which make them a suboptimal solution. One such drawback is
that locks should be only used to enclose the critical section of
the parallel-processing code. If locks are used to enclose the
entire code then the performance of the code drastically
decreases.

 Software Transactional Memory (STM) is a promising
new approach to programming shared-memory parallel
processors. It is a concurrency control mechanism that is
widely considered to be easier to use by programmers than
locking. It allows portions of a program to execute in isolation,
without regard to other, concurrently executing tasks. A
programmer can reason about the correctness of code within a
transaction and need not worry about complex interactions
with other, concurrently executing parts of the program. If
STM is used to enclose the entire code then the performance
of the code is the same as that of the code in which STM is
used to enclose the critical section only and is far better than
code in which locks have been used to enclose the entire code.
So STM is easier to use than locks as critical section does not
need to be identified in case of STM.

 This paper shows the concept of writing code using
Software Transactional Memory (STM) and the performance
comparison of codes using locks with those using STM. It also
shows why the use of STM in parallel-processing code is
better than the use of locks.

Keywords- Parallel Programming; Multiprocessing; Locks;
Transactions; Software Transactional Memory

I. INTRODUCTION

 Generally one has the idea that a program will run
faster if one buys a next-generation processor. But

currently that is not the case. While the next-generation
chip will have more CPUs, each individual CPU will be
no faster than the previous year’s model. If one wants
programs to run faster, one must learn to write parallel
programs as currently multi-core processors are
becoming more and more popular. The past few years
have marked the start of a historic transition from
sequential to parallel computation. The necessity to
write parallel programs is increasing as systems are
getting more complex while processor speed increases
are slowing down. Parallel Programming means using
multiple computing resources like processors for
programming so that the time required to perform
computations is reduced [1].

II. CIGARETTE-SMOKERS’ PROBLEM

 In the cigarette-smokers’ problem there are three
smokers and one agent. There are three resources-
tobacco, paper and matches. Each smoker has only one
resource available at a time. The agent collects the three
resources from the smokers and makes a cigarette and
informs the smokers that a cigarette is ready. Then any
one of the smokers smokes the cigarette and after
finishing informs the agent. This process should
continue without any synchronization problems.

III. CIGARETTE SMOKERS’ PROBLEM USING LOCKS

 The hardest problem that should be overcome when
writing parallel programs is that of synchronization.
Multiple threads may need to access the same locations
in memory and if careful measures are not taken the
result can be disastrous. If two threads try to modify the
same variable at the same time, the data can become
corrupt. Currently locks are used to solve this problem.
Locks ensure that a critical section, which is a block of
code that contains variables that may be accessed by
multiple threads, can only be accessed by one thread at a
time. When a thread tries to enter a critical section, it
must first acquire that section's lock. If another thread is

130

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-2

 Cigarette-Smokers’ Problem with STM

already holding the lock, the former thread must wait
until the lock-holding thread releases the lock, which it
does when it leaves the critical section [2].

 In the parallel program using threads and locks
which solves the cigarette-smokers’ problem there are
four thread functions- one agent-“agent()” and three
smokers-“smoke1()”,”smoke2()” and “smoke3()”. Each
resource is represented by a variable- paper(a),
tobacco(b) and matches(c).

The following code snippet shows the agent thread:

 void *agent(int *num_ptr)
{
unsigned long j;
int num,*number_ptr;
number_ptr=num_ptr;
num=*number_ptr;
pthread_mutex_lock(&mutex1);
a++;b++;c++;
pthread_mutex_unlock(&mutex1);
for((j=(((num*n)/(NUM_THREAD))));j<(((num+1)*n)/
(NUM_THREAD));j++)
{
arr[j]=d+3;
}
pthread_exit(0);
}
 In the thread “agent” when the agent accesses a
resource then the corresponding variable is incremented.
pthread_mutex_lock(&mutex1);
a++; b++; c++;
pthread_mutex_unlock(&mutex1);
The following code snippet shows the smoke1 thread:
void *smoke1(int *num_ptr)
{
if(a>0&&b>0&&c>0&&(a==b)&&(b==c)&&(a==c))
{ pthread_mutex_lock(&mutex2);
s++;
pthread_mutex_unlock(&mutex2);
}
pthread_exit(0);
}

 The thread functions smoke2 and smoke3 are
similar in structure to smoke1. In the threads
“smoke1()”,”smoke2()” and “smoke3()” when any
smoker smokes the global variable s is incremented.

 The following statement is used to record the time
before the threads are created:

gettimeofday(&ini_tv,NULL);

The following statement is used to record the time when
all threads have just finished their executions:

gettimeofday(&final_tv,NULL);

The total time taken is then calculated and printed using
the following statement:

printf("Total Time Taken = %ld\n", final_tv.tv_sec -
ini_tv.tv_sec);

12 lock calls are being used in the program.

pthread_mutex_init(&mutex1,NULL),
pthread_mutex_init(&mutex2,NULL),
pthread_mutex_init(&mutex3,NULL) and
pthread_mutex_init(&mutex4,NULL) are used for lock
initialization.

pthread_mutex_lock(&mutex1),
pthread_mutex_lock(&mutex2),
pthread_mutex_lock(&mutex3) and
pthread_mutex_lock(&mutex4) are used for locking.

pthread_mutex_unlock(&mutex1),
pthread_mutex_unlock(&mutex2),
pthread_mutex_unlock(&mutex3) and
pthread_mutex_unlock(&mutex4) are used for unlocking.

 In the program the regions where more than one
thread may access the global variables a,b,c and s at the
same time are the critical sections. Thus these regions
are enclosed within locks. Hence there is no
synchronization problem in the above code.

IV. EXPERIMENTAL RESULTS FOR CIGARETTE-

SMOKERS’ PROBLEM USING LOCKS

 The following table shows the experimental results
for cigarette-smokers’ problem using locks:

NUMBER OF
THREADS

TIME
TAKEN(seconds)

SPEEDUP EFFICIENCY

1 9 1 1

2 5 1.8 0.9

3 3 3 1

 The corresponding graphs for the above
experimental results are shown below:

131

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-2

From the abov
threads increas

From the abov
threads increas

V. CIGARE

 Use of lo
some drawbac
deadlocks an
synchronizatio
synchronizatio
If STM is used
locks in the p
due to the pre
in this type of
has to be enclo
internal cons
program.

ve graph we can
ses the time tak

ve graph we ca
ses the speedup

ETTE-SMOKERS

ocks in paralle
cks. The prob

nd convoying
on using l
on problem can
d in a program
program. Thus
esence of locks
f code. The cri
osed within a tr
structs ensure

n see that as th
ken decreases.

an see that as t
p also steadily

S’ PROBLEM US

el processing
blems of prior

occur while
locks. [4],
n also be solve

m then we do n
s the problems
s in a program
itical section o
ransaction. The

es synchroniza

Cigarette-Smok

he number of

the number of
increases.

SING STM

code leads to
rity inversion,
e performing

[10]. The
ed using STM.
ot have to use

s which occur
m do not occur
of the program
en STM by its
ation in the

ers’ Problem wi

f

 The stru
which so
that of t
differenc

The follo

void *ag

{

unsigned

unsigned

unsigned

unsigned

 int num

 number

 num=*n

stm_init_

 START

 byte_u

 byte_u

 byte_u

byte_und

byte_und

byte_und

 STORE
STORE(
STORE(

 COMM

for((j=((
(NUM_T

 {

arr[j]=d+

} stm_ex

 pthrea

}

th STM

ucture of the p
olves the cigar
the program u
ce is that STM

owing code sn

gent(int *num_

d long j;

d char byte_un

d char byte_un

d char byte_un

m,*number_ptr;

r_ptr=num_ptr;

number_ptr;

t_thread();

T(0,RW);

under_stm=(un

under_stm1=(u

under_stm2=(u

der_stm++;

der_stm1++;

der_stm2++;

E(&a,byte_und
(&b,byte_unde
(&c,byte_unde

MIT;

((num*n)/(NUM
THREAD));j+

+3;

xit_thread();

ad_exit(0);

program using
rette-smokers’

using threads a
M is being used

ippet shows th

_ptr)

nder_stm;

nder_stm1;

nder_stm2;

;

nsigned char) L

unsigned char)

unsigned char)

der_stm);
er_stm1);
er_stm2);

M_THREAD))
+)

g threads and
problem is sam

and locks. The
in this program

he agent thread

LOAD(&a);

) LOAD(&b);

) LOAD(&c);

)));j<(((num+1

STM
me as

e only
m.

d:

1)*n)/

132

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-2

 Cigarette-Smokers’ Problem with STM

The following code snippet shows the smoke1 thread:

 void *smoke1(int *num_ptr)

{

stm_init_thread();

unsigned char byte_under_stm;

if(a>0&&b>0&&c>0&&(a==b)&&(b==c)&&(a==c))

{ START(0,RW);

byte_under_stm=(unsigned char) LOAD(&s);

byte_under_stm++;

 STORE(&s,byte_under_stm);

 COMMIT;

}

stm_exit_thread();

 pthread_exit(0);

}

 The thread functions smoke2 and smoke3 are
similar in structure to smoke1.

 The STM functions and calls which have been used
in the code are explained below:

stm_init is used to initialize the TinySTM library at the
outset. It is called from the main thread before accessing
any other functions of the TinySTM library.

stm_init_thread is used to initialize each thread that
will perform transactions. It is called once from each
thread that performs transactional operations before the
thread calls any other functions of the TinySTM library.
In this program it is called from the threads agent,
smoke1, smoke2 and smoke3.

stm_exit is the corresponding shutdown function for
stm_init. It cleans up the TinySTM library. It is called
once from the main thread after all transactional threads
have completed execution.

stm_exit_thread is the corresponding shutdown
function for stm_init_thread. It cleans up the
transactional thread. It is called once from each thread
that performs transactional operations upon exit. In this
program it cleans up the threads agent, smoke1,
smoke2 and smoke3.

START(0,RW) is used to start a transaction. In this
program it is used in the threads agent, smoke1,
smoke2 and smoke3.

COMMIT is used to close the transaction. In this
program it is used in the threads agent, smoke1,
smoke2 and smoke3.

 byte_under_stm=(unsigned char) LOAD(&a)
stores the value of a in byte_under_stm. In this program
it is used in the thread agent.

 byte_under_stm1=(unsigned char) LOAD(&b)

stores the value of b in byte_under_stm1. In this
program it is used in the thread agent.

 byte_under_stm2=(unsigned char) LOAD(&c) stores
the value of c in byte_under_stm2. In this program it is
used in the thread agent.

byte_under_stm=(unsigned char) LOAD(&s)

stores the value of s in byte_under_stm. In this program
it is used in the threads smoke1, smoke2 and.smoke3.

 STORE(&a,byte_under_stm)

stores the value of byte_under_stm in a. In this program
it is used in the thread agent.

 STORE(&b,byte_under_stm1)

stores the value of byte_under_stm1 in b. In this
program it is used in the thread agent.

 STORE(&c,byte_under_stm2)

 stores the value of byte_under_stm2 in c. In this
program it is used in the thread agent.

 STORE(&s,byte_under_stm)

stores the value of byte_under_stm in s. In this program
it is used in the threads smoke1, smoke2 and smoke3.

 In this program the regions where more than one thread
may access the global variables count and a,b,c and s at
the same time are the critical sections. Thus these
regions are enclosed within transactions using TinySTM
which is a type of STM. Hence there is no
synchronization problem in the above code.

VI. EXPERIMENTAL RESULTS FOR CIGARETTE-SMOKERS’
PROBLEM USING STM

The following table shows the experimental results for
cigarette-smokers’ problem using STM :

NUMBER OF
THREADS

TIME
TAKEN(seconds)

SPEEDUP EFFICIENCY

1 9 1 1
2 5 1.8 0.9
3 3 3 1

The corresponding graphs for the above experimental
results are shown below:

133

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-2

 Cigarette-Smokers’ Problem with STM

From the above graph we can see that as the number of
threads increases the time taken decreases.

From the above graph we can see that as the number of
threads increases the speedup also steadily increases.

VII. PERFORMANCE COMPARISION OF LOCKS AND STM

 From the above experimental results we see that
performance of locks and STM are similar.

 In the code with locks we have enclosed only the
critical section with locks. When we enclosed the entire
code with locks then the performance drastically decreased.
In the code with STM also we have enclosed only the
critical section with STM. When we enclosed the entire
code with STM then also the performance remained same.
So it can be said that performance of STM is better than
that of locks. Also we can say that STM is easier to use
than locks as critical section need not be identified in case
of STM.

VIII. CONCLUSION

 STM has been shown in many ways to be a good
alternative to using locks for writing parallel programs.

STM provides a timetested model for isolating concurrent
computations from each other. This model raises the level
of abstraction for reasoning about concurrent tasks and
helps avoid many parallel programming errors.

 This paper has discussed how STM can be used to
solve the problem of synchronization in parallel programs.
STM has ensured that lock-free parallel programs can be
written. This ensures that the problems which occur due to
the presence of locks in a program do not occur in this
type of code.It has also been shown that STM is easier to
use than locks as critical section need not be identified
explicitly in case of STM. In case of STM if the entire
code is enclosed within STM the performance of the code
is same as that of the code in which only the critical
section is enclosed within STM.

 But in case of locks if the entire code is enclosed
within locks then the performance sharply decreases. So it
has been shown that performance of STM is much better
than that of locks.
 Many aspects of the semantics and implementation of
STM are still the subject of active research. While it may
still take some time to overcome the various drawbacks, the
necessity for better parallel programming solutions will
drive the eventual adoption of STM. Once the adoption of
STM begins it will have the potential to pick up momentum
and make a very large impact on software development in
the long run. In the near future STM will become a central
pillar of parallel programming.

IX. REFERENCES

[1] Simon Peyton Jones, “Beautiful concurrency”.

[2] Elan Dubrofsky, “A Survey Paper on Transactional
Memory”.

[3] Pascal Felber, Christof Fetzer, Torvald Riegel,
“Dynamic Performance Tuning of Word-Based
Software Transactional Memory”.

[4] http://en.wikipedia.org/wiki/Transactional_memory

[5] James Larus and Christos Kozyrakis. “Transactional
Memory”

[6] Pascal Felber, Christof Fetzer, Patrick Marlier, Torvald
Riegel, “Time-Based Software Transactional Memory”

[7] Tim Harris, James Larus, Ravi Rajwar, “Transactional
Memory”

[8] Mathias Payer, Thomas R. Gross, “Performance
Evaluation of Adaptivity in Software Transactional
Memory”

[9] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan,
Mark D. Hill, David A. Wood., “LogTM: Log-based
Transactional Memory”

[10] Dave Dice , Ori Shalev , Nir Shavit., “Transactional
Locking II”

134

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-2

 Cigarette-Smokers’ Problem with STM

[11] http://tmware.org

[12] Maurice Herlihy, J. Eliot B. Moss, “Transactional
Memory: Architectural Support for Lock-Free Data
Structures”.

[13] Martin Schindewolf, Albert Cohen, Wolfgang Karl,
Andrea Marongiu, Luca Benini, “Towards
Transactional Memory Support for GCC”.

[14] Virendra J. Marathe, Michael F. Spear, Christopher
Heriot, Athul Acharya, David Eisenstat, William N.
Scherer III, Michael L. Scott, “Lowering the Overhead
of Nonblocking Software Transactional Memory”.

[15] Utku Aydonat, Tarek S. Abdelrahman, Edward S.
Rogers Sr., “Serializability of Transactions in Software
Transactional Memory”.

[16] Maurice Herlihy, Nir Shavit, “The Art of
Multiprocessor Programming”.

[17] Brendan Linn, Chanseok Oh, “G22.2631 project
report: software transactional memory”.

[18] http://en.wikipedia.org/wiki/Software_transactional_m
emory

[19] http://research.microsoft.com/~simonpj/papers/stm/

[20] http://www.haskell.org/haskellwiki/Software_transacti
onal_memory.

[21] Ryan Saptarshi Ray, “Writing Lock-Free Code using
Software Transactional Memory ”.

[22] Ryan Saptarshi Ray,Utpal Kumar Ray “Different
Approaches for improving performance of Software
Transactional Memory ”.

[23] John H.Reynolds, “Solving The Cigarette Smokers
Problem Using Uniprocessor Concurrency And True
Parallelism’ ”.

135

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-2

	Cigarette-Smokers’ Problem with STM
	Recommended Citation

	Cigarette-Smokersâ•Ž Problem with STM

