
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 6 Issue 2 Article 1

April 2015

COUNTING BLOOM FILTER ARCHITECTURE IN VLSI NETWORK COUNTING BLOOM FILTER ARCHITECTURE IN VLSI NETWORK

SYSTEMS SYSTEMS

NAGAMALLI. A
Department of E.C.E, A.I.E.T, Narsipatnam,Visakhapatnam , AndhraPradesh ,India,
mallika.arasavalli@gmail.com

KEDARESWARARAO. M
Department of E C E,A.I.E.T, Narsipatnam, J. N.T.U.K, Kakinada, India, Kedhar_mutyala@yahoo.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
A, NAGAMALLI. and M, KEDARESWARARAO. (2015) "COUNTING BLOOM FILTER ARCHITECTURE IN VLSI
NETWORK SYSTEMS," International Journal of Computer and Communication Technology: Vol. 6 : Iss. 2 ,
Article 1.
DOI: 10.47893/IJCCT.2015.1278
Available at: https://www.interscience.in/ijcct/vol6/iss2/1

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol6
https://www.interscience.in/ijcct/vol6/iss2
https://www.interscience.in/ijcct/vol6/iss2/1
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol6%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol6/iss2/1?utm_source=www.interscience.in%2Fijcct%2Fvol6%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

 COUNTING BLOOM FILTER ARCHITECTURE IN VLSI
NETWORK SYSTEMS

NAGAMALLI. A1& KEDARESWARARAO. M2

1Department of E.C.E, A.I.E.T, Narsipatnam,Visakhapatnam , AndhraPradesh ,India

2Department of E C E,A.I.E.T, Narsipatnam, J. N.T.U.K, Kakinada, India
Email: mallika.arasavalli@gmail.com, Kedhar_mutyala@yahoo.com

Abstract— the Counting Bloom Filter (CBF) is useful for real time applications where the time and space efficiency is the
main consideration in performing a set membership tests. The CBF estimates whether an element is present in a large array
or not by allowing false positives and by not permitting false negatives. In this paper CBF architecture is analyzed and has
been implemented. There are two approaches of CBF, SRAM based approach using up/down counters and the LCBF using
up/down LFSR unit. In this paper the LCBF architecture discussed and analyzed. In the latest VLSI technology it is easy to
fabricate memories that hold a few million bits of data and addresses. But in the recent embedded memory technologies
rather than mapping of addresses of 5000 bits of data using hashing functions we can concise in to single contiguous
memory.

Keywords- Bloom filter, Hashing mechanism, SRAM, LCBF, false positives, false negatives, look –ups, VLSI network
systems

I. INTRODUCTION

In 1970 BURTON HOWARD BLOOM proposed

a elegant probabilistic data structure for testing set-
membership tests, in the process of finding automatic
hyphenation using an English dictionary. As there is
limited core memory RAM that time, therefore the
entire dictionary of the English language could not be
held there. It is somewhat paradoxical to have to wait
for an era of ever increasing core memory for Bloom
filters to broadly take hold. Fig 1 shows the Bloom
filter architecture.

Fig .1 The Bloom Filter Architecture

Simply stated, a Bloom filters achieves space

efficiency, less than O (mn) space, by allowing for a
small probability of false positives, but no false
negatives, to the set-membership question. Bloom
Filter is a space efficient probabilistic data structure
which is used for testing the presence of an
element[9].

Fig.2. Bloom filter using multiple smaller memories with

smaller lookup capacity

II. PROPERTIES AND TYPES OF THE
BLOOM FILTER

A. PROPERTIES
Two useful properties of the Bloom filter for

access control are:
1. The union of two Bloom filters of the same size

and using the same hash functions can be obtained by
bitwise ORing the two filters.

2. The intersection of two Bloom filters of the
same size and using the same hash functions can be
obtained by bitwise ANDing the two filters.

B. TYPES
Bloomier filters
In the case of "Bloomer filters [6]", a false

positive is defined as returning a result when the key
is not in the map. The map will never return the
wrong value for a key that is in the map.

Stable Bloom filters
The Stable Bloom filter introduces false negatives,

which do not appear in traditional bloom filters.

Scalable Bloom filters
The technique is based on sequences of standard

bloom filters with increasing capacity and tighter
false positive probabilities, so as to ensure that a
maximum false positive probability can be set
beforehand, regardless of the number of elements to
be inserted[12].

 Attenuated Bloom filters
The attenuated filter of level i indicates which

services can be found on nodes that are i-hops away
from the current node.

76

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-2

Counting Bloom Filter Architecture in VLSI Network Systems

Counting Bloom Filter (CBF)
An increasing number of architectural techniques

rely on hardware counting bloom filters (CBFs) to
improve upon the power, latency and complexity of
various key processor structures. CBF dynamically
bypasses the conventional mechanism as frequently
as possible. Accordingly, the benefits obtained
through the use of a CBF depend on how frequently it
can be utilized and on the CBF’s energy and latency
characteristics. The more tests are serviced by the
CBF alone and the lower the power and latency of the
CBF, the higher the benefits. Architectural techniques
and application behavior determine how many tests
can be serviced by the CBF.

In this paper CBF architecture is analyzed and

applications are discussed for network systems.

III. CBF ARCHITECTURE
Counting Bloom Filter (CBF) consists of a small

element addresses array that is connected to the array
through hashing mechanism, i.e. multiple addresses
mapped to single array [1], as shown in fig. 3

.
Fig.3 Counting bloom filter basic block diagram

Fig. 4 shows CBF with single memory vector for a typical

5000 bits.
Fig.4 Bloom filter with single memory vector

CBF has three operations increment count (inc),
decrement count (dec) and test if count is zero
(probing) as shown in fig [3]. CBF is characterized by
its number of entries and width of the count per entry.
CBF can be accessed faster than any other data
structure and needs very less energy when compared

to that of accessing a large set of data, most of the
membership tests are serviced by the CBF.

In the latest VLSI technology it is easy to

fabricate memories that hold a few million bits of
data and addresses. But in the recent embedded
memory technologies rather than mapping of
addresses of 5000 bits of data using hashing functions
we can concise in to a single contiguous memory [3].

IV. CBF ALGORITHM
We want to test for membership in a set S =

of n elements. The universe U
of elements is typically very large. Let h1, h2, h3, hk
be k independent hash functions with
range .

Bloom filter consists of a bit array of m – bits
with all set to 0.There must be k- hash functions
defined each one hashes some set element to one of
the m-array positions in a uniform random
distribution format.

Adding an element: feed to each of the k hash
functions to get k array positions. Set the bits at all
these positions to 1.

Query for an element: To find whether the element
is in it or not feed it to each of the k hash functions to
get k array positions. If any of the bits at these
positions are 0, the element is definitely not in the set;
if it were, then all the bits would have been set to 1
when it was inserted. If all are 1, then either the
element is in the set, or the bits have by chance been
set to 1 during the insertion of other elements, this is
called as false positives.

False positives are acceptable but false negatives
are not accepted , because removing an element from
the simple bloom is not possible ,once the element is
removed from the composite filter re-adding is also
impractical[4].This problem can overcome in counting
bloom filter architectures.

Basic steps followed by bloom filters with initial

assumed state as empty,
1. Empty bloom filter is a bit array of

m ‘0’ bits.
2. Introduce ‘k’ hash functions, each

maps key value to one of m array positions.
3. Insert element by feeding it to each

hash function, to obtain k array positions. Set
these bits to ‘1’.

4. Query an element by re-feeding it in
to each hash function, and checking
corresponding bit positions. If all bits are set
1, then either the element is in the filter or a
false positive.

5. If bit positions of hashes of an
element contains ‘0’, then that element is
definitely not in the filter; no false negatives.

This can be represented in an array as shown in
below fig [5]

77

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-2

Counting Bloom Filter Architecture in VLSI Network Systems

Fig.5 working of bloom filters with empty, insertion and

query operations

V. ESTIMATION OF FALSE POSITIVE
PROBABILITY (P)

The false positive probability is a function of
 number of elements in the filter of size .

Assuming an optimal number of hash functions,
k=m/n ln 2.

Assume that a hash function selects each array
position with equal probability. If m is the number of
bits in the array, the probability that a certain bit is
not set to one by a certain hash function during the
insertion of an element is then - .

The probability that it is not set by any of the hash

functions is. -

If we have inserted n elements, the probability that
a certain bit is still 0 is

The probability that it is 1 is therefore

Now test membership of an element that is not in

the set. Each of the k array positions computed by the
hash functions is 1 with a probability as above. The
probability of all of them being 1, which would cause
the algorithm to erroneously claim that the element is
in the set, is often given as

This is not strictly correct as it assumes

independence for the probabilities of each bit being
set. However, assuming it is a close approximation
we have that the probability of false positives
decreases as m (the number of bits in the array)
increases, and increases as n (the number of inserted
elements) increases. For a given m and n, the value of
k (the number of hash functions) that minimizes the
probability is

This gives the false positive probability of

The required number of bits m, given n (the

number of inserted elements) and a desired false
positive probability p (and assuming the optimal
value of k is used) can be computed by substituting
the optimal value of k in the probability expression
above:

(1)
And can be simplified to

 (2)
This results in:

 (3)
This means that for a given false positive

probability p, the length of a Bloom filter m is
proportionate to the number of elements being
filtered n[2]. While the above formula is asymptotic
(i.e. applicable as m, n → ∞), the agreement with
finite values of m, n is also quite good; the false
positive probability for a finite bloom filter with m
bits, n elements, and k hash functions is at most

 (4)
So we can use the asymptotic formula if we pay a

penalty for at most half an extra element and at most
one fewer bit [1].

78

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-2

Counting Bloom Filter Architecture in VLSI Network Systems

VI. COUNTING BLOOM FILTER
IMPLEMENTATION

CBF implementation can be handled in two
methods

1. SCBF –SRAM BASED CBF
2. LCBF- LOWPOWER CBF

In earlier work SRAM based CBF (SCBF) was
implemented, where up/down counters were used in
place of up/down LFSR unit in each partition.

In LCBF architecture input is an address given to

a pre decoder. Through global decoder it is
transferred to local decoder and gated clock circuitry,
where the clock is generated according to the input
address and local decoded data.

Fig .6 Basic architecture of LCBF: low power fast

counting bloom filter [1]

Basic cells consist of DWL based decoder

structure, up/down LFSR unit and a zero detector
with local and global multiplexer units. For a 3 level
decoder DWL STRUCTURE can be represented as
shown below in fig. 7

Fig .7 DWL architecture using a three level decoder [4]

The critical path for a typical decoder

implemented using the DWL architecture as shown in
fig. 8

Fig. 8 Critical path for a 3 level decoder

Decoders encompasses the circuits from the
address input to the word line as shown in fig .6

Design of each decoder consists of combinational
modes:

DR CMOS – delayed reset logic uses delayed
version of one of the inputs to conditionally
reset the gate

SR CMOS – self resetting logic uses output to
reset the gate

 Fig .9 Schematic of fast- low power three-level decoder

structure.

DRCMOS techniques will have the least logical
effort and hence the lowest delay.

Next block in internal structure of LCBF is up/
down LFSR unit with Galois implementation

LFSR will produce a pseudorandom sequence of
maximal length 2n-1 states, where n is the number of
stages The sequence will then repeat from the initial
state for as long as the LFSR is clocked[5]. An
example of a 3 bit LFSR and truth table are shown in
fig. 10[7]

LFSR
stage

0 1 2 Va
lue

0 0 1 1
1 0 0 4
1 1 0 6
1 1 1 7
0 1 1 3
1 0 1 5
0 1 0 2

Fig.10 3-bit LFSR and truth table

79

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-2

Counting Bloom Filter Architecture in VLSI Network Systems

Thus changing the tap points and setting the pre-
set value many pseudo random sequences will be
generated; following truth table is an example

Table (1) Truth table for 3-bit LFSR making tap 0 as
1

 Output of each LFSR given to a zero detector

which is selected according to the reset logic and the
corresponding result transferred through local
multiplexer, global multiplexer, as a result output of
global multiplexer combinely gives set member ship
test result as “ is-zero” as Shown in fig. 6

CONCLUSION

Main advantage of using LFSR in the CBF

architecture is switching noise can be reduced as
there is no “rollover” unlike a binary counter. By and
then various types of bloom filters were studied. CBF
architecture is analyzed to obtain probability of
minimum false positive.

Thus by using 3 level decoder structure with
“DRCMOS logic” delay can be reduced as the
decoders designed with lowest delay and critical path
delay also reduced for a 3 level decoder of LCBF.

Thus LCBF estimates and speeds the set
membership test for an element with minimum false
positives, and reduced path delay structures in DWL
decoders.

For efficient tradeoff between delay and energy in
a large range RAM structures in VLSI can be
designed by the simple mechanism of varying the
sizes of the word driver inputs and the total logical
effort can be reduced significantly by skewing the
gates in the inner structures of DWL decoders of
CBF.

A technique where Constant time computation of

the algorithm along with the scalability is needed,
such as applications of network intrusion detections,
which require real time processing then LCBF is a
best method of implementing the hardware
architecture.

ACKNOWLEDGMENT

We acknowledge with thanks our respective

college colleagues who have given support for
successful presentation of this paper.

We also thank Sri G.TirumalaRao, Professor,
Department of E.C.E, G.V.P. College of Engineering,
for his valuable suggestions in completing this paper.

REFERENCES
[1] E. Safi, A. Moshovos, and A. Veneris, “L-CBF: A fast, low-

power counting bloom filter architecture,” in Proc. Ann. Int.
Symp. Low Power Electron. Des., Oct. 2006, pp. 250–255.

[2] http:/ en.wikipedia.org/wiki/BLOOM FILTER

[3] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd S.
Sproull, John W. Lockwood, Deep Packet Inspection using
Parallel Bloom Filters, IEEE Micro, vol. 24, no. 1, pp. 52-61,
2004

 [4] Bharadwaj S. Amrutur and Mark A. Horowitz, Fellow,IEEE
“Fast Low-Power Decoders for RAMs” journal of solid-state
circuits, vol. 36, no. 10, october 2001

[5] P. Alfke, “Efficient shift registers, LFSR counters, and long
pseudorandom sequence generators,” Xilinx, San Jose, CA,
Appl. Note 052, Jul. 1996.

[6] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet
Tal, “The Bloomier filter: an efficient data structure for static
support lookup tables”, Proceedings of the Fifteenth Annual
ACM-SIAM symposium on discrete algorithms, pp. 30-39,
2004

[7] http:/www.markharvy.info/fpga/lfsr/lfsr.

[8] Parvez Anandam, Network Access Control using Bloom
filters, March 12, 2007.

[9] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet
Tal, The Bloomier filter: An efficient data structure for static
support lookup tables, Proceedings of the Fifteenth Annual
ACM-SIAM symposium on discrete algorithms, pp. 30-39,
2004.

[10] M.Abramovili, M.A.Breues, A.D.Friedman-“Digital Systems
Testing and Testable Design” Jaico publications.

[11] Parag K.Lala- “Fault Tolerant& Fault Testable Hardware
Design” -PHI Publications.

[12] Simha Sethumadhavan, Rajagopalan Desikan Doug Burger
Charles R. Moore Stephen W. Keckler Department of
Computer Sciences &University of Texas “Scalable
Hardware Memory Disambiguation for High ILP Processors”
Proceedings of the 36th International Symposium on Micro
architecture (MICRO-36 2003) 0-7695-2043-X/03 2003
IEEE .

[13] Abhishek Kumar Jun (Jim) Xu College of Computing
Georgia Institute of Technology Space Code Bloom Filter for
Efficient Traffic Flow Measurement-Li Li ,Bell Labs

80

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-6, Iss-2

	COUNTING BLOOM FILTER ARCHITECTURE IN VLSI NETWORK SYSTEMS
	Recommended Citation

	COUNTING BLOOM FILTER ARCHITECTURE IN VLSI NETWORK SYSTEMS

