
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 5 Issue 3 Article 9

July 2014

Automata for Web Services Fault Monitoring and Diagnosis Automata for Web Services Fault Monitoring and Diagnosis

Lakshmi H. N
CVR College of Engineering, and DCIS, University of Hyderabad ,Hyderabad., hnlakshmi@gmail.com

Hrushikesha Mohanty
Dept of Computer and Information Sciences University of Hyderabad , Hyderabad.,
hmcs_hcu@yahoo.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
N, Lakshmi H. and Mohanty, Hrushikesha (2014) "Automata for Web Services Fault Monitoring and
Diagnosis," International Journal of Computer and Communication Technology: Vol. 5 : Iss. 3 , Article 9.
DOI: 10.47893/IJCCT.2014.1244
Available at: https://www.interscience.in/ijcct/vol5/iss3/9

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol5
https://www.interscience.in/ijcct/vol5/iss3
https://www.interscience.in/ijcct/vol5/iss3/9
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol5%2Fiss3%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol5/iss3/9?utm_source=www.interscience.in%2Fijcct%2Fvol5%2Fiss3%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

__

Automata for Web Services Fault Monitoring and Diagnosis

1Lakshmi H N , 2Hrushikesha Mohanty

CVR College of Engineering, and DCIS, University of Hyderabad ,Hyderabad.
 Dept of Computer and Information Sciences University of Hyderabad , Hyderabad.

 E-mail : hnlakshmi@gmail.com, hmcs_hcu@yahoo.com

Abstract - Like any software, web service fault
management is also required to go through different phases
of fault management lifecycle. Model based diagnosis has
been a well established practice for its several positive
aspects including cognitively being better understood by
development and testing teams. Automata is a simple and
formally well defined model being used for monitoring and
diagnosis of system faults. For the reason, here we have
reviewed works on automata for web service fault
management and also propose a model of stochastic
automata for the purpose.

I. INTRODUCTION
 Web service compositions are based on a set of
services working together to achieve an objective and
are normally defined at programming time as a
"business process" that describes the sequencing and
coordination of calls to the component web services.
In a web service composition, when one of the
component web service fails the entire composition is
affected. A composition usually consists of a
sequence of invocations of web services such that the
result due to a web service is passed to the next. In
such scenario, if a web service fails the entire
execution must be aborted. This necessitates web
service fault resilience to achieve dependable web
services. Typically a fault management system
involves a combination of multiple steps –
Monitoring / Detection, Diagnosis, Recovery, and
Restart / Repair. Because classical approaches of
fault management do not give a deeper insight into
the faults and usually do not allow a fault diagnosis,
model- based methods of fault detection were
developed. "Model based Diagnosis" (MBD) refers to
use of models of the observed system as a basis for
fault detection and diagnosis[4]. Among many
classical models that can be used to formalize
business processes , we concentrate on automata
models of business process since automata are a
natural way to model system behavior, especially
dynamic behavior. A business process can be viewed
as an automaton since its execution proceeds
forward from one state to another. In this paper, we
analyze and discuss the issues in using automata to
model Web service processes, for various fault
management functions such as verification, process
monitoring and fault diagnosis. So far, deterministic
automata are being used to monitor and diagnose web

service faults. But for services whose behavior (at a
state) depends on user strategy and state of
environment, stochastic automata is an obvious
choice for MBD. This paper on defact review on uses
of automata in web service management, discusses
on probabilistic behavior of web services and
proposes stochastic automata for fault monitoring and
diagnosis. This paper is organized as follows: section
2 introduces web services and fault management in
Web Services, section 3 gives a brief introduction of
BPEL4WS, section 4 summarizes the automata
models for web services fault management; section 5
describes the proposed approach, section 6 gives a
formalism for the proposed approach, and section 7 is
the conclusion and future work.

II. WEB SERVICES AND FAULT
MANAGEMENT

With ever growing use of Internet, Web services
become increasingly popular and their growth rate
surpasses even the most optimistic predictions.
Services are self-descriptive, self-contained, platform
independent and openly-available components that
interact over the network. They are written strictly
according to open specifications and/or standards and
provide important and often critical functions for
many business-to-business systems. As services
begin to permeate all aspects of human society, the
problems of service dependability, security and
timeliness are becoming critical, and appropriate
solutions need to be made available.

A web service can fail due to software bugs,
unstable communication over the Internet, and
overloaded or complete crash of service servers. A
service that is frequently failing can tarnish the
provider’s reputation and business. Furthermore,
from a user’s perspective, a service that exhibits poor
responsiveness is virtually equivalent to one that is
unavailable. One of the most important challenges
with the deployment of Web Services is ensuring that
services are correct and available despite faults.
Research in fault-tolerant service computing aims at
making web services reliable by handling faults in
complex computing environments. Classification of
the faults that can occur in the system and
specification of the fault classes that needs to be

200

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3

Automata for Web Services Fault Monitoring and Diagnosis
__

__

handled is the basic requirement for designing a
reliable system.

2.1 Fault Classification

Web services execution faults can be classified into
three main categories based on the cause of
occurrence [1,10]:

1. Violations of agreed upon Service Level

Agreements(SLAs) and policies with regards to
functional (e.g., price limits or delivery
deadlines) and non-functional requirements (e.g.
service response time, service availability and
security). In this case the service execution might
be completed but the results are not conforming
to the negotiated SLAs and collaboration
policies.

2. Functional and behavioural faults refer to the
scenario where a constituent service cannot
complete a task execution or the service delivers
incorrect results due to computational/logic
errors, erroneous data flows or semantic
incompatibility of the exchange messages.
Additionally, behavioural failures can be caused
by conversation exceptions such as improper
invocation order of service operations, lost
messages when processing fails and interrelated
messages processed individually.

3. Operational faults refer to communication

infrastructure exceptions and middleware
failures of the hosting servers and the database
servers. Examples of such faults could be
network unavailability causing disconnections,
network congestion causing message loss, and
overloaded application server causing excessive
delays and timeouts.

These faults can be categorised into three system
levels as shown in Table 1.

Fault management systems involve a combination of
multiple steps – Monitoring / Detection, Diagnosis,
Recovery, and Restart / Repair. – that are typically
independently developed and optimized[11].

1. Monitoring / Fault detection recognizes that

something unexpected has occurred. The
execution of Web service process is monitored
to find the unobserved behaviors of the system
given the normal system behavior model and
record necessary and sufficient information for
online/offline diagnosis Techniques fall here into
two classes: off-line and on-line. Verification is
an off-line technique, done to guarantee that the

deployed services satisfy a set of requirements
and temporal properties. On-line techniques
provide a real-time detection capability that is
performed concurr ently with service execution.

2. Diagnosis. Fault diagnosis pinpoints one or more
root causes of the problem, to the point where
corrective action can be taken. The unobserved
behaviours found while monitoring are further
analysed (online) to determine the causes of
exceptions (failures). Typically, fault diagnosis
encompasses both fault detection and fault
location.

3. Fault confinement limits the fault impact by

attempting to contain the spread of fault effects
in one area of the Web service, thus preventing
contamination of other areas.

TABLE I. Fault Types and Examples

Violations of agreed upon Service Level Agreements(SLAs)
and policies

QoS violation faults QoS value beyond threshold.
Functional and behavioural faults

Web –Application Level Faults
Internal data faults Data quality faults (value

mismatch; missing data: null
values).

Web service Level Faults
Web service execution
faults

Missing parts in input message,
wrong order of operation
invocations (internal to a service).

Web service
coordination faults

Component service unavailable,
process
failure (time out).

Operational Faults

Infrastructure & Middleware level faults
Node faults Node (application server or client

device) has failed
Network faults missing connection, low

bandwidth
Generic faults Denial of service, wrong

authentication
Web –Application Level Faults
Application co-
ordination faults

Application Failure due to reply
timeout, resources not available at
right time.

Actor faults Customer is not connected when a
synchronous communication is
needed.

4. Recovery utilizes techniques to eliminate the

effects of faults. Three basic recovery
approaches are available: fault masking, retry
and rollback. Fault masking techniques hide the
effects of failures by allowing alternative
information to outweigh the incorrect
information. Retry undertakes one more attempt

201

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3

Automata for Web Services Fault Monitoring and Diagnosis
__

__

at an operation and is based on the premise that
many faults are transient in nature. Rollback
makes use of the fact that the Web service
operation is backed up (check pointed) at some
point in its processing prior to fault detection and
operation recommences from that point.

5. Restart occurs after the recovery of undamaged

information.
a. Hot restart: resumption of all operations

from the point of fault detection and is
possible only if no damage has occurred.

b. Warm restart: only some of the processes
can be resumed without loss.

c. Cold restart: complete reload of the system
with no processes surviving. The Web
services can be restarted by rebooting the
server.

6. Repair. A failed component is replaced. Repair
can be offline or on-line.

III. OVERVIEW OF BPEL4WS
In order to understand what contributes to errors

in web service execution, we need to look at the
programming primitives used in coding of a service.
Business Process Execution Language for Web
Services (BPEL4WS or simply BPEL) is an XML-
based orchestration language being used in coding of
web services. BPEL is a so-called executable
language because it defines the internal behavior of a
Web service process, as compared to choreography
languages that define only the interactions among the
Web services and are not executable. For the
specification of the internal behaviour of a business
process, BPEL4WS provides two kinds of activities.
An activity is either an elementary (basic) activity or
a structured activity. The set of elementary activities
includes:

• empty (do nothing)
• wait (wait for some time)
• assign(copy a value from one place to

another)
• receive(wait for a message from a partner)

• invoke (invoke a partner)
• reply (reply a message to a partner)
• throw (signal a fault) and
• terminate(terminate the entire process

instance).

A structured activity defines a causal order on the
elementary activities. It can be nested with other
structured activities. The set of structured activities
includes:

• sequence(nested activities are ordered
sequentially)

• flow (nested activities occur concurrently to
each other)

• while (while loop)
• switch (selects one control path depending

on data)
• pick (selects one control path depending

either on timeouts or external messages).

IV. AUTOMATA IN WEB SERVICES FAULT
MANAGEMENT : A SURVEY

Currently, fault management in business process is
similar to exception handling provision programming
languages have. The method mainly resorts to default
action instead of probing into causes of error and
providing solutions. Of late, researchers have
proposed Model Based Diagnosis (MBD) for fault
management. They have considered automata as a
natural choice for clear
picturization of state changes and unambiguous
interpretation to model dynamic behavior of web
services and have supported their usages for the
purposes. Here a brief review is presented. Many
automata models have been proposed for web service
process verification [3,4,6,9], monitoring [12,9,5] and
diagnosis[13]. Table 2 summarises these models and
their limitations.

202

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3

Automata for Web Services Fault Monitoring and Diagnosis
__

__

TABLE 2(a) Models for Verification

Models for verification
Model Features Remarks

Formal Verification
of BPEL4WS Business
Collaborations -
VERBUS [3]

A modular and extensible framework for the verification of business
processes in which several process description languages and verification
tools can be integrated. The prototype receives as input a BPEL4WS
process specification and a set of properties, automatically translates the
specification to a formal specification language based finite state
machines and verifies it using a model–checker.

Model does not handle concurrency
and link for control flow.

Model-based
Verification of Web
Service Compositions -
Foster, Uchitel, Magee,
& Kramer[4]

The model describes a formal approach to modeling and verifying the
compositions of web services workflows using the Finite State Processes
(FSP) notation. Verification is done prior to deployment, during the
design phase.

Model does not map correlation, data
and link.

Analysis of Interacting
BPEL Web Services -
Fu, Bultan, & Su[6]

The interactions of composite web services are modeled as a guarded
automaton. BPEL specifications of web services are translated to an
guarded automata , followed by the translation of the guarded automata
to a verification language.

Model does not map correlation, and
link.

Modeling and Verifying
Web Service
Applications with Time
Constraints - Jia et al [8]

A formalism called WS Timed automata is introduced to capture the
timed behavior of the web service. The BPEL4WS specification of
business process is translated to timed Automata and then Uppaal tool is
used to simulate and verify the correctness of the system.

TABLE 2 (b) Models for Monitoring and Diagnosis

Models for Monitoring and Diagnosis
Model Features Remarks

Model based approach
for web process
monitoring. Yan et
al.[12]

Map BPEL into automata .The control flows are mapped to different
structures of automata. Concurrent branches in flow are modeled as
pieces of synchronizing automata. To represent data flow, state variables
are defined and mapped to variables in BPEL. In addition, transition
rules containing state variables are defined to model the triggering
conditions in control flow.

Model does not map link.

Runtime Monitoring of
Web Service
Conversations - J
Simmonds et al[9]

Concentrates on the dynamic analysis via runtime monitoring, which tries
to ensure the quality of an application through the analysis of runtime
events. A subset of UML Sequence Diagrams of the business process is
identified as a property specification language and these diagrams are
transformed to automata. This automata is later used to perform
conformance checking of execution traces against the given specification.

Model does not map concurrence.

A Methodology for On-
line Monitoring of
Non-Functional
Specifications of Web-
Services Raimondi et al
[5]

Models web services as timed -automata for monitoring non-functional
specifications of web services (such as latency and
reliability).

A Model-based
Approach for
Diagnosing Faults
in Web Service
Processes Yan et al[13]

Automata are used to give a formal modeling of Web service processes
described in BPEL. For diagnosis, execution trajectories of the business
process is constructed based on the model of the process and the
observations from the
execution. The variable dependency relations are utilized to diagnose the
Web services
within the trajectory responsible for the thrown exceptions.

A deterministic model.

V. PROPOSED APPROACH
Any system involving uncertainties, unpredictable
human actions or system failures requires a non-

deterministic treatment. So far, the web services
have been modeled using deterministic approaches
only, which cannot distinguish between states that
are highly probable and those that are less
probable. As an example let us understand the

203

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3

Automata for Web Services Fault Monitoring and Diagnosis
__

__

execution of the Loan Approval Process, shown in
Fig 1. The loan approval process is the same as the
one described in the BPEL Specification 1.1 [12]
and the model is self describing. Based on the loan
amount received, the process invokes a Loan
Assessor web service (when the credit required is
<10000) or a Loan Approver web service (when the
credit required is ≥ 10000) whose jobs are to
approve or reject the loan. The Loan Assessor web
service calculates the risk in approving the loan.
Risk assessment practically changes in times for its
dependence to current situation that is naturally
dynamic like share values and personal choices.
This stochastic nature of control variables like here
‘risk’ leads to different behavioural traces of
system execution,

Fig 1. The Loan Approval Process

for eg.{a,b,c,d,g} when the risk is Low and
{a,b,c,e,f,g} when the risk is High. Based on risk
assessment and domain specific rules, one may
assign probabilities to traces. Based on this idea we
propose a model based fault management system
that follows the steps given below:

1. Model web services using stochastic automata.
2. Develop programming primitives to implement

the model.
3. Study the application of the model for

• Monitoring of Web Services.
• Fault Diagnosis of Web Service.

VI. FORMALISATION
Stochastic automaton model : The stochastic
model of a business process can be expressed an
automaton (X , ∑ , T , P) where

•X is a finite set of states,
•∑ is a finite set of events,
•T X×∑×X is a finite set of transitions,
•p(x′, e|x) is a state transition probability
defined for all x, x′ X ,e ∑.

We associate with each nondeterministic transition
a probability value, which specifies the probability
with which this transition may occur. Table 3 gives
examples for states, events, transitions and Table 4
gives assumed state transition probabilities with
reference to the loan approval process discussed in
the previous section.

Execution of an instantiation of the model loan
approval process is controlled by current risk
assessment that is predicted from observable facts
like share values and other dependant variables.

TABLE 3. Example for states, events, transitions

Notation Example

X , finite set of
states

a, b, c, d, e, f, g

∑ , finite set of
events

Receive,Invoke, Assign, Reply

T, finite set of
transitions

(a,Receive amount<10000,b),
(a,Receive amount≥10000,e), (b,

Invoke Assessor, c), (c,Receive Risk =
Low,d), (c, Receive Risk = High,e),
(d, Assign Message, g), (e, Invoke

Approver, f), (f, Receive
Approval, g)

TABLE 4. Assumed state transition probabilities

T (finite set of transitions) p(state transition
probability)

(a,Receive amount<10000,b) 0.3
(a,Receive amount≥10000,e) 0.7

(c,Receive Risk = Low,d) 0.6
(c, Receive Risk = High,e) 0.4

 This gives rise to a predicted trace of the model
(say rpd , the predicted run). And the execution of
model instantiation gives a trace of states (say rob,
the observed run). The difference between two
traces beyond an agreeable limit (say a threshold

Receive Risk

Risk=High

Receive

Amount ≥10000

Assign
Message

Receive
Approval

Receive
Risk

Invoke
Approver

Receive

Amount <10000

Invoke

Assessor

a

b

c

d

e

f

g

204

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3

Automata for Web Services Fault Monitoring and Diagnosis
__

__

value δ) gives an indication of error. With reference
to the example given in previous section :
Possible predicted traces (rpd) are
• {a,b,c,d,g} for risk = Low
• {a,b,c,e,f,g} for risk=High
If the observed trace (rob) of states for the process
instantiation is {a, b, c, e, f, g} when the predicted
trace of states is {a,b,c,d,g}, it is a clear indication
of error due to wrong calculation of risk. We can
hence use the model for estimating the likelihood
of possible state transitions and predict the possible
execution trace of the process. Such an execution
trace can be utilized to monitor fault occurrences in
the business process as :

| rob –rpd | ≥ δ
We plan to initialize the probability values based
on the execution history of a web service. We
propose to monitor service level faults among the
faults listed in Table1. The ultimate goal is to give
a formal stochastic model of a business process that
would help in analysis, monitoring and fault
diagnosis of the process.

VII. CONCLUSION AND FUTURE WORK
Web services is an emerging technology for

business process integration. One of the most
important challenges with the deployment of Web
Services is ensuring that services are correct and
available despite faults. In this paper, we discuss
how automata are used for formal modeling of web
services and also for verification, monitoring and
diagnosis. However, the use of these models to
cope with stochastic nature of web services are not
explored. In this context, we propose a model of
web services using stochastic automata. Further, we
intend to study the stochastic nature of environment
in which the Web services are deployed and work
on the feasibility of modeling Web Services using
stochastic automata as discussed in the previous
section. Further, the state e.g. for risk prediction
can be computed with neural network. We would
like to work on a hybridized model with neural
network and automata for monitoring and fault
diagnosis of web services in future.

REFERENCES :
[1] Abdelkarim Erradi, Piyush Maheshwari, School of

Computer Science and Engineering University of
New South Wales, Sydney, Australia,IBM India
Research Lab New Delhi, India, “Recovery Policies
for Enhancing Web Services Reliability”.

[2] D Thorsley and D. Teneketzis, “Diagnosability of
stochastic automata,” in Proc. 42nd IEEE Conf.
Decision and Control, Dec. 2003, pp.6289–6294.

[3] Fisteus, J., Fern´andez, L., & Kloos, C. (2004).
“Formal verification of bpel4ws business

collaborations”. In K. Bauknecht, M. Bichler, & B.
Prll (Eds.), Proc. of 5th international conference e-
commerce and web technologies (ec-web) (p. 76-
85). Springer.

[4] Foster.H., Uchitel.S., Magee.J., & Kramer.J. (2003).
“Model-based verification of web service
compositions”. In Proc. of eighteenth IEEE
international conference on automated software
engineering (ase03) (p. 152-161).

[5] F. Raimondi, J. Skene, W. Emmerich, and B.
Wo´zna. “A methodology for online monitoring
non-functional specification of web-services”. In D.
K. C. Attiogb´e, editor, Proceedings of the First
International Workshop on Property Verification for
Software Components and Services
(PROVECS’07), number 567 in ETH Technical
Report, pages 50–59.

[6] Fu, X., Bultan, T., & Su, J. (2004). “Analysis of
interacting bpel web services”. In Proc. of the 13th
international world wide web conference (www’04).
ACM Press.

[7] Hamscher, W., Console, L., & de Kleer, J. (Eds.).
(1992). “Readings in model-based diagnosis.
Morgan Kaufmann”.

[8] Jia Mei, Huaikou Miao, Qingguo Xu, Pan Liu
“Modeling and Verifying Web Service
Applications with Time Constraints”, Computer and
Information Science, ACIS International
Conference Issue, August 2010 pp. 791-795.

[9] Jocelyn Simmonds, Yuan Gan, Marsha Chechik,
Shiva Nejati, Bill O'Farrell, Elena Litani, “Runtime
Monitoring of Web Service Conversations”, IEEE
Transactions on Services Computing June 2009 pp.
223-244.

[10] M.G. Fugini, E. Mussi, Politecnico di Milano,
Dipartimento di Elettronica ed Informazione,
“Recovery of Faulty Web Applications through
Service Discovery”, Via Ponzio 34/5 - I-20133.

[11] Pat. P.W. Chan1, Michael R. Lyu1, and Miroslaw
Malek Department of Computer Science and
Engineering The Chinese University of Hong Kong
Hong Kong, China, “Making Services Fault
Tolerant”.

[12] Yan, Y., Pencol´e, Y., Cordier, M.-O., & Grastien,
A. (2005). “Monitoring web service networks in a
model-based approach”. In 3rd IEEE european
conference on web services (ecows05). Sweden:
IEEE Computer Society.

[13] Y. Yan, P. Dague, Y. Pencolé and M.-O. Cordier.
“A Model-based Approach for Diagnosing Faults in
Web Service Processes”. International Journal of
Web Services Research JWSR, 5(4), Oct.-Dec.
2008.

205

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3

	Automata for Web Services Fault Monitoring and Diagnosis
	Recommended Citation

	Automata for Web Services Fault Monitoring and Diagnosis

