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Abstract : With rise of multicore systems, software transactional 
memory (STM) has garnered significant interest as an elegant 
alternative for developing concurrent code. A (memory) 
transaction is an unit of code in execution in memory. A 
software transactional memory system (STM) ensures that a 
transaction appears either to execute atomically (even in 
presence of other concurrent transactions) or to never have 
executed at all. To achieve this property, a commonly used 
approach by STM systems is eager validation approach. In this 
approach, when a transaction performs a write operation the 
update is immediately written to the memory and is visible to 
other transactions. If the transaction aborts, then the writes 
performed by it previously are undone with the aid of undo logs. 
In this paper, we have presented a new correctness criterion 
EAC for eager approach validation systems. We have developed 
a STM system that implements this criterion. The STM system 
uses database recovery criterion strictness and the notion of 
conflict graphs used for testing conflict serializability. 
 
 

I. INTRODUCTION 
 

In the recent years with rise of multicore systems, 
parallel programming has become very important. As a 
result, software transactional memory has garnered 
significant interest as an elegant alternative for developing 
concurrent code. Software transactions are units of 
execution in memory which enable concurrent threads to 
execute seamlessly [3]. Traditionally locks have been 
used for developing parallel programs. But programming 
with locks has many disadvantages such as deadlocks, 
priority inversion etc. These disadvantages make it 
difficult to build scalable software systems. Importantly, 
lock based software components are difficult to compose 
i.e. building larger software systems using simpler 
software components [2]. Software transactions address 
many of the short comings of lock based systems. 

 
 A (memory) transaction is a unit of code in execution 
in memory. A software transactional memory system 
(STM) ensures that a transaction appears either to execute 
atomically (even in presence of other concurrent  
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Transactions or to never have executed at all. If a 
transaction executes to completion then it is committed 
and its effects are visible to other transactions. Otherwise 
it is aborted and none of its effects are visible to other 
transactions. Thus the values written by a live 
(incomplete) transaction to the memory are not visible to 
other transactions. 
 

To achieve this property, two approaches are 
commonly used by STM system: eager and lazy approach. 
In lazy approach, each transaction tX maintains a local 
buffer for every data-item d it accesses. Any write onto a 
d by tX is first written to the local buffer associated with 
d. When tX commits, the updates are written to the 
memory. If the tX aborts then the contents of the buffer 
are discarded. In case of eager approach, every update is 
written directly to the memory and is immediately visible 
to other transactions. If the transaction aborts then the 
writes performed by it are undone with the aid of undo 
logs. In this paper we focus on eager approach. 

 
 When transactions accessing common data-items 
execute concurrently it is imperative that they execute 
correctly. Hence, it is important to characterize the right 
correctness criteria. The correctness criterion used in 
traditional databases is serializability [5]. But 
serializability concerns itself only with the events of 
committed transactions. It does not require that the 
aborted transactions read consistent values. A commonly 
accepted correctness requirement for concurrent 
executions in STM systems is that all transactions 
including aborted ones read consistent values [1] and is 
referred to as allreadsconsistency[7]. Opacity [1] is a 
correctness criterion that satisfies all-reads-consistency. 
In this paper, we have presented a new correctness 
criterion EAC for eager approach validation systems. We 
have developed a STM system that implements this 
criterion. For implementing this criterion, we used 
database recovery criterion Strictness [8] and the notion of 
conflict graphs used for testing conflict serializability. 
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Roadmap: Section II presents background and system 
model, Section III presents EAC, a correctness criterion 
for eager approach validation systems, and the algorithm 
implementing it. Section IV concludes this paper and 
finally Section V describes the pseudo code of the 
algorithm. 
 

II. BACKGROUND AND SYSTEM MODEL 
 

In a multicore system, threads execute concurrently 
and invoke transactions whenever they want to access 
shared data. A transaction is finite sequence of 
instructions executed. Different transactions execute in an 
interleaved manner, to access shared variables. The 
operations invoked by transactions are read and write 
operations. We assume that these are operations executed 
instantaneously. But it is necessary that the outcomes of 
operations of different interleaving transactions on the 
shared memories leave the system in a consistent state. 
The STM system is a layer between parallel interleaving 
transactions and shared memory which ensures memory is 
in a consistent state. 

 
 When a transaction tX performs a read operation on a 
data item d it is denoted as rX(d). The write on d is 
denoted as rX(d). If the date-item is not relevant, we 
simply ignore it. When a transaction terminates, the STM 
validates the actions of the transaction. If a transaction tX 
executes successfully to completion, it terminates with a 
commit operation denoted as cX. The effects of a 
committed transaction are visible to other transactions. 
Otherwise it aborts, aX and none of it effects are visible to 
other transactions that follow it. Abort and commit 
operations are called terminal operations. 
 
Some properties of the STM presented in this paper are: 
 

a) Schedule and History: A schedule is a totally 
ordered sequence (in real time order) of operations and 
terminal operations of transactions in a computation. 
These operations are referred to as events of the schedule. 
Schedule includes both terminated and live (which have 
not yet terminated) transactions. A history consists only of 
terminated transactions. We will use schedules in the 
examples in the rest of the document. The example of a 
schedule is: 

S1 : r1(x) r2(y) w1(y) w2(z) c1 c2 r3(x) w3(x) c3. 
 

For a schedule S, we denote its transactions as trans(S), its 
operations are ops(S). For S1, trans(S) = t1, t2. We 
capture the order among the events of the schedule S by 
<S. Thus, r1(x) <S1 w1(y). The relation <S partially 
orders transactions in S. For instance, in S1, t1 <S1 t3 and 
t2 <S1 t3. But nothing can be said about the order of t1 
and t2 since they execute in interleaved manner. 
 

b) Blind read and write: Blind read implies that a 
transaction reads from other live transaction while blind 
write means that a transaction writes onto a shared data 
without reading it. 

 
c) Transaction Validation - Eager approach: A STM 

system can employ two approaches for transaction 
validation: lazy and eager. In lazy approach, each 
transaction tX maintains a local buffer for every data-item 
d it accesses. Any write onto a d by tX is first written to 
the local buffer associated with d. When tX commits, the 
updates are written to the memory. If the tX aborts then 
the contents of the buffer are discarded. In case of eager 
approach, every update is written directly to the memory 
and is immediately visible to other transactions. Normally 
in case of eager approach, transactions maintain undo logs 
to take care of aborts. When a transaction aborts, the undo 
logs help restore the memory to the previous state and 
completely remove the affects of the aborted transaction. 
The STM presented in this paper is based on eager 
approach. 

d) All-Reads-Consistency: An important property 
required of STM systems is that every transaction 
including aborted transactions read consistent values [1]. 
We denote this property as all reads consistency. For a 
read operation rX(d) in a schedule S we denote its 
lastWrite [6], [7]as the previous closest write wY (d) on d 
in the S. It is the write operation whose write value is read 
by rX. 

 
Opacity [1] is a commonly used correctness criterion 

by STM systems that ensures all-reads-consistency. A 
schedule S consisting of transactions involving read and 
write operations is be said to be opaque if there exists a 
serial schedule SS such that (i) the set of transactions in S 
are same as in SS (ii) the order of transaction execution in 
S and SS are the same. If a transaction tX completes 
before tY begins in S then tX also completes before tY 
begins in SS (iii) the lastWrites for every read operation 
(including the reads of the aborted transactions) are the 
same in S and SS. By ensuring all reads including reads of 
aborted transactions be the same as in serial schedule, 
opacity follows all-reads-consistency. Imbs and Raynal 
gave an implementation of opacity with read and write 
operations for lazy approach [4]. 

 
In addition to these conditions, opacity also requires 

that each aborted transaction read only from committed 
transactions. In other words no aborted transaction tj can 
read from another aborted transaction ti (which possibly 
was live during the read operation of tj ). 

 
e) Conflict Serializability: Serializability (View 

Serializability or VSR) is a correctness criterion for 
databases which concerned it only with committed 
transactions. But testing for membership of VSR has been 
proved to be NP-Complete [5]. Conflict Serializability 
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(CSR) [8] is a well known subclass of serializability 
(VSR) whose membership can be tested in polynomial 
time. 

 
 Two operations of a schedule S are said to be in 
conflict if they access same shared data and at least one of 
them updates the data. On the basis of conflicts the class 
criterion CSR can be defined. A schedule S is said to be in 
CSR if there exists a serial schedule SS such that (1) the 
set of operations in S and SS are the same (2) the set of 
conflicts in S and SS are the same. 
 
 Checking for membership of CSR can be performed 
in polynomial time using conflict graphs [8]. For a 
schedule S, a conflict graph G(S) can be constructed as 
follows: (i)Vertices: all the committed transactions of S 
are the vertices of G(S). The vertex for a transaction tI is 
denoted as vI. (ii)Edges: If two transactions, tI, tJ , have 
operations that conflict then there is an edge from vI to vJ 
. If the resulting graph G(S) constructed is acyclic, then 
the schedule S is in CSR. 
 
 Opacity generalizes serializability by considering 
even aborted transactions. Similar to conflict 
serializability, the class conflict opacity or CO can be 
defined whose membership can be tested in polynomial 
time. The class CO includes the conditions (1) and (2) of 
CSR described above. In addition to that CO also imposes 
transaction order like opacity: (3) the order of transaction 
execution in S and SS are the same. If a transaction tX 
completes before tY begins in S then tX also completes 
before tY begins in SS. The membership of CO can be 
tested similar to CSR by constructing the conflict graph 
described as above and checking for it acyclicity. 
 

f) Strictness: Strictness is a correctness criterion 
defined in the context of databases for ensuring 
recoverability. A schedule S is strict if the following holds 
for all transaction tI � trans(S) and for all pI (x) � op(tI ), 
p � {r,w}: if wJ(x) <s pI(x), i != j, then aJ <s pI(x) V cJ 
<s pI(x). Let ST denotes the class of all strict schedules. 
Informally, ST says that if a transaction tJ writes onto a 
data-item d in a schedule S, then tJ must abort or commit 
before any other transaction tI can read or write onto d. 
Consider the schedules 
S2 = w1(x) w1(y) r2(u) w2(x) w1(z)c1 r2(y) w2(y) w3(u) 
c3 c2 and 
S3 = w1(x) w1(y) r2(u) w1(z)c1 w2(x)r2(y) w2(y) w3(u) 
c3 c2. 
It can be clearly seen that S2 !� ST because of absence of 
c1/a1 between w1(x) and w2(x) while S2 � ST. 
 

III.  EAGER APPROACH CONSISTENCY 

 We define a new consistency criterion which is well 
suited for eager approach validation: Eager Approach 
Consistency or EAC. A history S is said to be in EAC if: 
(1A) if transaction tJ reads x from transaction tI in S, and 

if tI is aborted then tJ should also be aborted. (1B) there 
exists a sequential history SS such that (1B.1) the set of 
transactions in S are same as in SS (1B.2) the order of 
transaction execution in S and SS are the same.(1B.3) the 
lastWrites for every read operation (including the reads of 
the aborted transactions) are the same in S and SS. 
 

It can be seen that EAC generalizes opacity by 
allowing transactions to read even from aborted 
transactions. The rule (1B) is same as opacity. Consider 
the following schedule which is in EAC but is not in 
opacity: 

S4 = r1(x) r2(y) w1(z) r2(z) a1 a2 
Thus, EAC allows more flexibility for schedulers. Next, 
consider the following schedule: 

S5 = rI (y)wI (x)rJ (x)aIwJ (x)cJ 
 

The schedule S5 exhibits dirty-read problem [8]. The read 
rJ of tJ reads x from tI . But transaction tI is aborted and 
its writes are undone. The transaction tJ writes x based on 
dirty-read rJ (x) which is undesirable. The rule (1A) of 
EAC disallows such schedules. To implement (1A) of 
EAC efficiently we employ strictness or ST in our STM 
system which accepts only schedules that are in ST. Next, 
consider a schedule S6 that satisfies the rule (1A) of EAC. 

S6 = rI (x) rJ (x) wJ (x) cI wI (x) 
 

 In S6, both tI and tJ read from terminated transaction 
but does not exist any serial schedule such that the 
lastWrites of every read is same in both schedules. Thus, 
S6 does not satisfy rule (1B) of EAC. The rule (1B) can 
be ensured by any algorithm that satisfies opacity such as 
[4]. We ensure this rule by employing conflict opacity 
(CO) which allows for more concurrency. 
 
g) Relationship between Strictness and Conflict Opacity: 
Strictness and Conflict Serializability are independent 
classes. Then not all members of ST also belong to CO 
and vice-versa. For example: 

S7 = r1(x) w1(x) r2(x) c1 c2, 
and 

S8 = r1(x) w2(x) c2 w1(x) c1 
Here, S7 � CSR but S7 !� ST while S8 � ST but S8 !�  
CO. 
 
h) Strictness and Conflict Opacity ensures EAC: As 
described earlier, it can be seen that Strictness and 
Conflict Opacity ensures EAC. From the definition of 
strictness, we get that strictness ensures rule ‘(1A)’ of 
EAC. In fact strictness implements a subset of schedules 
allowed by rule ‘(1A)’. Strictness does not allow a 
transaction to read from aborted transactions while 
according to rule ‘(1A)’, a transaction can read from 
aborted transactions. Given below is an example for this: 

S9 = rI (x) wI (x) rJ (x) aI aJ 
According to rule ‘(1A)’, schedules of type S9 can be 
possible but strictness does not allow transaction tJ to read 
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from live transaction and abort tJ . Conflict opacity takes 
care of rule ‘(1B)’. Thus ST ∩ CSR � EAC. 
 
A. Implementation 
In this subsection, we will discuss our STM 
implementation of EAC. There are many tradeoffs in 
implementing a STM, can be either memory efficient or 
time efficient. To make an STM which is optimal in both 
memory and time complexity is really a difficult task. In 
this paper, an STM is based on page model and uses eager 
writes. Since consistency of system is important, so before 
executing any step, TM system must check the 
consistency. This section describes programming model, 
data structure and algorithms used to implement the STM. 
 
1) Programming Model: 
A process can lead to many parallel threads, which invoke 
transactions. Whenever a transaction starts, terminates or 
tries to execute any operations, these functions are called: 
BEGIN TRANSACTION: Every transaction is started by 
executing BEGIN TRANSACTION, which returns 
transaction identifier which can further be used by 
transaction to invoke another function. 
 
TRY TO COMMIT: Whenever a transaction tries to 
commit, it has to invoke TRY TO COMMIT function. 
The identifier of calling transaction is passed as a 
parameter. 
 
ABORT: Whenever some consistencies arises or 
execution of a transaction leads to no more serializability 
of the history then ABORT method is invoked for that 
transaction. The identifier of calling transaction is passed 
as a parameter. 
 
STM READ: To read any shared memory, transaction has 
to invoke STM READ method. The parameters passed to 
this method are identifier of invoking transaction and 
name of the base object (variable) to be read. The method 
return the read structure after read is allowed by 
transaction manager. 
 
STM WRITE: If any transaction wants to update any 
shared memory, transaction has to invoke STM WRITE 
method. The parameters passed to this method are 
identifier of invoking transaction, name of the base object 
(variable) to be updated, current value of the base object 
and the new value of the base object. The method return 
nothing after write is allowed by transaction manager. 
Whenever any operation is called, STM attempts to 
satisfy the correctness and record the accesses. 
 
2) Data Structure: 
Data structure plays an important role in time and space 
complexity. The data structures used for the STM are 
linked list and vector. 

Transaction: Information about transactions is kept in 
form of a linked list. Each node (i.e. transaction) keeps 
track of its ID, a Boolean variable (representing active or 
terminated node), a pointer vector of base objects which it 
updates (to undo if it aborts), list of all its head 
transactions (to keep track of edges in conflict 
graph).Transaction also keeps track of all the base objects 
that it has accessed to read and write in two different lists. 
 
Base object: Base object is the shared data accessed by 
transaction. Base objects are stored as linked list. Each 
node represents a base object and keep track of its name, a 
Boolean variable (representing whether it is updated by 
any live transaction or not, helpful in strictness), another 
Boolean variable (representing whether the base object 
has ever been updated or not, initially set to false) and a 
list of all the transactions which has accessed it along with 
the operation operated (either read or write) on it. 
 
3) Algorithm for ensuring Strictness: 
Strictness implies that any live transaction should not 
conflict with other live transaction. 
(3A) Each base object has a Boolean variable (initially set 
to false) which represents whether it is updated by any 
live transaction or not. 
(3B) If any transaction updates it, variable is set to true. 
(3C) If any transaction commits or aborts then TM system 
set the Boolean variable associated to each base object 
updated by the transaction to false. 
So if any transaction tries to access any base object then 
transaction manager first check whether the Boolean 
variable of the base object is true or false. If variable is 
true then TM system should abort the transaction 
otherwise pass the operation to Data Manager and set the 
variable to true (if operation is write). For example: 
Let 

SH = r1(x) w2(x) c2 w1(x) c1 

(1) When, transaction t1 invoke r1(x), then TM system 
create a node for x and set the Boolean to false, and since 
variable is false so read operation is passed to Data 
Manager.  

(2) When w2(x) is invoked by transaction t2, and since 
Boolean variable for x is still false, so TM system pass the 
operation to DM but set the variable to true. 

(3) Now when t2 tries to commit, then TM system set the 

Boolean variable associated with x to false (as x is 
updated by t2). 

(4) And since variable associated with x is false, so TM 
system pass the w1(x) operation invoked by t1 to Data 
Manager and set the variable to true. 

(5) And finally, when t1 tries to commit, then TM system 
set the Boolean variable associated with x to false (as x is 
updated by t1). 
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This is the way of implementing strictness. 
 
4) Algorithm for implementing Conflict Opacity: 
Conflict opacity takes care of preserving order and 
serializability. It is implemented using serializability 
graph testing (SGT). In the serializability graph G(S) of a 
schedule S, nodes represent transactions and directed 
edges represent conflicts between transactions. 
Serializability graph testing implies (1) testing of cycle(s), 
if any, in the graph, (2) updating the graph, (3) remove 
write-edges (edges associated with the write operation) of 
the aborted transactions, (4) order preservation and (5) 
removing unnecessary nodes and edges. Cycle(s) 
represents, schedule S is not in CSR. Acyclic conflict 
graph G(S) implies that there exists a sequential schedule 
SS which is conflict equivalent to given schedule and 
such serial schedule can be found by topologically sort the 
graph. 
 
The algorithm for SGT takes use of graph traversal 
algorithm. Every time an operation is invoked TM system 
first checks if any conflict(s) arises or not. If any conflict 
arises, then TM system checks whether even after adding 
the corresponding directed edge, acyclicity is still 
maintained or not. If the conflict graph is still acyclic, 
then the operation is passed to Data Manager System and 
the graph is updated by adding the edge, otherwise 
transaction is aborted. 
 
Since CO also includes aborted transactions but only read 
steps. So it is necessary to remove the edge, if any, 
corresponding to write operation of aborted transaction 
that is edge representing conflict in which one operation is 
write operation of the aborted transaction. 
 
In process, total number of transactions can be of order 
tens of thousands each is represented by a vertex in the 
conflict graph. And thus lead to a big set of vertices and 
edges in graph. It is a daunting task to traverse whole 
graph with so many number of vertices. So it would be 
better if unnecessary nodes can be removed somehow and 
so all its incident edges. Unnecessary nodes represent here 
the nodes which can never play role in forming any cycle. 
Given below is a rule to remove nodes in a graph: 
 
(4A) Terminated source node(s) of the graph can be 
removed. And so the outgoing edge(s) if any. 
Terminated source node implies terminated transaction 
that does not have any incoming edges from other nodes. 
So this node can never play any role in forming cycle(s) 
in graph. 
 
Order can also be preserved using SGT. Preserving order 
simply implies that if a transaction, say tI , completely 
precedes other transaction, say tJ , in a schedule S then in 
the equivalent conflict serial schedule SS also tI should 
precedes tJ . A transaction completely precedes other 

transaction in a schedule means that in the topologically 
sorting of the conflict graph of the schedule they should 
appear in same order or can be said that there is an edge 
between them. So to preserve the order between 
transactions, (4B) when a new transaction begins, traverse 
the list of terminated transactions and add a directed edge 
between every node representing terminated transactions 
and node representing currently started transaction. For 
example: 
Let 

SI = rI (x) wJ (x) cJ rK(y) cI aK 
In SI, when transaction tK starts after transaction tJ 
commits add a directed edge from node tJ to tK 
 
IV. DISCUSSION AND CONCLUSION 

In this paper we presented a new correctness criterion 
EAC for eager approach validation STM systems. This 
criterion is generalization of opacity. It allows more 
flexibility by allowing an aborted transaction to read from 
another transaction. We also gave the implementation of a 
eager validation STM system that implements EAC. Our 
STM system implements EAC by accepting only those 
schedules that are in both ST and CO. 
As a part of the future work, we are planning to explore to 
see if we can find a more efficient criterion that 
implements rule (1A) of EAC. Coming to rule (1B), we 
are looking for a more efficient implementation of CO. 
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V. PSEUDOCODE 
 
Algorithm 1 STM Read(): A transaction tI performs a 
read operation rI (d). The return value is read data or 
abort. 
1: procedure STM READ(tI , d) 
2:  if (tI.active == false) then 
3:   return abort; 
4:  end if 
5:  if (d.update flag == true) then 
6:   return abort; 
7:  end if 
8:  for all (node of transaction lists which has 

accessed) do 
9:   if (node.write flag == true) then 
10:    node.head.add(tI ); 
11:   end if 
12:  end for 
13:   //traverse the graph for cycle(s) 
14:  stack.push(tI ); 
15:  while (!stack.isEmpty()) do 
16:   node = stack.pop(); 
17:   node.visited = true; 
18:   for all (headNode of node) do 
19:    if (headNode.visited! = true)  

then 
20:              stack.push(headNode); 
21:    end if 
22:    if (headNode == tI ) then 
23:              return abort; 
24:    end if 
25:   end for 
26:  end while 
27: .  //add d to the read base-object list of tI . 
28:  tI.rbase object:add(d); 
29: .  //add node(tI ) to the transaction list of d and set 

the write flag to false. 
30:  d.transaction list.add(node(tI )); 
31:  node(tI ).write flag = false; 
32:  return d; 
33: end procedure 

 
Algorithm 2 BEGIN TRANSACTION(): A transaction tn 
with identifier n is started and its ID is returned. 
1:  procedure BEGIN TRANSACTION 
2: //add a node newNode to the list of transaction  
3: newNode.t id = t id + +; 
4: newNode.active = true; 
5: // traverse the list of terminated transactions and 
add newNode.t_id to the head list of each transaction 
6: for all (node of terminated transaction) do 
7:  node.head.add(newNode.t id); 
8: end for 
9: return newNode.t id; 
10: end procedure 
 
 
Algorithm 3 STM Write(): A transaction tI performs a 
write operation wI (d). The return value are OK or abort. 
1: procedure STM WRITE(tI , d, oldd, newd) 
2:  if (tI.active == false) then 
3:   return abort; 
4:  end if 
5:  if (d.update flag == true) then 
6:   return abort; 
7:  end if 
8:  for all (node of transaction lists which has 
accessed) do 
9:   node.head.add(tI ); 
10:  end for 
11: .  //traverse the graph for cycle(s) 
12:  stack:push(tI ); 
13:  while (!stack.isEmpty()) do 
14:   node = stack.pop(); 
15:   node.visited = true; 
16:   for all (headNode of node) do 
17:    if (headNode.visited! = true) 
then 
18:              stack.push(headNode); 
19:    end if 
20:    if (headNode == tI ) then 
21:              return abort; 
22:    end if 
23:   end for 
24:  end while 
25: .  //add d to the write base-object list of tI . 
26:  tI.wbase object:add(d); 
27:  d.update flag = true; 
28: .  //add node(tI ) to the transaction list of d and set 
the write flag to true. 
29:  d.transaction list.add(node(tI )); 
30:  node(tI ).write flag = true; 
31:  return OK; 
32: end procedure 
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Algorithm 4 Abort(): Whenever a transaction is aborted 
by TM system or transaction tries to abort. Return value is 
OK. 
1: procedure ABORT(tI ) 
2:  //Remove all the write edges of tI . 
3:  for all (d of tI:wbase object) do 
4:   for all (node of d.transaction list) do 
5:    node.head.remove(tI ); 
6:   end for 
7:  end for 
8:  for all (d of tI.rbase object) do 
9:   for all (node of d.transaction list) do 
10:    if (node.write flag == true V 
Node.getHead(tI )! = true) then 
11:    node.head.add(tI ); 
12:    end if 
13:   end for 
14:  end for 
15:  //set the update flag of each write base object d 
updated by tI to false. 
16:  for all (d of tI.wbase object) do 
17:   d.update flag = false; 
18:  end for 
19:  tI.active = false; 
20:  return OK; 
21: end procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Algorithm 5 try to commit(): A transaction tI tries to 
commit. OK is returned. 
 
1: procedure TRY TO COMMIT(tI ) 
2:  //set the update flag of each write base object d 
updated by tI to false. 
3:  for all (d of tI.wbase object) do 
4:   d.update flag = false; 
5:  end for 
6:  tI.active = false; 
7:  return OK; 
8: end procedure 
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