
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 8 Issue 1 Article 12

January 2017

Secure Web System Development Secure Web System Development

Ankush P. Deshmukh
Department of Computer Technology, VJTI, Matunga, Mumbai, India, ankush25d@gmail.com

Vaibhav G. Korat
Department of Computer Technology, VJTI, Matunga, Mumbai, India, vaibhavkorat@in.com

B. B. Meshram
Department of Computer Technology, VJTI, Matunga, Mumbai, India, bbmeshram@vjti.org.in

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Deshmukh, Ankush P.; Korat, Vaibhav G.; and Meshram, B. B. (2017) "Secure Web System Development,"
International Journal of Computer and Communication Technology: Vol. 8 : Iss. 1 , Article 12.
DOI: 10.47893/IJCCT.2017.1401
Available at: https://www.interscience.in/ijcct/vol8/iss1/12

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol8
https://www.interscience.in/ijcct/vol8/iss1
https://www.interscience.in/ijcct/vol8/iss1/12
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol8%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol8/iss1/12?utm_source=www.interscience.in%2Fijcct%2Fvol8%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Secure Web System Development

Ankush P. Deshmukh, Vaibhav G. Korat & B. B. Meshram
Department of Computer Technology, VJTI, Matunga, Mumbai, India

E-mail : ankush25d@gmail.com, vaibhavkorat@in.com, bbmeshram@vjti.org.in

Abstract - The recent development in the field of Web system technology has transformed the software industry radically by
integrating a wide range of web users, vendors, and enterprise applications worldwide. In Web-based system, a security requirement
is a critical issue. This difficulty is due to the complexity level of such systems as well as their variety and increasing distribution.
The World Wide Web has become a highly adopted platform for web system. In order to avoid the high impacts of software
vulnerabilities, it is necessary to specify security requirements early in the development on a detailed level and it needs to be built
into the application design up-front by explicitly stating the security approach. A current web system faces major security problems
because security design is not integrated into the Web Engineering Development Process. Due to insufficient support for a concrete
and assessable level the application security and the software security is invaded. This paper emphasizes on need of security at
Development Lifecycle (SDLC) of web system and integration of security in web system development life cycle.

Keywords - Secure Web System (SWS), Secure Development Life Cycle (SDLC).

I. INTRODUCTION

 Security is an essential quality aspect of software
products and in some cases; it is the most important
non-functional requirement of the system. Using
software systems in critical environments and relying on
its functionality may lead to huge amount of risks and
damages if security weaknesses are present. The need to
be more careful about system security and information
implies the need to have a life cycle of software
development activities focused on specific security as a
means to achieve greater assurance of integrity,
reliability and availability of information. Solving
security issues at the end of the QA (quality assessment)
period isn’t the best way and is often introduced towards
the end of the project. Forward Developers and
architects need to design and understand secure coding
techniques and how attackers exploit applications.
Although there are a number of great tools available to
help automate security of web applications, no tool or
suite of tools can be effective without the correct
processes in place and educated, informed people
creating and testing the web apps.

 Web applications are the front-ends to most
business systems today. Web application system serves
a multitude of disparate functions within a complicated
mix of architectures. Nowadays, the Web is extensively
used as a major means of communication with the
external world as well as means of communication
within an organization. It is also as a tool to assist in
carrying out its business process in a more effective
way. Hence Web applications, which have been

specifically designed for web-based environment, have
received a lot of attention in the IT industry and lot of
development is taking place in the field of Web system
and services technology. More and more sensitive data
is moving onto the web which brings new application
security and information confidentiality challenges.
Among all vulnerabilities, 92% of reported
vulnerabilities are in applications. So, security plays
crucial role in web system and services. Also Firewalls,
intrusion detection and antivirus systems simply cannot
solve secure software problem [5].

 Effective security requires not only prioritizing
security at the beginning of a project, but also increasing
its visibility throughout the lifecycle of the project.
Software grows up through its life cycle, so software
development methodologies should pay special attention
to security aspects of the product. Secure Web
Engineering (SSE) is about building web application
that can withstand attacks proactively to preserve
fundamental security properties, namely, confidentiality,
integrity and availability of critical assets. Current most
software security often fails since its development is
generally based on ad-hoc foundations. There are
increased risks of security vulnerabilities that are
introduced into software in various stages of
development. So, to avoid inconsistencies and
ambiguities, it is essential that the system is developed
in a secure fashion from the beginning. By considering
various strength and weaknesses of various engineering
techniques, paper contains the formulated framework by

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-1

65

 Secure Web System Development

integrating, investigating various web analysis and
design methods.

II. GUIDELINE BEFORE GOING FOR SDLC

 To design and develop sustainable Web systems is
the challenge for better

• usability, interface design, and navigation

• comprehension

• performance (responsiveness)

• security and integrity

• evolution, growth, and maintainability

• testability

• mobility

 To understand the need for security, all members of
the team is to gather answers of questions like: [6]

• What are the common security requirements
for web applications?

• What are the vulnerabilities found on each
requirement?

• What are the solution methods available?

• What action to mitigate?

• What is the language to be used?

• What are the impacts of the architectural
choices, frameworks and components?

 By the findings, everyone knows the correct way to
avoid vulnerabilities besides what is the best
architecture or pattern to be used and understand what
has to be tested on each requirement.

 The guide can be written and updated by all
members of the team in order to create a mechanism of
information exchange and dispersion.

a) Requirement Analyst: helps in the writing of
the requirements in a measurably way.

b) Test Engineers: responsible for specifying
vulnerabilities and how to test each one of
them.

c) Architect: proposes solutions and architectural
patterns for the vulnerabilities and issues
found.

d) Developers: proposes technologies solutions
and languages that can be used to mitigate the
risks analysed by the impacts of the

vulnerabilities. Finally the guide must be
validated by a security specialist.

Essential security criteria for Web System Development
identifies are as follows [4]:

i. Active organizational support for security in the
Web development process which includes the
managerial support for security integration into the
development process, support for developmental
staff, end-user communication and security
education.

ii. Proper Controls in the development environment
which encompasses policies, knowledge,
technology, and processes. These controls help to
provide structure to the development environment.

iii. Security visibility throughout all areas of the
development process which implies that the
development process needs to be security focused.
The term security focused translates into the use of
effective and efficient designs, standards and
procedures, while implementing good coding
practices, addressing security issues having
specific security testing criteria, and acquiring
feedback from the end-user that is security
specific.

iv. The security requirements of the business need to
be identified as early in the development process.
So, it contains delivery of a cohesive system,
integrating business requirements, software and
security.

v. Prompt, rigorous testing and evaluation include as
much testing as possible from the design and
programming perspectives that have automated
and manual scripts, code reviews, and black, white
and grey box testing.

vi. Trust and Accountability: encompasses the
management of risk, the implementation of
appropriate controls, the education of employees,
effectiveness monitoring and actions performed in
the application.

III. SECURING THE WEB SYSTEM
DEVELOPMENT LIFE CYCLE

 Each phase plays a role in the quality of the overall
security of final product and therefore, must be
considered from a security perspective.

a) Requirements and Use cases

b) Architecture and Design

c) Code Implementation and Build

d) QA/Testing

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-1

66

 Secure Web System Development

e) Deployment and operation

f) Deliver

Fig.1: Securing Web system Throughout the Lifecycle

A. Requirements and Use Cases:

 It has the activities to derive complete functional
and security requirements. The behaviour and
deployment environment of the software should be
specified using use cases along with detailed functional
requirements (diagrams/text). The requirements
specifications ought to be inspected (multiple times, if
required) for identifying and removing software errors.
Abuse cases should be specified. Information about
software assets, attackers, attacker’s interests, attacker’s
resources, attack surfaces, and threats to existing
software of the same domain must be collected. Risk
analysis should be performed on the identified threats to
calculate the collective potential damage that each of
them can cause to different assets. This information can
be used to prioritize threats [9].

 High-level security requirements such as
preservation of confidentiality, integrity, and availability
should be specified to mitigate identified threats. High-
level security requirements can be prioritized by
performing a cost benefit analysis. Security mechanism
with higher priority should be implemented first if there
are budgetary constraints. System security errors and
already specified low-level security requirements may
be identified through inspections. [7].

Steps for integrating security into the requirements
phase:

• Discuss and define security requirements based
on corporate policy, compliance and regulatory
mandates.

• Security and audit teams should assess business
requirements and functions of the web
application and begin to formulate mis-use
cases for use during testing and acceptance.

 Integrating security at this phase, will significantly
reduction in time-to-deployment and reduction in
acceptance bottlenecks.

B. Architecture and Design:

 Design is the representation of decisions taken to
fulfil requirements. Design specifies two aspects of the
system:

• Static structure

• Dynamic behaviour

Detailed functional design (including design of
security mechanisms) should be specified in a secure
manner by secure design patterns and secure design
guidelines. The design must be inspected (multiple
times, if required) for identifying and removing software
errors. The threat model developed should be enhanced.
Risk analysis should be performed on the identified
threats to calculate the potential damage that each of the
threats can cause.

Software security errors and previously specified
secure design decisions should be identified through
inspections. Detailed design specifications are created,
that show developers exactly which security controls
must be included and how the components will interact
with the overall web ecosystem.

Steps for integrating security into the architecture and
design phase:

• Perform risk assessment in context of the
application’s proposed architecture and
deployment environment; and use the results to
supplement the baseline security controls.

• Assess security implications of interaction with
legacy systems and security implications of
data “flow” between components, tiers, or
systems.

• Secure design decisions to remove threats can
be prioritized based on a cost/benefit analysis.

• Document any context-specific exposures (i.e.,
vulnerabilities that are dependent on how and
where the application is deployed) that need to
be addressed during implementation/rollout.

• Consider dependencies and exposures created
by interactions with mash-ups, SOA, and
partner services.

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-1

67

 Secure Web System Development

C. Code Implementation and Build:

 Code Implementation/Assessment is the third phase
of the SDLC. The system will be installed and evaluated
in the organization’s operational environment. In this
phase, re-usable policies increase accuracy of risk
analysis and cleaner/less vulnerable code is delivered to
QA.

 Automated static code tools that are integrated into
the IDE provide developers with checks and guidance as
code is written and before check-in. Automated tools
can also be used during build to check the code against
policy templates for compliance and for a deeper look at
code level security issues. Fewer coding
errors/vulnerabilities discovered during testing resulting
in faster deployment cycles [9], [2].

Steps for integrating security into the code
implementation and build phase:

• Install automated static source code checking
tools that are integrated with developer IDEs

• Developers can also perform automated code
reviews with stand-alone coding tools before
check-in.

• Using automated or manual code reviews,
security and audit teams spot check code
modules for compliance conformance and
security risk prior to build.

• To check for security exposures and policy
compliance, implement automated static code
scanning during the build process.

• Track developer coding errors with the use of
tools and provide explanatory feedback on
security risks introduced and reasons behind it.

D. Quality Assurance / Testing:

 Security specific tools for testing applications range
from one-off stand-alone solutions and services that
assess the completed application to fully integrated
suites. Integrated solutions provide multi-phase support
towards a repeatable web application security lifecycle.

 Integrated suites can be implemented at multiple
points in the process and provide metrics and feedback
for on-going continuous improvement. Phase benefits to
better communication between application stakeholders
and improve bug fix and release cycles [7].

Key indicators:

• Solutions that can be applied at multiple points
throughout the process (education,
implementation, testing, deployment)

• Integration with existing SDLC tools such as
build and QA solutions, Easy to understand,
interpret, and use results

• Comprehensive reporting for compliance

• Continuous improvement support –
identification of developers or application types
that require additional training or security
controls

Steps for integrating and improving security in the
QA/testing phase:

• Validate test findings in a production
architecture that includes existing
compensating controls such as firewalls and
IPS

• Finding out the problems and errors which is
grouped into three categories:

1. Insecure interaction between components

2. Risky resource management

3. Porous defences

• Prioritize discovered vulnerabilities based on
both security and business needs

 Deliver fix recommendations to development with
specificity to line of code or dependent API, service, or
library.

Analysis Tools for analysis phase:

 Security testing solution is a part of software
development life cycle. The tools used in the software
development life cycle for analysing the security of Web
applications can be roughly divided into three different
types of tools: [7]

• White box analysis tools

• Black box analysis tools

• Gray box analysis tools

 The test called as Penetration test goes a step
further and validates whether attack pathways result in
risk to the organization and attempts to penetrate own
applications. The key value of a penetration test is that,
it bridges the gap between the discovered vulnerability
and the exploitable asset so to make an informed risk
decision [8].

a) White box analysis:

 White box analysis has the highest access to this
information and can be seen as approaching security
from the developer’s perspective. White box analysis

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-1

68

 Secure Web System Development

can quickly determine the complete attack surface and
create the necessary set of tests.

White box analysis includes three primary techniques:

• Architectural analysis: It is often referred to as
threat\modeling, seeks to enumerate the goals
an attacker has within the software and
introduces countermeasures for each of these
threats.

• Source code analysis: This scans the source
code and traces user input through the
application to find vulnerabilities and bad
coding practices.

• Static binary analysis: which operates similar
to source code analysis but at the binary level,
which allows it to find contextual risks and
platform-specific problems.

Challenges in White box analysis:

• Poor coding practices can falsely be detected as
vulnerabilities.

• Software cannot be easily tested remotely in a
distributed environment.

• Access to the design specifications and source
code is not always possible

b) Black box analysis:

 Black box analysis starts from the perspective of an
attacker with no access to any of this information. Black
box analysis involves examining the software or system
with no prior knowledge of the environment. As it more
accurately reflects the immediate risk posed by the
outsider, risk findings from this analysis are often
prioritized.

Black box analysis includes two primary techniques:

• Vulnerability scanning: It is realized by using a
large database of known vulnerabilities and
trying to identify a known vulnerability in an
application. This can be either passive or
active. This scanning only tests for known
vulnerabilities.

• Dynamic analysis: It tries to automatically scan
and document the attack surface, test the
application by means of fault injection, and
determine the presence of a vulnerability based
on the response. Dynamic analysis can discover
unknown vulnerabilities

Challenges in Black box analysis:

• It is impossible to determine code coverage;
obscured or hidden functionality can be missed.

• Logical design flaws cannot be detected easily.

c) Gray box analysis:

Gray box analysis combines both black box and
white box analysis in a powerful way to improve
accuracy and coverage. We can get the benefits of both
approaches with minimizing the potential that important
issues are missed.

Challenges in Gray box analysis:

• It requires correlating the result sets that are
obtained in different phases of the software
development life cycle.

• Success rate is high, when gray box analysis
becomes a fundamental part of the software
development life cycle, allowing for smooth
integration of different test results obtained
throughout the life cycle.

E. Deployment/Production:

 Once the web application is live in production,
additional testing and monitoring can be implemented to
ensure data and services are protected.

 Automated security monitoring of production web
application system provides assurance that the web
system is performing as expected and not exposing
information or introducing risk. This phase gives better
integration between dynamic testing and production
application controls such as web system firewalls or IPS
emerging compliance requirements before code re-write.
Web system (application) should be monitor on a 24/7
basis. Also use the feedback loop for continuous
improvement of web system.

Steps for integrating and improving security in the
deployment/production phase:

• Plan and conduct system certification activities
in synchronization with testing of security
controls.

• Monitor mis-use to affirm vulnerabilities which
were not exploitable in testing are not
exploitable in production.

• Get information by comparing residual risk
assessments before deployment with the
production exposure areas.

• Provide feedback to testing team from above
information.

• Monitor data leakage i.e. places and fields
where it is used, sent or stored inappropriately.

• Identify, in terms of security, the weaknesses
and strengths of the programming language.

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-1

69

 Secure Web System Development

• Implement web system firewall, IPS, or other
compensating control to mitigate exposures
before code fix or in response to new
regulations.

 More on analysis; every phase has its own features
and functionality. But, analysis is the activity which can
be carried out on every phase of development lifecycle.
Here we have suggested analysis approach for giving
better strength to final product.

• Architectural security analysis should be a part
of your design phase.

• Source code analysis should be integrated into
your development phase.

• Dynamic analysis starts in the development
phase and lasts all the way to your delivery
phase.

• Binary analysis is something that you typically
do once during the audit part of the delivery
phase for each new build of your software.

• Vulnerability scanning is a repeating task that
should be do ne periodically as long as your
software is operational.

Fig. 2 : Different Analysis throughout the cycle

IV. DEFINING SECURITY CLEARLY

 It is important to know exactly what the difference
between security requirement and security features.

Security requirements: are tasks that must be done.

– e.g. all passwords must be stored as encrypted.

Security features: are functionalities that must be
available.

– e.g. account management must be possible
through a Web interface.

 The following table summarizes some of the
strategies for building up secure web development
applications.

a) Input Validation: Do not trust on customer-side
confirmation. Accept centralized input
confirmation only.

b) Authentication: Employ strong passwords and
provide password accounts disablement and
their period of expiration.

c) Authorization: Accept approval granularity,
implement partition of privileges, and employ
least privileged process and accounts.

d) Configuration Management: Employ concrete
authorization and authentication on
management interfaces.

e) Sensitive Data: Protect the communication
course and offer concrete accesses on sensitive
encrypt data records.

f) Session Management: Encrypt the data of
verification cookies. Protect the course and
session status from unofficial accesses.

g) Cryptography: Employ proper key size and
algorithm. Employ tested and attempted
platform attributes.

h) Parameter Manipulation: Do not believe those
fields which are easily manipulated by
customer such as, query strings, HTTP headers,
and etc.

i) Exception Management: Do not disclose
responsive particulars of application. Employ
structured exception handling.

j) Auditing and Logging: Daily analyze and
protected access to log files and back up. Log
activity and audit throughout the entire
application tiers.

 Sometimes there will be a tight deadline for the
code to be rolled out to production and even the code
reviews may miss a seemingly unobvious error. Such
subtle errors may lead to significant security bugs in the
overall system. So, Apart from penetration testing
different tools should be used to check the
vulnerabilities in coding.

– Pscan

– Flawfinder

– RATS (Rough Auditing Tool for Security)

– Splint (Secure Programming Lint)

– ESC/Java (Extended Static Checking for Java)

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-1

70

 Secure Web System Development

– MOPS (MOdelchecking Programs for Security
properties)

V. CONCLUSION

 The lack of security discussion in the beginning of
the development process, lack of encouragement for re-
usable components, lack of follow up after design
approval, and lack of employee understanding of the
role security plays in the web system development
process. When looking at the broader picture of the
development life cycle, it is found that, each of the
security analysis techniques have their function in the
software development life cycle. Although a thorough
security audit during the delivery phase is an important
aspect in securing your software properly but, it is vital
to develop a security process that addresses security
issues throughout that entire process. Security is an
important quality aspect of web systems and to achieve
this goal, we should attend to it during development life
cycle. For complete coverage, combine white box and
black box testing must be combined into one security
testing solution as part of the development life cycle.
whether or not your equation should be typed using
either the Times New Roman or the Symbol font (please
no other font). To create multileveled equations, it may
be necessary to treat the equation as a graphic and insert
it into the text after your paper is styled.

 Figure above shows how architectural analysis,
source code analysis, dynamic analysis, binary analysis,
and vulnerability scanning can be used and combined
throughout the design, development, and operational
phases, security must be integrated into every step of the
development life cycle.

 Finally vulnerability scanning is a repeating task
that should be done periodically as long as your web
system is operational. Then we are looking forward to
security modeling in designing web system.

REFERENCES

[1] S.W. Smith, CARLISLE ADAMS, Building
Secure Web-Based Environment, PUBLISHED
BY THE IEEE COMPUTER SOCIETY, 1540-
7993/05, IEEE SECURITY & PRIVACY @
2005 IEEE.

[2] Muhammad Umair Ahmed Khan and Mohammad
Zulkernine, Activity and Artifact Views of a
Secure Software Development Process, IEEE
International Conference on Computational
Science and Engineering,2006

[3] Noopur Davis and Watts Humphrey, Samuel T.
Redwine JR., Gerlinde Zibulski, Gary Mcgraw,

Processes for Producing Secure Software, IEEE
COMPUTER SOCIETY, 1540-7993/04/$20.00
© 2004 IEEE.

[4] William Bradley Glisson, Andrew McDonald,
Ray Welland, Web Engineering Security: A
Practitioners Perspective, ICWE'06, July 11-14,
2006, Palo Alto, California, USA, ACM 1-
59593-352-2/06/0007.

[5] Suhair Hafez Amer’, Major Jeffrey W.
Humphries’, Ph.D. and John A. Hamilton, Jr.’,
Ph.D., Senior Member, ZEEE , Survey: Security
in the System Development Life Cycle,
Proceedings of the 2005 IEEE Workshop on
lnfomation Assurance and Security United States
Military Academy, West Point, NY.

[6] Rodrigo Elia Assad, Tarciana Katter, Felipe Silva
Ferraz, Leopoldo Pires Ferreira, Silvio Romeiro
Lemos Meira, Security Quality Assurance on
Web-based Application Through Security
Requirements Tests, 2010 Fifth International
Conference on Software Engineering Advances.

[7] IBM Rational AppScan, Practical Approaches for
Securing Web Applications across the Software
Delivery Lifecycle.

[8] Gary McGraw, Bridging the Gap between
Software Development and Information Security,
IEEE COMPUTER SOCIETY,
SEPTEMBER/OCTOBER 2005.

[9] Wei Huang, Ru Li, Carsten Maple, Hongji Yang,
David Foskett, Vince Cleaver, Web Application
Development Lifecycle for Small Medium-sized
Enterprises, The Eighth International Conference
on Quality Software.

[10] Richard Kissel, Kevin Stine, Matthew Scholl,
Hart Rossman, Jim Fahlsing, Jessica Gulick,
Security Considerations in the System
Development Life Cycle, NIST Special
Publication 800-64.

[11] William Bradley Glisson and Ray Welland, Web
Engineering Security (WES) Process, University
of Glasgow 2006, Department of Computing
Science Technical Report - TR-2007-243.

[12] PDF: Improving Your Web Application Software
Development Life Cycle’s Security Posture with
IBM Rational AppScan.D. Kornack and P. Rakic,
“Cell Proliferation without Neurogenesis in Adult
Primate Neocortex,” Science, vol. 294, Dec.
2001, pp. 2127-2130, doi:10.1126/science.
1065467.

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-1

71

	Secure Web System Development
	Recommended Citation

	Secure Web System Development

