
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 7 Issue 4 Article 15

October 2016

DYNAMIC RESOURCE MANAGEMENT IN LARGE CLOUD DYNAMIC RESOURCE MANAGEMENT IN LARGE CLOUD

ENVIRONMENTS USING DISTRIBUTED GOSSIP PROTOCOL ENVIRONMENTS USING DISTRIBUTED GOSSIP PROTOCOL

M. SASITHARAGAI
Department of Computer Science & Engineering , Angel College of Engineering and Technology, Tirupur-
India., sasitharagai@gmail.com

A. PADMASHREE
Department of Computer Science and Engineering, Angel College of Engineering and Technology, Tirupur,
apadmashree.me@gmail.com

T. DHANALAKSHMI
Department of Computer Science and Engineering, Angel College of Engineering and Technology, Tirupur,
dhanaesec@gmail.com

S. GOWRI
Department of Computer Science & Engineering , Angel College of Engineering and Technology, Tirupur-
India, gowri1666@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
SASITHARAGAI, M.; PADMASHREE, A.; DHANALAKSHMI, T.; and GOWRI, S. (2016) "DYNAMIC RESOURCE
MANAGEMENT IN LARGE CLOUD ENVIRONMENTS USING DISTRIBUTED GOSSIP PROTOCOL,"
International Journal of Computer and Communication Technology: Vol. 7 : Iss. 4 , Article 15.
DOI: 10.47893/IJCCT.2016.1387
Available at: https://www.interscience.in/ijcct/vol7/iss4/15

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol7
https://www.interscience.in/ijcct/vol7/iss4
https://www.interscience.in/ijcct/vol7/iss4/15
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol7%2Fiss4%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol7/iss4/15?utm_source=www.interscience.in%2Fijcct%2Fvol7%2Fiss4%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Dynamic Resource Management In Large Cloud Environments Using Distributed Gossip Protocol

DYNAMIC RESOURCE MANAGEMENT IN LARGE CLOUD

ENVIRONMENTS USING DISTRIBUTED GOSSIP PROTOCOL

M.SASITHARAGAI
1
, A.PADMASHREE

2
, T.DHANALAKSHMI

3
 & S.GOWRI

4

1,2,3&4Department of Computer Science and Engineering, Angel College of Engineering and Technology, Tirupur

Email: sasitharagai, apadmashree.me, dhanaesec & gowri1666@ gmail.com

Abstract- Resource management poses particular challenges in large-scale systems, such as server clusters that

simultaneously process requests from a large number of clients. We mainly focus on the dynamic resource management in

large scale cloud environment. Our core contribution centers around outlining a distributed middleware architecture and

presenting one of its key elements, a gossip protocol P* that meets our 3 main design goals: (1) fairness of resource

allocation with respect to hosted sites (2) efficient adaptation to load changes and (3) scalability in terms of both the number

of machines and sites. We first present a protocol that maximizes the cloud utility under CPU and memory constraints and

also minimizes the cost for adapting an allocation. Then, we extend that protocol to have a management control parameter,

which can be done with the help of profiling technique. A particular challenge is to develop a gossip protocol that is robust

against node failures. In this paper, we present P*, a gossip protocol for continuous monitoring of aggregates, which is

robust against discontiguous failures (i.e., under the constraint that neighboring nodes do not fail within a short period of

each other)

Index Terms - Cloud computing, distributed management, resource allocation, gossip protocol, profiling, robust

aggregation

I. INTRODUCTION

We focus the problem of resource management for a

large-scale cloud environment. Such an environment

includes the physical infrastructure and associated

control functionality that enables the provisioning and

management of cloud services.

Dynamic resource management can be explained with

the help of IaaS and PaaS perspectives. The

perspective we take is that of a cloud service provider

[1], which hosts sites in a cloud environment and the

stakeholders for this use case are depicted in Fig 1.

Fig 1. Deployment scenario with the stakeholders of the cloud

environment considered in this work

This work [2] contributes towards engineering a

middleware layer that performs resource allocation in

a cloud environment, with the following design goals:

1) Performance objective: We consider computational

and memory resources and the objective is to achieve

reasonable fairness among sites for computational

resources under memory constraints.

2) Adaptability: The resource allocation process must

dynamically and efficiently adapt to changes in the

demand from sites.

3) Scalability: The resource allocation process must

be scalable both in the number of machines in the

cloud and the number of sites that the cloud hosts.

This means that the resources consumed per machine

in order to achieve a given performance objective

must increase sub linearly with both the number of

machines and the number of sites.

This paper also addresses a fundamental problem in

virtual machine (VM) resource management [3]: how

to effectively profile physical resource utilization of

individual VMs. Our focus is on extracting the

utilization of physical resources by a VM across time,

where the resources include CPU (utilization in CPU

cycles), memory (utilization in memory size). Correct

VM resource utilization information is tremendously

important in any autonomic resource management

that is model based. Hence, resource management is

completely based on resource mapping across virtual

machines.

Profiling is a hard problem because mapping virtual-

to-physical (V2P) resource activity mapping is not

always one to one and may depend on application

workload characteristics. In this paper we extend the

factor graph model [5] with directionality and

factoring generalization, and design a directed factor

graph (DFG) that models the multivariate dependence

relationships among different resources and across

virtual and physical layers.

Gossip protocols, also known as epidemic protocols

[12], can be characterized by asynchronous and often

randomized communication among nodes in a

network [7]. Originally, they have been proposed for

disseminating information in large dynamic

286

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-7, Iss-4

mailto:sasitharagai
apadmashree.me
mailto:renucse07@gmail.com
mailto:angel.prathiba@gmail.com

Dynamic Resource Management In Large Cloud Environments Using Distributed Gossip Protocol

environments and more recently, they have been

applied for various tasks, including constructing

robust overlays, estimating the network size [8] [6],

etc.

A gossip protocol [4] for monitoring network-wide

aggregates executes in the context of decentralized

management architecture. Fig 2. shows an example of

such an architecture, which we propose using for this

purpose. In this architecture, monitoring nodes with

identical functionality organize themselves into a

management overlay. The aggregation protocol (in

this case, the gossip protocol) runs in the monitoring

nodes, which communicate via the overlay. Each

monitoring node collects data from one or more

network devices. A management station can access

the monitoring layer at any node. Node or link

failures—on the physical network or the management

overlay—trigger a re-organization of the management

overlay, thereby enabling continuous operation.

Fig 2. Architecture of the decentralized monitoring system.

Gossip protocols run in the management overlay (middle layer)

Hence, gossip protocol can be formally applied to

dynamic resource management in large cloud

environments with a focus of overcoming

discontiguous failures and also using a management

control parameter for the protocol actions to take

place securely.

II. SYSTEM ARCHITECTURE

A cloud environment spans several datacenters

interconnected by an internet. Each of these

datacenters contains a large number of machines that

are connected by a high-speed network. Users access

sites hosted by the cloud environment through the

public Internet. A site is typically accessed through a

URL that is translated to a network address through a

global directory service, such as DNS. A request to a

site is routed through the Internet to a machine inside

a datacenter that either processes the request or

forwards it.

Fig 3. (left) shows the architecture of the cloud

middleware [1] [2]. The components of the

middleware layer run on all machines. The resources

of the cloud are primarily consumed by module

instances whereby the functionality of a site is made

up of one or more modules.

Fig 3. The architecture for the cloud middleware (left) and

components for request handling and resource allocation

(right).

Each machine runs a machine manager component

that computes the resource allocation policy, which

includes deciding the module instances to run. The

resource allocation policy is computed by a protocol

P* that runs in the resource manager component.

This component takes as input the estimated demand

for each module that the machine runs. The computed

allocation policy is sent to the module scheduler for

execution, as well as the site managers for making

decisions on request forwarding. The overlay

manager implements a distributed algorithm that

maintains an overlay graph of the machines in the

cloud and provides each resource manager with a list

of machines to interact with.

Our architecture associates one site manager with

each site. A site manager handles user requests to a

particular site. It has two components: (1) The

demand profiler estimates the resource demand of

each module of the site based on request statistics.

This demand estimate is forwarded to all machine

managers that run instances of modules belonging to

this site. (2) The request forwarder sends user

requests for processing to instances of modules

belonging to this site. Request forwarding decisions

take into account the resource allocation policy and

constraints such as session affinity. Fig 3. (right)

287

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-7, Iss-4

Dynamic Resource Management In Large Cloud Environments Using Distributed Gossip Protocol

shows the components of a site manager and how

they relate to machine managers.

Profiling [3] can be done with the help of Directed

Factor Graph (DFG) which can be explained with the

help of an example as shown below.

Fig 4. A directed factor graph example

Fig 4. shows the directed factor graph for a global

function Y0 = g(x1, x2, x3) with decomposition given

as,

g(x1, x2, x3) = fa(x1, x2) + fb(x2, x3)

The new variable nodes Y a, Y b are two temporary

variables recording the output of the functions fa and

fb.

DFG can be used for resource mapping across virtual

machines, which serves as the management control

parameter, so as to increase the efficiency of gossip

protocol. Also, the choice of using gossiping is

motivated by achieving robustness [4]. In case a

parent node fails, an elected child node can replace

the parent instantly. The goal for our protocol is to

give a continuous estimate of a global aggregate in

near real-time and with high accuracy and it address

the problem of mass loss in gossip protocols.

III. FORMALIZING THE PROBLEM OF

RESOURCE ALLOCATION AND

PROFILING BY THE ROBUST GOSSIP

PROTOCOL

Hence, formalizing the resource allocation problem in

dynamic large cloud environment is a tedious process

but making this process to be efficient, we need a

robust gossip protocol to perform dynamic resource

management by satisfying performance objectives.

For this work, we consider a cloud as having

computational resources (i.e., CPU) and memory

resources, which are available on the machines in the

cloud infrastructure [1] [2]. We formulate the

resource allocation problem as that of maximizing the

cloud utility under CPU and memory constraints [14].

The solution to this problem is a configuration matrix

that controls the module scheduler and request

forwarder components. At discrete points in time,

events occur, such as load changes, addition and

removal of site or machines, etc. In response to such

an event, the optimization problem is solved again, in

order to keep the cloud utility maximized. We add a

secondary objective to the optimization problem,

which states that the cost of change from the current

configuration to the new configuration must be

minimized.

For the above model, we consider a cloud with CPU

capacity Ω, memory capacity Γ, and demand vectors

ω, γ. We first discuss a simplified version of the

problem. It consists of finding a configuration A that

maximizes the cloud utility Uc:

maximize Uc(A,ω)

subject to A ≥ 0, 1T
A = 1T

Ω^(A,ω)1 ≤ Ω

Our concept of utility is max-min fairness and our

goal is to achieve fairness among sites. This means

that we want to maximize the minimum utility of all

sites, which we achieve by maximizing the minimum

utility of all module instances.

Second, we consider the fact that the system must

adapt to external events in order to keep the cloud

utility maximized. Therefore, the problem becomes

one of adapting the current configuration A(t) at time

t to a new configuration A(t + 1) at time t + 1

which achieves maximum utility at minimum cost of

adapting the configuration.

maximize UC (A(t + 1), ω(t + 1))

minimize c* (A(t), A(t + 1))

subject to A(t + 1) ≥ 0, 1T
A(t + 1) = 1T

 Ω^(A(t + 1),ω(t + 1))1 ≤ Ω

 sign(A(t + 1))γ ≤ Γ.

P* is an asynchronous protocol. This means that a

machine does not synchronize the start time of a

protocol round with any other machine of the cloud.

At the beginning of a round (more precisely, at the

start of the loop of the active or passive thread), a

machine reads the current demands of the modules it

runs. At the end of a round (more precisely, at the end

of the loop of the active or passive thread) a machine

updates its part of the configuration matrix A. The

matrix A thus changes

dynamically and asynchronously during the evolution

of the system [13].

The work in [9], which has been extended by [10]

presents a distributed middleware for application

placement in datacenters. As in this paper, the goal of

that work is to maximize a cluster utility under

changing demand, although a different concept of

utility is used. The choice of utility functions in that

work is such that service differentiation works

X1

X2

X3

fa

fb

Y a

Y b

+
Y0

288

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-7, Iss-4

Dynamic Resource Management In Large Cloud Environments Using Distributed Gossip Protocol

very well under overload conditions, with the risk of

starving unpopular applications. In contrast, our

approach guarantees that every module receives its

fair share of the CPU resources of the cloud, and that

in underload conditions all modules are guaranteed to

have satisfied demands. The proposed design in [9],

[10] scales with the number of machines, but it does

not scale in the number of applications.

The modeling process of DFG [3] consists of the

following steps:

1. Host a single VM in a server.

2. Run a benchmark for a specific virtual resource

(e.g., a CPU-intensive benchmark).

3. Apply statistics analysis to find out the set of

physical resources on which the benchmark incurs

non-negligible utilization and learn the models for the

function nodes.

The benchmark based modeling process [11] aims at

capturing the stable causality relationships between

virtual and physical resource demands. We carefully

select a fixed set of benchmark applications to cover

the two resources (CPU and memory)

Then, our main aim is to develop a distributed

protocol for continuously computing aggregation

functions in a scalable and robust manner [4]. G-GAP

is based on ―Push-Synopses‖, a gossip protocol for

computing aggregates proposed by Kempe et al. [7].

Here we consider Push-Synopses applied only to the

computation of averages, although we don’t envisage

any problems in adapting our results to more general

synopses, such as those discussed in [7]. Our main

contribution in this paper is to extend the Push-

Synopses protocol with a scheme to provide accurate

estimates in the event of node failures of different

types. These extensions are introduced in two steps;

first, for the case of fully synchronized rounds with

guaranteed, timely message delivery; then, for the

more general, asynchronous case.

In the Push-Synopses protocol, each node i maintains,

in addition to the local management variable xi , a

weight wi and a sum si . The local estimate of the

aggregate is computed as ai = si / wi . The protocol is

given for the case of a complete (i.e. fully connected)

network graph of n nodes. However, the protocol is

easily adapted to graphs where only adjacent nodes

are allowed to communicate directly with each other.

This is the relevant case in practice, for scalability

reasons. The protocol executes in synchronized

rounds, assuming reliable and timely communication,

such that a message sent within a given round is

guaranteed to be delivered within that round.

The protocol relies on five rather strong assumptions

which makes it robust:

1. Reliable and timely message delivery: There is a

maximum communication delay td < tr (the

roundduration) such that a message sent from a

node i to a node j at time t is delivered to j no later

than t + td

2. Synchronized rounds: Rounds are globally

synchronized to within some bound tΔr . That is,

all live nodes start a round within tΔr of each other.

3. Round atomicity: All protocol cycles are executed

as atomic statements.

4. Discontiguous crash failures: No two nodes fail

within two rounds of each other. When running

this protocol on a network graph, this assumption

translates to condition that adjacent nodes cannot

fail within a period of two rounds.

5. Connectedness: No failure will cause a node to

become disconnected.

IV. DISCUSSION AND CONCLUSION

With this paper, we make a significant contribution

towards engineering a resource management

middleware for a site-hosting cloud environment. We

identify a key component of such a middleware and

present a protocol that can be used to meet our design

goals for resource management: fairness of resource

allocation with respect to sites, efficient adaptation to

load changes and scalability of the middleware layer

in terms of both the number of machines in the cloud

as well as the number of hosted sites.

Also, we present the design and evaluation of a VM

monitoring information calibration mechanism. We

formulate our problem as a source separation problem

and base our solution on a directed factor graph. We

show how to build a base DFG model through

benchmarking and design a run-time remodeling

solution which is adaptive and guided by the base

DFG model. Our evaluation shows that the proposed

methodology is robust as it successfully calibrates the

VM monitoring information and compares well to

baseline measures.

This paper also makes a major contribution by

presenting a gossip protocol, P*, which enables

continuous monitoring of network-wide aggregates.

The hard part is making the protocol robust against

node failures. Applying gossip protocols to

continuous monitoring is not possible without solving

the problem of mass loss due to node failures.

Pursuing this goal, we plan to address the following

issues in future work: (1) Develop a distributed

mechanism that efficiently places new sites. (2)

Extend the middleware design to span several clusters

and several datacenters, while keeping module

instances of the same site ―close to each other‖, in

order to minimize response times and communication

overhead. (3) Extend P* to allow the memory

demand to change over time. (4) Extend P* to

consider additional resource types, such as storage

and network resources.

289

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-7, Iss-4

Dynamic Resource Management In Large Cloud Environments Using Distributed Gossip Protocol

V. REFERENCES

[1] F. Wuhib, R. Stadler, and M. Spreitzer, ―Gossip-based

resource management for cloud environments,‖ in 2010

International Conference on Network and Service

Management.

[2] Fetahi Wuhib, Rolf Stadler and Mike Spreitzer, ― A Gossip

Protocol for Dynamic Resource Management in Large

Cloud Environments‖ IEEE Trans. Network and Service

Management, vol. 9, no. 2, pp. 213-225, June 2012.

[3] Lei Lu, Hui Zhang, ―Untangling Mixed Information to

Calibrate Resource Utilization in Virtual Machines‖ in

ICAC’11, June 14–18, 2011, Karlsruhe, Germany.

[4] F. Wuhib, M. Dam, R. Stadler, and A. Clem, ―Robust

monitoring of network-wide aggregates through

gossiping,‖ IEEE Trans. Network and Service

Management, vol. 6, no. 2, pp. 95–109, June 2009.

[5] V. M. Koch. A Factor Graph Approach to Model-Based

Signal Separation. Hartung-Gorre Verlag Konstanz, First

edition. 328 pages. ISBN-10: 3-86628-140-4., 2007.

[6] A. Ghodsi, S. El-Ansary, S. Krishnamurthy, and S. Haridi,

―A Selfstabilizing Network Size Estimation Gossip

Algorithm for Peer-to-Peer

 Systems,‖ SICS Technical Report T2005:16, 2005.

[7] D. Kempe, A. Dobra and J. Gehrke, ―Gossip-Based

Computation of Aggregate Information,‖ In Proc. of the

44th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’03), Cambridge, MA, USA, October 11-14,

2003.

 [8] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, A.

Demers, ―Decentralized Schemes for Size Estimation in

 Large and Dynamic Groups,‖ In proc. of the 4th IEEE

International Symposium on Network Computing and

Applications (NCA’05), Cambridge, MA, USA, July 27-

29, 2005.

[9] C. Adam and R. Stadler, ―Service middleware for self-

managing large scale systems,‖ IEEE Trans. Network and

Service Management, vol. 4, no. 3, pp. 50–64, Apr. 2008.

 [10] J. Famaey, W. De Cock, T. Wauters, F. De Turck, B.

Dhoedt, and P. Demeester, ―A latency-aware algorithm for

dynamic service placement in large-scale overlays,‖ in 2009

International Conference on Integrated Network

Management.

[11] C. Isci, J. E. Hanson, I. Whalley, M. Steinder, and J. O.

Kephart. Runtime Demand Estimation for Effective

Dynamic Resource Management. In NOMS’10, pages 381–

388, 2010.

[12] A. Demers, D. Green, C. Hauser, W. Irish, J. Larson,

―Epidemic algorithms for replicated database maintenance,‖

In proc. the 6th Annual ACM Symposium on Principles of

Distributed Computing, Vancouver, British Columbia,

Canada, August 10 - 12, 1987.

[13] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi,

―Dynamic estimation of CPU demand of web traffic,‖ in

valuetools ’06: Proceedings of the 1st international

conference on Performance evaluation methodolgies and

tools. New York, NY, USA: ACM, 2006, p. 26.

[14] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E.

Ayguade, ―Utility-based placement of dynamic web

applications with fairness goals,‖ in Network Operations

and Management Symposium, 2008. NOMS 2008. IEEE,

april 2008, pp. 9 –16.



290

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-7, Iss-4

	DYNAMIC RESOURCE MANAGEMENT IN LARGE CLOUD ENVIRONMENTS USING DISTRIBUTED GOSSIP PROTOCOL
	Recommended Citation

	DYNAMIC RESOURCE MANAGEMENT IN LARGE CLOUD ENVIRONMENTS USING DISTRIBUTED GOSSIP PROTOCOL

