
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 5 Issue 4 Article 2

October 2014

A Correctness Criterion for Eager Approach Validation for A Correctness Criterion for Eager Approach Validation for

Transactional Memory System Transactional Memory System

Ravi Kumar
Department of Computer Science and Engineering Indian Institute of Technology Patna, Patna-800013,,
r.kumar@iitp.ac.in

Sathya Peri
Department of Computer Science and Engineering Indian Institute of Technology Patna, Patna-800013,
Bihar, sathya@iitp.ac.in

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Kumar, Ravi and Peri, Sathya (2014) "A Correctness Criterion for Eager Approach Validation for
Transactional Memory System," International Journal of Computer and Communication Technology: Vol. 5
: Iss. 4 , Article 2.
DOI: 10.47893/IJCCT.2014.1249
Available at: https://www.interscience.in/ijcct/vol5/iss4/2

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol5
https://www.interscience.in/ijcct/vol5/iss4
https://www.interscience.in/ijcct/vol5/iss4/2
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol5/iss4/2?utm_source=www.interscience.in%2Fijcct%2Fvol5%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

__

A Correctness Criterion for Eager Approach
Validation for Transactional Memory System

Ravi Kumar

 Department of Computer Science and Engineering
Indian Institute of Technology Patna, Patna-800013,

Email: r.kumar@iitp.ac.in

Abstract : With rise of multicore systems, software transactional
memory (STM) has garnered significant interest as an elegant
alternative for developing concurrent code. A (memory)
transaction is an unit of code in execution in memory. A
software transactional memory system (STM) ensures that a
transaction appears either to execute atomically (even in
presence of other concurrent transactions) or to never have
executed at all. To achieve this property, a commonly used
approach by STM systems is eager validation approach. In this
approach, when a transaction performs a write operation the
update is immediately written to the memory and is visible to
other transactions. If the transaction aborts, then the writes
performed by it previously are undone with the aid of undo logs.
In this paper, we have presented a new correctness criterion
EAC for eager approach validation systems. We have developed
a STM system that implements this criterion. The STM system
uses database recovery criterion strictness and the notion of
conflict graphs used for testing conflict serializability.

I. INTRODUCTION

In the recent years with rise of multicore systems,
parallel programming has become very important. As a
result, software transactional memory has garnered
significant interest as an elegant alternative for developing
concurrent code. Software transactions are units of
execution in memory which enable concurrent threads to
execute seamlessly [3]. Traditionally locks have been
used for developing parallel programs. But programming
with locks has many disadvantages such as deadlocks,
priority inversion etc. These disadvantages make it
difficult to build scalable software systems. Importantly,
lock based software components are difficult to compose
i.e. building larger software systems using simpler
software components [2]. Software transactions address
many of the short comings of lock based systems.

 A (memory) transaction is a unit of code in execution
in memory. A software transactional memory system
(STM) ensures that a transaction appears either to execute
atomically (even in presence of other concurrent

Sathya Peri
Department of Computer Science and Engineering

Indian Institute of Technology Patna, Patna-800013, Bihar
 Email: sathya@iitp.ac.in

Transactions or to never have executed at all. If a
transaction executes to completion then it is committed
and its effects are visible to other transactions. Otherwise
it is aborted and none of its effects are visible to other
transactions. Thus the values written by a live
(incomplete) transaction to the memory are not visible to
other transactions.

To achieve this property, two approaches are
commonly used by STM system: eager and lazy approach.
In lazy approach, each transaction tX maintains a local
buffer for every data-item d it accesses. Any write onto a
d by tX is first written to the local buffer associated with
d. When tX commits, the updates are written to the
memory. If the tX aborts then the contents of the buffer
are discarded. In case of eager approach, every update is
written directly to the memory and is immediately visible
to other transactions. If the transaction aborts then the
writes performed by it are undone with the aid of undo
logs. In this paper we focus on eager approach.

 When transactions accessing common data-items
execute concurrently it is imperative that they execute
correctly. Hence, it is important to characterize the right
correctness criteria. The correctness criterion used in
traditional databases is serializability [5]. But
serializability concerns itself only with the events of
committed transactions. It does not require that the
aborted transactions read consistent values. A commonly
accepted correctness requirement for concurrent
executions in STM systems is that all transactions
including aborted ones read consistent values [1] and is
referred to as allreadsconsistency[7]. Opacity [1] is a
correctness criterion that satisfies all-reads-consistency.
In this paper, we have presented a new correctness
criterion EAC for eager approach validation systems. We
have developed a STM system that implements this
criterion. For implementing this criterion, we used
database recovery criterion Strictness [8] and the notion of
conflict graphs used for testing conflict serializability.

230

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-4

A Correctness Criterion for Eager Approach Validation for Transactional Memory Systems
__

__

Roadmap: Section II presents background and system
model, Section III presents EAC, a correctness criterion
for eager approach validation systems, and the algorithm
implementing it. Section IV concludes this paper and
finally Section V describes the pseudo code of the
algorithm.

II. BACKGROUND AND SYSTEM MODEL

In a multicore system, threads execute concurrently
and invoke transactions whenever they want to access
shared data. A transaction is finite sequence of
instructions executed. Different transactions execute in an
interleaved manner, to access shared variables. The
operations invoked by transactions are read and write
operations. We assume that these are operations executed
instantaneously. But it is necessary that the outcomes of
operations of different interleaving transactions on the
shared memories leave the system in a consistent state.
The STM system is a layer between parallel interleaving
transactions and shared memory which ensures memory is
in a consistent state.

 When a transaction tX performs a read operation on a
data item d it is denoted as rX(d). The write on d is
denoted as rX(d). If the date-item is not relevant, we
simply ignore it. When a transaction terminates, the STM
validates the actions of the transaction. If a transaction tX
executes successfully to completion, it terminates with a
commit operation denoted as cX. The effects of a
committed transaction are visible to other transactions.
Otherwise it aborts, aX and none of it effects are visible to
other transactions that follow it. Abort and commit
operations are called terminal operations.

Some properties of the STM presented in this paper are:

a) Schedule and History: A schedule is a totally
ordered sequence (in real time order) of operations and
terminal operations of transactions in a computation.
These operations are referred to as events of the schedule.
Schedule includes both terminated and live (which have
not yet terminated) transactions. A history consists only of
terminated transactions. We will use schedules in the
examples in the rest of the document. The example of a
schedule is:

S1 : r1(x) r2(y) w1(y) w2(z) c1 c2 r3(x) w3(x) c3.

For a schedule S, we denote its transactions as trans(S), its
operations are ops(S). For S1, trans(S) = t1, t2. We
capture the order among the events of the schedule S by
<S. Thus, r1(x) <S1 w1(y). The relation <S partially
orders transactions in S. For instance, in S1, t1 <S1 t3 and
t2 <S1 t3. But nothing can be said about the order of t1
and t2 since they execute in interleaved manner.

b) Blind read and write: Blind read implies that a
transaction reads from other live transaction while blind
write means that a transaction writes onto a shared data
without reading it.

c) Transaction Validation - Eager approach: A STM

system can employ two approaches for transaction
validation: lazy and eager. In lazy approach, each
transaction tX maintains a local buffer for every data-item
d it accesses. Any write onto a d by tX is first written to
the local buffer associated with d. When tX commits, the
updates are written to the memory. If the tX aborts then
the contents of the buffer are discarded. In case of eager
approach, every update is written directly to the memory
and is immediately visible to other transactions. Normally
in case of eager approach, transactions maintain undo logs
to take care of aborts. When a transaction aborts, the undo
logs help restore the memory to the previous state and
completely remove the affects of the aborted transaction.
The STM presented in this paper is based on eager
approach.

d) All-Reads-Consistency: An important property
required of STM systems is that every transaction
including aborted transactions read consistent values [1].
We denote this property as all reads consistency. For a
read operation rX(d) in a schedule S we denote its
lastWrite [6], [7]as the previous closest write wY (d) on d
in the S. It is the write operation whose write value is read
by rX.

Opacity [1] is a commonly used correctness criterion

by STM systems that ensures all-reads-consistency. A
schedule S consisting of transactions involving read and
write operations is be said to be opaque if there exists a
serial schedule SS such that (i) the set of transactions in S
are same as in SS (ii) the order of transaction execution in
S and SS are the same. If a transaction tX completes
before tY begins in S then tX also completes before tY
begins in SS (iii) the lastWrites for every read operation
(including the reads of the aborted transactions) are the
same in S and SS. By ensuring all reads including reads of
aborted transactions be the same as in serial schedule,
opacity follows all-reads-consistency. Imbs and Raynal
gave an implementation of opacity with read and write
operations for lazy approach [4].

In addition to these conditions, opacity also requires

that each aborted transaction read only from committed
transactions. In other words no aborted transaction tj can
read from another aborted transaction ti (which possibly
was live during the read operation of tj).

e) Conflict Serializability: Serializability (View

Serializability or VSR) is a correctness criterion for
databases which concerned it only with committed
transactions. But testing for membership of VSR has been
proved to be NP-Complete [5]. Conflict Serializability

231

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-4

A Correctness Criterion for Eager Approach Validation for Transactional Memory Systems
__

__

(CSR) [8] is a well known subclass of serializability
(VSR) whose membership can be tested in polynomial
time.

 Two operations of a schedule S are said to be in
conflict if they access same shared data and at least one of
them updates the data. On the basis of conflicts the class
criterion CSR can be defined. A schedule S is said to be in
CSR if there exists a serial schedule SS such that (1) the
set of operations in S and SS are the same (2) the set of
conflicts in S and SS are the same.

 Checking for membership of CSR can be performed
in polynomial time using conflict graphs [8]. For a
schedule S, a conflict graph G(S) can be constructed as
follows: (i)Vertices: all the committed transactions of S
are the vertices of G(S). The vertex for a transaction tI is
denoted as vI. (ii)Edges: If two transactions, tI, tJ , have
operations that conflict then there is an edge from vI to vJ
. If the resulting graph G(S) constructed is acyclic, then
the schedule S is in CSR.

 Opacity generalizes serializability by considering
even aborted transactions. Similar to conflict
serializability, the class conflict opacity or CO can be
defined whose membership can be tested in polynomial
time. The class CO includes the conditions (1) and (2) of
CSR described above. In addition to that CO also imposes
transaction order like opacity: (3) the order of transaction
execution in S and SS are the same. If a transaction tX
completes before tY begins in S then tX also completes
before tY begins in SS. The membership of CO can be
tested similar to CSR by constructing the conflict graph
described as above and checking for it acyclicity.

f) Strictness: Strictness is a correctness criterion
defined in the context of databases for ensuring
recoverability. A schedule S is strict if the following holds
for all transaction tI � trans(S) and for all pI (x) � op(tI),
p � {r,w}: if wJ(x) <s pI(x), i != j, then aJ <s pI(x) V cJ
<s pI(x). Let ST denotes the class of all strict schedules.
Informally, ST says that if a transaction tJ writes onto a
data-item d in a schedule S, then tJ must abort or commit
before any other transaction tI can read or write onto d.
Consider the schedules
S2 = w1(x) w1(y) r2(u) w2(x) w1(z)c1 r2(y) w2(y) w3(u)
c3 c2 and
S3 = w1(x) w1(y) r2(u) w1(z)c1 w2(x)r2(y) w2(y) w3(u)
c3 c2.
It can be clearly seen that S2 !� ST because of absence of
c1/a1 between w1(x) and w2(x) while S2 � ST.

III. EAGER APPROACH CONSISTENCY

 We define a new consistency criterion which is well
suited for eager approach validation: Eager Approach
Consistency or EAC. A history S is said to be in EAC if:
(1A) if transaction tJ reads x from transaction tI in S, and

if tI is aborted then tJ should also be aborted. (1B) there
exists a sequential history SS such that (1B.1) the set of
transactions in S are same as in SS (1B.2) the order of
transaction execution in S and SS are the same.(1B.3) the
lastWrites for every read operation (including the reads of
the aborted transactions) are the same in S and SS.

It can be seen that EAC generalizes opacity by
allowing transactions to read even from aborted
transactions. The rule (1B) is same as opacity. Consider
the following schedule which is in EAC but is not in
opacity:

S4 = r1(x) r2(y) w1(z) r2(z) a1 a2
Thus, EAC allows more flexibility for schedulers. Next,
consider the following schedule:

S5 = rI (y)wI (x)rJ (x)aIwJ (x)cJ

The schedule S5 exhibits dirty-read problem [8]. The read
rJ of tJ reads x from tI . But transaction tI is aborted and
its writes are undone. The transaction tJ writes x based on
dirty-read rJ (x) which is undesirable. The rule (1A) of
EAC disallows such schedules. To implement (1A) of
EAC efficiently we employ strictness or ST in our STM
system which accepts only schedules that are in ST. Next,
consider a schedule S6 that satisfies the rule (1A) of EAC.

S6 = rI (x) rJ (x) wJ (x) cI wI (x)

 In S6, both tI and tJ read from terminated transaction
but does not exist any serial schedule such that the
lastWrites of every read is same in both schedules. Thus,
S6 does not satisfy rule (1B) of EAC. The rule (1B) can
be ensured by any algorithm that satisfies opacity such as
[4]. We ensure this rule by employing conflict opacity
(CO) which allows for more concurrency.

g) Relationship between Strictness and Conflict Opacity:
Strictness and Conflict Serializability are independent
classes. Then not all members of ST also belong to CO
and vice-versa. For example:

S7 = r1(x) w1(x) r2(x) c1 c2,
and

S8 = r1(x) w2(x) c2 w1(x) c1
Here, S7 � CSR but S7 !� ST while S8 � ST but S8 !�
CO.

h) Strictness and Conflict Opacity ensures EAC: As
described earlier, it can be seen that Strictness and
Conflict Opacity ensures EAC. From the definition of
strictness, we get that strictness ensures rule ‘(1A)’ of
EAC. In fact strictness implements a subset of schedules
allowed by rule ‘(1A)’. Strictness does not allow a
transaction to read from aborted transactions while
according to rule ‘(1A)’, a transaction can read from
aborted transactions. Given below is an example for this:

S9 = rI (x) wI (x) rJ (x) aI aJ
According to rule ‘(1A)’, schedules of type S9 can be
possible but strictness does not allow transaction tJ to read

232

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-4

A Correctness Criterion for Eager Approach Validation for Transactional Memory Systems
__

__

from live transaction and abort tJ . Conflict opacity takes
care of rule ‘(1B)’. Thus ST ∩ CSR � EAC.

A. Implementation
In this subsection, we will discuss our STM
implementation of EAC. There are many tradeoffs in
implementing a STM, can be either memory efficient or
time efficient. To make an STM which is optimal in both
memory and time complexity is really a difficult task. In
this paper, an STM is based on page model and uses eager
writes. Since consistency of system is important, so before
executing any step, TM system must check the
consistency. This section describes programming model,
data structure and algorithms used to implement the STM.

1) Programming Model:
A process can lead to many parallel threads, which invoke
transactions. Whenever a transaction starts, terminates or
tries to execute any operations, these functions are called:
BEGIN TRANSACTION: Every transaction is started by
executing BEGIN TRANSACTION, which returns
transaction identifier which can further be used by
transaction to invoke another function.

TRY TO COMMIT: Whenever a transaction tries to
commit, it has to invoke TRY TO COMMIT function.
The identifier of calling transaction is passed as a
parameter.

ABORT: Whenever some consistencies arises or
execution of a transaction leads to no more serializability
of the history then ABORT method is invoked for that
transaction. The identifier of calling transaction is passed
as a parameter.

STM READ: To read any shared memory, transaction has
to invoke STM READ method. The parameters passed to
this method are identifier of invoking transaction and
name of the base object (variable) to be read. The method
return the read structure after read is allowed by
transaction manager.

STM WRITE: If any transaction wants to update any
shared memory, transaction has to invoke STM WRITE
method. The parameters passed to this method are
identifier of invoking transaction, name of the base object
(variable) to be updated, current value of the base object
and the new value of the base object. The method return
nothing after write is allowed by transaction manager.
Whenever any operation is called, STM attempts to
satisfy the correctness and record the accesses.

2) Data Structure:
Data structure plays an important role in time and space
complexity. The data structures used for the STM are
linked list and vector.

Transaction: Information about transactions is kept in
form of a linked list. Each node (i.e. transaction) keeps
track of its ID, a Boolean variable (representing active or
terminated node), a pointer vector of base objects which it
updates (to undo if it aborts), list of all its head
transactions (to keep track of edges in conflict
graph).Transaction also keeps track of all the base objects
that it has accessed to read and write in two different lists.

Base object: Base object is the shared data accessed by
transaction. Base objects are stored as linked list. Each
node represents a base object and keep track of its name, a
Boolean variable (representing whether it is updated by
any live transaction or not, helpful in strictness), another
Boolean variable (representing whether the base object
has ever been updated or not, initially set to false) and a
list of all the transactions which has accessed it along with
the operation operated (either read or write) on it.

3) Algorithm for ensuring Strictness:
Strictness implies that any live transaction should not
conflict with other live transaction.
(3A) Each base object has a Boolean variable (initially set
to false) which represents whether it is updated by any
live transaction or not.
(3B) If any transaction updates it, variable is set to true.
(3C) If any transaction commits or aborts then TM system
set the Boolean variable associated to each base object
updated by the transaction to false.
So if any transaction tries to access any base object then
transaction manager first check whether the Boolean
variable of the base object is true or false. If variable is
true then TM system should abort the transaction
otherwise pass the operation to Data Manager and set the
variable to true (if operation is write). For example:
Let

SH = r1(x) w2(x) c2 w1(x) c1

(1) When, transaction t1 invoke r1(x), then TM system
create a node for x and set the Boolean to false, and since
variable is false so read operation is passed to Data
Manager.

(2) When w2(x) is invoked by transaction t2, and since
Boolean variable for x is still false, so TM system pass the
operation to DM but set the variable to true.

(3) Now when t2 tries to commit, then TM system set the

Boolean variable associated with x to false (as x is
updated by t2).

(4) And since variable associated with x is false, so TM
system pass the w1(x) operation invoked by t1 to Data
Manager and set the variable to true.

(5) And finally, when t1 tries to commit, then TM system
set the Boolean variable associated with x to false (as x is
updated by t1).

233

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-4

A Correctness Criterion for Eager Approach Validation for Transactional Memory Systems
__

__

This is the way of implementing strictness.

4) Algorithm for implementing Conflict Opacity:
Conflict opacity takes care of preserving order and
serializability. It is implemented using serializability
graph testing (SGT). In the serializability graph G(S) of a
schedule S, nodes represent transactions and directed
edges represent conflicts between transactions.
Serializability graph testing implies (1) testing of cycle(s),
if any, in the graph, (2) updating the graph, (3) remove
write-edges (edges associated with the write operation) of
the aborted transactions, (4) order preservation and (5)
removing unnecessary nodes and edges. Cycle(s)
represents, schedule S is not in CSR. Acyclic conflict
graph G(S) implies that there exists a sequential schedule
SS which is conflict equivalent to given schedule and
such serial schedule can be found by topologically sort the
graph.

The algorithm for SGT takes use of graph traversal
algorithm. Every time an operation is invoked TM system
first checks if any conflict(s) arises or not. If any conflict
arises, then TM system checks whether even after adding
the corresponding directed edge, acyclicity is still
maintained or not. If the conflict graph is still acyclic,
then the operation is passed to Data Manager System and
the graph is updated by adding the edge, otherwise
transaction is aborted.

Since CO also includes aborted transactions but only read
steps. So it is necessary to remove the edge, if any,
corresponding to write operation of aborted transaction
that is edge representing conflict in which one operation is
write operation of the aborted transaction.

In process, total number of transactions can be of order
tens of thousands each is represented by a vertex in the
conflict graph. And thus lead to a big set of vertices and
edges in graph. It is a daunting task to traverse whole
graph with so many number of vertices. So it would be
better if unnecessary nodes can be removed somehow and
so all its incident edges. Unnecessary nodes represent here
the nodes which can never play role in forming any cycle.
Given below is a rule to remove nodes in a graph:

(4A) Terminated source node(s) of the graph can be
removed. And so the outgoing edge(s) if any.
Terminated source node implies terminated transaction
that does not have any incoming edges from other nodes.
So this node can never play any role in forming cycle(s)
in graph.

Order can also be preserved using SGT. Preserving order
simply implies that if a transaction, say tI , completely
precedes other transaction, say tJ , in a schedule S then in
the equivalent conflict serial schedule SS also tI should
precedes tJ . A transaction completely precedes other

transaction in a schedule means that in the topologically
sorting of the conflict graph of the schedule they should
appear in same order or can be said that there is an edge
between them. So to preserve the order between
transactions, (4B) when a new transaction begins, traverse
the list of terminated transactions and add a directed edge
between every node representing terminated transactions
and node representing currently started transaction. For
example:
Let

SI = rI (x) wJ (x) cJ rK(y) cI aK
In SI, when transaction tK starts after transaction tJ
commits add a directed edge from node tJ to tK

IV. DISCUSSION AND CONCLUSION

In this paper we presented a new correctness criterion
EAC for eager approach validation STM systems. This
criterion is generalization of opacity. It allows more
flexibility by allowing an aborted transaction to read from
another transaction. We also gave the implementation of a
eager validation STM system that implements EAC. Our
STM system implements EAC by accepting only those
schedules that are in both ST and CO.
As a part of the future work, we are planning to explore to
see if we can find a more efficient criterion that
implements rule (1A) of EAC. Coming to rule (1B), we
are looking for a more efficient implementation of CO.

REFERENCES

 [1] Rachid Guerraoui and Michal Kapalka. On the
correctness of transactional memory. In PPoPP
’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel
programming, pages 175–184, New York, NY,
USA, 2008. ACM.

[2] Tim Harris, Simon Marlow, Simon Peyton-Jones,
and Maurice Herlihy. Composable memory
transactions. In PPoPP ’05: Proceedings of the
tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 48–60,
New York, NY, USA, 2005. ACM.

[3] Maurice Herlihy and J. Eliot B.Moss.
Transactional memory: architectural support for
lock-free data structures. SIGARCH Comput.
Archit. News, 21(2):289–300, 1993.

[4] Damien Imbs and Michel Raynal. A lock-based stm
protocol that satisfies opacity and progressiveness.
In OPODIS ’08: Proceedings of the 12th
International Conference on Principles of
Distributed Systems, pages 226–245, Berlin,
Heidelberg, 2008. Springer-Verlag.

[5] Christos H. Papadimitriou. The serializability of
concurrent database updates. J. ACM, 26(4):631–
653, 1979.

234

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-4

A Correctness Criterion for Eager Approach Validation for Transactional Memory Systems
__

__

[6] Sathya Peri and K.Vidyasankar. Correctness of
concurrent executions of closed nested transactions
in transactional memory systems. In 12th
International Conference on Distributed
Computing and Networking, pages 95–106, 2011.

[7] Sathya Peri and K.Vidyasankar. An efficient
scheduler for closed nested transactions that
satisfies all-reads-consistency and non-interference.
In 13th International Conference on Distributed
Computing and Networking, 2012.

[8] Gerhard Weikum and Gottfried Vossen.
Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency
Control and Recovery. Morgan Kaufmann, 2002.

V. PSEUDOCODE

Algorithm 1 STM Read(): A transaction tI performs a
read operation rI (d). The return value is read data or
abort.
1: procedure STM READ(tI , d)
2: if (tI.active == false) then
3: return abort;
4: end if
5: if (d.update flag == true) then
6: return abort;
7: end if
8: for all (node of transaction lists which has

accessed) do
9: if (node.write flag == true) then
10: node.head.add(tI);
11: end if
12: end for
13: //traverse the graph for cycle(s)
14: stack.push(tI);
15: while (!stack.isEmpty()) do
16: node = stack.pop();
17: node.visited = true;
18: for all (headNode of node) do
19: if (headNode.visited! = true)

then
20: stack.push(headNode);
21: end if
22: if (headNode == tI) then
23: return abort;
24: end if
25: end for
26: end while
27: . //add d to the read base-object list of tI .
28: tI.rbase object:add(d);
29: . //add node(tI) to the transaction list of d and set

the write flag to false.
30: d.transaction list.add(node(tI));
31: node(tI).write flag = false;
32: return d;
33: end procedure

Algorithm 2 BEGIN TRANSACTION(): A transaction tn
with identifier n is started and its ID is returned.
1: procedure BEGIN TRANSACTION
2: //add a node newNode to the list of transaction
3: newNode.t id = t id + +;
4: newNode.active = true;
5: // traverse the list of terminated transactions and
add newNode.t_id to the head list of each transaction
6: for all (node of terminated transaction) do
7: node.head.add(newNode.t id);
8: end for
9: return newNode.t id;
10: end procedure

Algorithm 3 STM Write(): A transaction tI performs a
write operation wI (d). The return value are OK or abort.
1: procedure STM WRITE(tI , d, oldd, newd)
2: if (tI.active == false) then
3: return abort;
4: end if
5: if (d.update flag == true) then
6: return abort;
7: end if
8: for all (node of transaction lists which has
accessed) do
9: node.head.add(tI);
10: end for
11: . //traverse the graph for cycle(s)
12: stack:push(tI);
13: while (!stack.isEmpty()) do
14: node = stack.pop();
15: node.visited = true;
16: for all (headNode of node) do
17: if (headNode.visited! = true)
then
18: stack.push(headNode);
19: end if
20: if (headNode == tI) then
21: return abort;
22: end if
23: end for
24: end while
25: . //add d to the write base-object list of tI .
26: tI.wbase object:add(d);
27: d.update flag = true;
28: . //add node(tI) to the transaction list of d and set
the write flag to true.
29: d.transaction list.add(node(tI));
30: node(tI).write flag = true;
31: return OK;
32: end procedure

235

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-4

A Correctness Criterion for Eager Approach Validation for Transactional Memory Systems
__

__

Algorithm 4 Abort(): Whenever a transaction is aborted
by TM system or transaction tries to abort. Return value is
OK.
1: procedure ABORT(tI)
2: //Remove all the write edges of tI .
3: for all (d of tI:wbase object) do
4: for all (node of d.transaction list) do
5: node.head.remove(tI);
6: end for
7: end for
8: for all (d of tI.rbase object) do
9: for all (node of d.transaction list) do
10: if (node.write flag == true V
Node.getHead(tI)! = true) then
11: node.head.add(tI);
12: end if
13: end for
14: end for
15: //set the update flag of each write base object d
updated by tI to false.
16: for all (d of tI.wbase object) do
17: d.update flag = false;
18: end for
19: tI.active = false;
20: return OK;
21: end procedure

Algorithm 5 try to commit(): A transaction tI tries to
commit. OK is returned.

1: procedure TRY TO COMMIT(tI)
2: //set the update flag of each write base object d
updated by tI to false.
3: for all (d of tI.wbase object) do
4: d.update flag = false;
5: end for
6: tI.active = false;
7: return OK;
8: end procedure

236

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-4

	A Correctness Criterion for Eager Approach Validation for Transactional Memory System
	Recommended Citation

	A Correctness Criterion for Eager Approach Validation for Transactional Memory System

