
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 6 Issue 3 Article 8

July 2015

AN EFFICIENT AND SYSTEMATIC VIRUS DETECTION AN EFFICIENT AND SYSTEMATIC VIRUS DETECTION

PROCESSOR FOR EMBEDDED NETWORK SECURITY PROCESSOR FOR EMBEDDED NETWORK SECURITY

P.MUTHU KUMARAN
Sasurie Academy of Engineering, muthukumaran23@gmail.com

R.V.ASHOK PRATHAP
Sasurie Academy of Engineering, ashokeee619@gmail.com

D. MATHAVAN
Sasurie Academy of Engineering, madymathavan24@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
KUMARAN, P.MUTHU; PRATHAP, R.V.ASHOK; and MATHAVAN, D. (2015) "AN EFFICIENT AND
SYSTEMATIC VIRUS DETECTION PROCESSOR FOR EMBEDDED NETWORK SECURITY," International
Journal of Computer and Communication Technology: Vol. 6 : Iss. 3 , Article 8.
DOI: 10.47893/IJCCT.2015.1301
Available at: https://www.interscience.in/ijcct/vol6/iss3/8

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol6
https://www.interscience.in/ijcct/vol6/iss3
https://www.interscience.in/ijcct/vol6/iss3/8
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol6%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol6/iss3/8?utm_source=www.interscience.in%2Fijcct%2Fvol6%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

An Efficient and Systematic Virus Detection Processor for Embedded Network Security

AN EFFICIENT AND SYSTEMATIC VIRUS DETECTION
PROCESSOR FOR EMBEDDED NETWORK SECURITY

P.MUTHU KUMARAN1, R.V.ASHOK PRATHAP2 & D.MATHAVAN3

1,2&3Sasurie Academy of Engineering

Email:muthukumaran23@gmail.com#1, ashokeee619@gmail.com#2, madymathavan24@gmail.com#3

Abstract— Network security has always been an important issue and its application is ready to perform powerful pattern
matching to protect against virus attacks, spam and Trojan horses. However, attacks such as spam, spyware, worms, viruses,
and phishing target the application layer rather than the network layer. Therefore, traditional firewalls no longer provide
enough protection. However, the solutions in the literature for firewalls are not scalable, and they do not address the
difficulty of an antivirus. The goal is to provide a systematic virus detection hardware solution for network security for
embedded systems. Instead of placing entire matching patterns on a chip, our solution is based on an antivirus processor that
works as much of the filtering information as possible onto a chip. The infrequently accessing off-chip data to make the
matching mechanism scalable to large pattern sets. In the first stage, the filtering engine can filter out more than 93.1% of
data as safe, using a merged shift table. Only 6.9% or less of potentially unsafe data must be precisely checked in the second
stage by the exact-matching engine from off-chip memory. To reduce the memory gap and to improve the performance, we
also propose three algorithms are used: 1) a skipping algorithm; 2) a cache method; and 3) a prefetching mechanism.

Index Terms— Algorithmic Attacks, Embedded System, Memory Gap, Network Security, Virus Detection.

I. INTRODUCTION

 NETWORK security has always been an
important issue. End users are vulnerable to virus
attacks, spams and Trojan horses, for example. They
may visit malicious websites or hackers may gain
entry to their computers and use them as zombie
computers to attack others. To ensure a secure
network environment, firewalls were first introduced
to block unauthorized Internet users from accessing
resources in a private network by simply checking the
packet head (MAC address/IP address/port number).
This method significantly reduces the probability of
being attacked. However, attacks such as spam,
spyware, worms, viruses, and phishing target the
application layer rather than the network layer.
Therefore, traditional firewalls no longer provide
enough protection. Many solutions, such as virus
scanners, spam-mail filters, instant messaging
protectors, network shields, content filters and peer-
to-peer protectors, have been effectively
implemented. Initially, these solutions were
implemented at the end-user side but tend to be
merged into routers/firewalls to provide multi-layered
protection. As a result, these routers stop threats on
the network edge and keep them out of corporate
networks.

 A. Firewall Routers
 When a new connection is established, the firewall
router scans the connection and forwards these
packets to the host after confirming that the
connection is secure. Because firewall routers focus
on the application layer of the OSI model, they must
reassemble in-coming packets to restore the original
connection and examine them through different

application parsers to guarantee a secure network
environment. For instance, suppose a user searches
for information on web pages and then tries to
download a com-pressed file from a web server. In
this case, the firewall router might initially deny some
connections from the firewall based on the target’s IP
address and the connection port. Then, the fire-wall
router would monitor the content of the web pages to
prevent the user from accessing any page that
connects to malware links or inappropriate content,
based on content filters. When the user wants to
download a compressed file, to ensure that the file is
not infected, the firewall router must decompress this
file and check it using anti-virus programs. In
summary, firewall routers require several time-
consuming steps to provide a secure connection.

II. EXISTING SYSTEM

 There are many algorithms and accompanying
hardware accelerators for fast pattern matching. One
of the typical algorithms is the automation approach.
This approach is based on Aho and Corasick’s
algorithm (AC), which introduces a linear-time
algorithm for multi-pattern search with a large finite-
state ma-chine. Its performance is not affected by the
size of a given pattern set (the sum of all pattern
lengths). In contrast, heuristic approaches are based
on the Boyer- Moore algorithm, which was
introduced in 1977. Its key feature is the shift value,
which shifts the algorithm’s search window for
multiple characters when it encounters a mismatch.
 The search window is a range of text exactly
fetched by pattern matching algorithms for each
examination. This algorithm performs better because
it makes fewer comparisons than the naïve pattern-

185
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-3

An Efficient and Systematic Virus Detection Processor for Embedded Network Security

matching algorithm. At runtime, the Boyer-Moore
algorithm uses a pattern pointer to locate a candidate
position by assuming that a desired pattern exists at
this position. The algorithm then shifts its search
window to the right of this pattern. By default,
desired patterns can exist in any position of a text;
therefore, all positions in a text are candidate
positions and must be examined. If the string of
search windows does not appear in the pattern, the
algorithm can shift the pattern pointer to the right and
skip multiple characters from the candidate position
to the end of the pattern without making comparisons.
Based on this concept, Wu and Manber (WM)
modified the Boyer-Moore algorithm to search for
multiple patterns. However, the performance of both
of these algorithms is bounded by the pattern length.

B. Related Work
 Focus on algorithms and have even developed for
specialized circuits to increase the scanning speed.
However, these works have not considered the
interactions between algorithms and memory
hierarchy. Because the number of attacks is
increasing, pattern-matching processors require
external memory to support an unlimited pattern set.
This method makes the memory systemthe
bottleneck. However,when the pattern set is already
intractably large, a perfect solution is unattainable.

III. VIRUS DETECTION PROCESSOR

 Virus Detection Processor shown in Fig.1 is a two-
phase pattern matching architecture mostly
comprising the filtering engine and the exact-
matching engine. The filtering engine is a frontend
module responsible for filtering out secure data
efficiently and indicating to candidate positions that
patterns pos sibly exist at the first stage. The exact-
matching engine is responsible for verifying the
alarms caused by the filtering engine. Only a few
unsaved data need to be checked precisely by the
exact-matching engine in the second stage.
 Both engines have individual memories for storing
significant information. For cost reasons, only a small
amount of significant information regarding the
patterns can be stored in the filtering engine’s on-chip
memory. In this case, we use a 32-kB on-chip
memory for the ClamAV virus database, which
contained more than 30 000 virus codes and localized
most of the computing inside the chip.
 Conversely, the exact-matching engine not only
stores the entire pattern in external memory but also
provides information to speed up the matching
process. Our exact-matching engine is space-efficient
and requires only four times the memory space of the
original size pattern set. The size of a pattern set is
the sum of the pattern length for each pattern in the
given pattern set; in other words, it is the minimum
size of the memory required to store the pattern set
for the exact-matching engine. In this case, 8 MB of

off-chip memory was required for the ClamAV virus
database (2 MB).

Figure 1: Virus Detection Processor Architecture.

 The proposed exact-matching engine also supports
data pre fetching and caching techniques to hide the
access latency of the off-chip memory by allocating
its data structure well. The other modules include a
text buffer and a text pump that pre-fetches text in
streaming method to overlap the matching progress
and text reading. A load/store interface was used to
support bandwidth sharing.
 This proposed architecture has six steps shown in
Fig.2 for finding patterns. Initially, a pattern pointer
is assigned to point to the start of the given text at the
filtering stage. Suppose the pattern matching
processor examines the text from left to right. The
filtering engine fetches a piece of text from the text
buffer. If the position indicated by the pattern pointer
is not a candidate position, then the filtering engine
skips this piece of text and shifts the pattern pointer
right multiple characters to continue to check the next
position.

Figure 2: Two-phase Execution Flow

 The shift-signature table combines two data
structures used by two different filtering algorithms,
the Wu Manber algorithm and the Bloom filter
algorithm, and it provides two-layer filtering. If both
layers are missing their filter, the processor enters the
exact-matching phase. The next section has details
about the shift-signature table.

IV. FILTERING ENGINE (FE)

 Designs that feature filters indicate that the action
behind these filters is costly and necessary. In this
work, the overall performance strongly depends on

186
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-3

An Efficient and Systematic Virus Detection Processor for Embedded Network Security

the filtering engine. Providing a high filter rate with
limited space is the most important issue. Two
classical filtering algorithms were introduced for
pattern matching in the following sections. We then
show how to merge their string structures in the space
to to improve the filter rate.

A. Wu-Manber Algorithm
 The Wu-Manber algorithm is a high-performance,
multi-pattern matching algorithm based on the Boyer-
Moore algorithm. It builds three tables in the pre
processing stage: a shift table, a hash table and a
prefix table. The Wu-Manber algorithm is an exact-
matching algorithm, but its shift table is an efficient
filtering structure. The shift table is an extension of
the bad-character concept in the Boyer-Moore
algorithm, but they are not identical. The matching
flow is shown in Fig. 3(a).

Figure 3: Wu-Manber Matching Process. (a) Matching Flow;
(b) Shift Table; (c)Hash Table + Prefix Table; (d) Matching

Process.

 The matching flow matches patterns from the tail
of the minimum pattern in the pattern set, and it takes
a block B of characters from the text instead of taking
them one-by-one. The shift table gives a shift value
that skips several characters without comparing after
a mismatch. After the shift table finds a candidate
position, the Wu-Manber algorithm enters the exact-
matching phase and is accelerated by the hash table
and the prefix table. Therefore, its best performance
is O(BN/m) for the given text with length N and the
pattern set, which has a minimum length of m . The
performance of the Wu-Manber algorithm is not
proportional to the size of the pattern set directly, but
it is strongly dependent on the minimum length of the
pattern in the pattern set. The minimum length of the
pattern dominates the maximum shift distance(m-
B+1) in its shift table. However, the Wu-Manber
algorithm is still one of the algorithms with the best
performance in the average case.
 For the pattern set {erst, ever, there} shown in Fig.
3(d), the maximum shift value is three characters for
B=2 and m=4. The related shift table, hash table and
prefix are shown in Fig. 3(b) and Fig. 3(c). The Wu-
Manber algorithm scans patterns from the head of a
text, but it compares the tails of the shortest patterns.

In step 1, the arrow indicates to a candidate position
that a wanted pattern probably exists, but the search
window is actually the character it fetches for
comparison. According to shift[ev=2], the arrow and
search window are shifted right by two characters.
Then, the Wu Manber algorithm finds a candidate
position in step 2 due to shift[er=0] . Consequently, it
checks the prefix table and hash an exact-matching
and then outputs the “ever” in step 3.After
completing the exact match, the Wu-Manber
algorithm returns to the shifting phase, and it shifts
the search window to the right by one character to
find the next candidate position instep 4. The
algorithm keeps shifting the search window until
touching the end of the string in step 6.

B. Bloom Filter Algorithm
 A Bloom filter is a space-efficient data structure
used to test whether an element exists in a given set.
This algorithm is composed of different hash
functions and a long vector of bits. Initially, all bits
are set to 0 at the pre processing stage. To add an
element, the Bloom filter hashes the element by these
hash functions and gets positions of its vector. The
Bloom filter then sets the bits at these positions to 1.
The value of a vector that only contains an element is
called the signature of an element. To check the
membership of a particular element, the Bloom filter
hashes this element by the same hash functions at run
time, and it also generates positions of the vector.
 If all of these bits are set to 1, this query is claimed
to be positive, otherwise it is claimed to be negative.
The output of the Bloom filter can be a false positive
but never a false negative. Therefore, some pattern
matching algorithms based on the Bloom filter must
operate with an extra exact-matching algorithm.
However, the Bloom filter still features the following
advantages: 1) it is a space-efficient data structure; 2)
the computing time of the Bloom filter is scaled
linearly with the number of patterns; and 3) the
Bloom filter is independent of

Figure 4: Bloom Filter Matching Process. (a) Matching Flow;

(b) Bit-Vector Building; (c) Matching Process

 Fig. 5(a) describes a typical flow of pattern
matching by Bloom filters. This algorithm fetches the
prefix of a pattern from the text and hashes it to
generate a signature. Then, this algorithm checks
whether the signature exists in the bit vector. If the

187

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-3

An Efficient and Systematic Virus Detection Processor for Embedded Network Security

answer is yes, it shifts the search window to the right
by one character for each comparison and repeats the
above step to filter out safe data until it finds a
candidate position and launches exact-matching. Fig.
5(b) shows how a Bloom filter builds its bit vector for
a pattern set {erst, ever, there} for two given hash
functions. The filter only hashes all of the pattern
prefixes at the pre processing stage. Multiple patterns
setting the same position of the bit vector are allowed.
Fig. 5(c) shows an example of the matching process.
The arrows indicate the candidate positions. The gray
bars represent the search candidate positions. The
gray bars represent the search window that the Bloom
filter actually fetches for comparison. Both the
candidate position and search window are aligned
together. Thus, the Bloom filter scans and compares
patterns from the head rather than the tail, like the
Wu-Manber algorithm. In step1, the filter hashes
“He” and mismatches the signature with the bit
vector. The filter then shifts right 1character and finds
the next candidate position. For the search window
“ee”, the Bloom filter matches the signature and then
causes a false alarm to perform an exact-matching in
steps 2 and 3. The filter then returns to the filtering
stage and shifts one character to the right in step 4,
which launches a true alarm for the pattern “ever”.

C. Shift-Signature Algorithm
 The proposed algorithm re-encodes the shift table
to merge the signature table into a new table named
the shift-signature table. The shift-signature table has
the same size as the original shift table, as its width
and length are the same as the original shift table.
There are two fields, S-flag and carry, in the shift
signature table. The carry field has two types of data:
a shift value and a signature. These two data types are
used by two different algorithms. Thus, the S-flag is
used to indicate the data type of a carry. The filtering
engine can then filter the text using a different
algorithm while providing a higher filter rate. The
method used to merge these two tables is described as
follows. First, the algorithm generates two tables, a
shift table and signature table, at the pre processing
stage. The generation of the shift table is the same as
in the Wu-Manber algorithm.
 The S-flag is a1-bit field used to indicate the data
type of the carry. Two data types, shift value or
signature, are defined for a carry. The size and width
of the shift signature table are the same as those of
the original shift table. To merge these two tables, the
algorithm maps each entry in the shift table and
signature table onto the shift-signature table. For the
non-zero shift values, the S-flags are set, and their
original shift values are cut out at 1-bit to fit their
carries. Conversely, for the zero shift values, their S-
flags are clear, and their carries are used to store their
signatures. In this method, all of the entries in the
shift-signature table contribute to the filtering rate at
run time. Because of the address collision of bad-
characters, most entries contain less than half of the

maximum shift distance for a large pattern set.
Therefore, although this method sacrifices the
maximum shift distance, the filter rate is not reduced
but rather improved.
 Fig. 5(a) shows an example of generating the shift
and signature tables. Suppose the length of the
shortest pattern “patterns” in the pattern set is 8
characters. The size of the bad-character is 2
characters, thus the maximum shift distance is 8-
2+1=7 characters. Seven possible bad-characters
(“pa”, “at”, “tt”, “te”, “er”, “rn”, “ns”) are defined
according to the Wu-Manber algorithm, and their
shift values are 6, 5, 4, 3, 2, 1, and 0. Before
replacement, the algorithm first builds the signature
table. For each pattern, the algorithm hashes the tail
characters of a pattern(blue bar) to generate its
signature. The signature is then assigned to the
signature table indexed

Figure 5: Table Generation and Re-Encoding of Shift-
Signature Algorithm. (a) Table Generation; (b) Table Re-

Encoding

 For multiple signatures mapped to the same entry,
the entry stores the results of the OR operation of
these signatures. In this work, we only use one hash
function because of the space limitation of the
signature table. The method of merging the shift table
and signature table is shown in Fig. 5(b). Then is
replaced by its signature (“010” in binary) because its
shift value is zero. In contrast, the shift[at]=5 and
shift[er]=2 keep their shift values in the shift-
signature table.

Figure 6: Matching Flow and Filtering Example. (a) Filtering

Flow; (b) Shift Filtering; (c) Signature Filtering.

 The filtering flow is shown in Fig. 8(a). For the
pattern set {patterns}, Fig. 6(b) and Fig. 6(c) illustrate

188
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-3

An Efficient and Systematic Virus Detection Processor for Embedded Network Security

how the filtering engine filters out the given text. The
filtering engine fetches the text from the search
window (blue bar), as shown in Fig. 8(c).One part of
the fetched text (red bar), shown in Fig. 6(b), is used
as a bad character to index the shift-signature table. If
the S-flag is set, the carry is treated as a shift value.
As a result, the filtering engine shifts the candidate
position to the right by two characters for the text
“overhead”, as shown in Fig. 6(b). If the S-flag is
clear, the carry is treated as a signature. The filtering
engine hashes the fetched text and matches it with the
signature read from the shift-signature table. Fig. 6(c)
indicates that the fetched text “he” has the same index
as the bad-character“ns”, but it fails to match the
signature. Thus, the filtering engine shifts the
candidate position to the right by one character to
provide second-level filtering.

V. FUTURE WORK

 In my future work 1) a shift-signature table and 2)
a trie-skip mechanism will be combined to improve
the performance and improve the blow of the impact
on memory gap for this two-phase architecture. First,
we re-encode the shift table and Bloom filter to
merge them into the same space, the shift-signature
table. The new table not only maintains the shift
value of properties but also avoids reducing the filter
rate for a large scale pattern set. Second, the trie-skip
mechanism avoids performance reduction during
malicious attacks. Trie-skip mechanism overcomes
these two attacks by skip values and jump nodes.
With these two fields, use the new trie structure
suitable for prefetched and cached to reduce the off-
chip memory access just by rearranging the trie
structure.

VI. SIMULATION RESULTS

A. Wu-Manber Algorithm

B. Bloom Filter Algorithm

C. Shift-Signature Algorithm

VII. CONCLUSION

 Many previous designs have claimed to provide
high performance, but the memory gap created by
using external memory decreases performance
because of the increasing size of virus databases.
Furthermore, limited resources restrict the practicality
of these algorithms for embedded network security
systems. Two-phase heuristic algorithms are a
solution with a tradeoff between performance and
cost due to an efficient filter table existing in internal
memory; however, their performance is easily
threatened by malicious attacks. This work analyzes
two scenarios of malicious attacks and provides two
methods for keeping performance within a reasonable
range. First, were-encoded the shift table to make it

189
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-3

An Efficient and Systematic Virus Detection Processor for Embedded Network Security

provide a bad-character heuristic feature and high
filter rates for large pattern sets at the same time.
Second, the proposed skip mechanism increases the
blow to performance under algorithmic attacks.

REFERENCES

[1] Chieh-Jen Cheng, Chao-Ching Wang, Wei-Chun Ku, Tien-Fu

Chen , and Jinn-Shyan Wang, “Scalable High-Performance
Virus Detection Processor Against a Large Pattern Set for
Embedded Network Security” Commun. VOL. 20, NO. 5,
MAY 2012

[2] O. Villa, D. P. Scarpazza, and F. Petrini, “Accelerating real-
time string searching with multicore processors,” Computer,
vol. 41, pp. 42–50,2008.

[3] D. P. Scarpazza, O. Villa, and F. Petrini, “High-speed string
searching against large dictionaries on the Cell/B.E.
processor,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., 2008, pp. 1–8.

[4] D. P. Scarpazza, O. Villa, and F. Petrini, “Peak-performance
DFA based string matching on the Cell processor,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process., 2007, pp. 1–8.

[5] L. Tan and T. Sherwood, “A high throughput string matching
architecture for intrusion detection and prevention,”in Proc.
32nd Annu. Int. Symp. Comput. Arch., 2005, pp. 112–122.

[6] S. Dharmapurikar, P. Krishnamurthy, and T. S. Sproull,
“Deep packet inspection using parallel bloom filters,” IEEE
Micro, vol. 24, no. 1, pp.52–61, Jan. 2004.

[7] R.-T. Liu, N.-F. Huang, C.-N. Kao, and C.-H. Chen, “A fast
string matching algorithm for network processor-based
intrusion detection system,” ACMTrans. Embed. Comput.
Syst., vol. 3, pp. 614–633, 2004.

[8] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet
pattern matching using TCAM,” in Proc. 12th IEEE Int.
Conf. Netw. Protocols, 2004, pp. 174–178.intrusion detection
system,” ACMTrans. Embed. Comput. Syst., vol. 3, pp. 614–
633, 2004.

[9] R. S. Boyer and J. S. Moore, “A fast string searching
algorithm,”Commun. ACM, vol. 20, pp. 762–772, 1977.

[10] V. Aho and M. J. Corasick, “Efficient string matching: An
aid to bibliographic search,” Commun. ACM, vol. 18, pp.
333–340, 1975

[11] H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM, vol. 13, pp. 422–426,
1970.

190
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-3

	AN EFFICIENT AND SYSTEMATIC VIRUS DETECTION PROCESSOR FOR EMBEDDED NETWORK SECURITY
	Recommended Citation

	AN EFFICIENT AND SYSTEMATIC VIRUS DETECTION PROCESSOR FOR EMBEDDED NETWORK SECURITY

