
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 5 Issue 1 Article 8

January 2014

Coding Schemes for Distributed Storage Systems: Coding Schemes for Distributed Storage Systems:

Implementation and Improvements Implementation and Improvements

Saman Tabatabaeian
Department of Computer Science and Information Sciences, University of Hyderabad, Hyderabad, AP,
India, saman_tabatabaeian@yahoo.com

Rajendra P. Lal
Department of Computer Science and Information Sciences, University of Hyderabad, Hyderabad, AP,
India, rplcs@uohyd.ernet.in

Wilson Naik
Department of Computer Science and Information Sciences, University of Hyderabad, Hyderabad, AP,
India, naikcs@uohyd.ernet.in

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Tabatabaeian, Saman; Lal, Rajendra P.; and Naik, Wilson (2014) "Coding Schemes for Distributed Storage
Systems: Implementation and Improvements," International Journal of Computer and Communication
Technology: Vol. 5 : Iss. 1 , Article 8.
DOI: 10.47893/IJCCT.2014.1218
Available at: https://www.interscience.in/ijcct/vol5/iss1/8

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol5
https://www.interscience.in/ijcct/vol5/iss1
https://www.interscience.in/ijcct/vol5/iss1/8
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol5%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol5/iss1/8?utm_source=www.interscience.in%2Fijcct%2Fvol5%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Copyright 2011, IPM, INDIA

Coding Schemes for Distributed Storage Systems: Implementation
and Improvements

Saman Tabatabaeian, Rajendra P Lal, Wilson Naik
Department of Computer Science and Information Sciences,

University of Hyderabad, Hyderabad, AP, India
saman_tabatabaeian@yahoo.com, rplcs@uohyd.ernet.in, naikcs@uohyd.ernet.in

Abstract—Distributed data storage systems are used to store data
reliably over a distributed collection of storage locations, called
peers. Coding schemes are used to store a portion of the data in the
peers ensuring the complete retrieval of data, during peer failures.
This has applications in various areas like Wireless Networks, Sensor
Networks etc. In this framework we consider a large file to be stored
in a distributed manner over few peers of limited capacity. Each
peer stores a portion of the coded data, without the knowledge of
the contents of other peers. Random Coding is one of the coding
schemes used for this. In [1] coding coefficients are chosen randomly
from a finite field to encode the data. The encoding is basically a
linear combination of file pieces (pieces are elements of finite fields).
The data downloader downloads these coded data from several
peers and decodes to get the original data. The decoding is basically
solving a system of linear equations over a finite field, which is the
most time consuming step in the whole process. We give a simple
C++ implementation of the schemes in [1] and plot the results. We
are trying to find a scheme where coding vectors can be chosen such
that the decoding complexity is reduced significantly. Also in a
dynamic setting where nodes enter and leave system intermittently,
are discussed.

I. INTRODUCTION

The research upon which distributed systems field is
growing mainly deals with rapid dissemination as well as
an efficient storage of information. However, these two
aspects are involved with constraints. For rapid
dissemination we should take into that the bandwidth
available is limited, and further, each
node only has knowledge about its own contents. On the
other hand, for efficient storage, the memory at any
particular node is considerable. This means although the
total memory of all nodes may be sufficient, the memory
available at every node may be limited. This problem is well
studied [1][2] [6].

In this section we will discuss the efficient distributed
storage of a large file as explained in [1]. We explain the
utility of coding based approaches in distributed storage.
Two different types of schemes are discussed: Random
Uncoded Storage (RUS) and Random Linear Coding based
storage (RLC). The model used for distributed storage is
very simple. We consider m messages, which are all
fragments of a large file. These fragments are randomly
distributed on n neighboring clients, called peers, with size
k(messages or fragments). We assume that data is
distributed randomly over the peers such that no peer has

any knowledge about what the other peers have stored. A
downloader randomly connects to r(≤n) out of n of peers
to download the file fragments and constitute the entire file
. The question here is: what the percentage that the
downloader retrieves the original file would be? In RUS, for
every peer, k fragments are chosen randomly and placed in
the peer. The algorithm and implementation details are
discussed in the next section.

In section III, we give a detailed interpretation of
the RLC scheme for storing a large file in a distributed
manner. In this scheme data is encoded using coding vectors
over Galois field. Each encoded message is sent along with
its coding vectors. The key difference that differentiates
random uncoded storage and RLC is that in RLC, a linear
combination of all file fragments is used which is a one time
process. Whereas in random uncoded storage, at every
communication instant, one message is randomly chosen
by any transmitting node, in RLC, after the completion of
download, an additional computation is also performed by
the downloader to decode the encoded message using
coding vectors which are sent along with it. This
computation involves solving the Gaussian elimination of
the unknowns over finite field.

 II. RANDOM UNCODED STORAGE

A direct connection between client and server is a very
usual scenario that systems encounter. However, when
multiple clients simultaneously establish a connection to
the server to download a large file, direct connections
between clients and the server would increase the server
traffic, especially when the number of users is significant.

In random uncoded approach smaller chunks of a
large file are distributed randomly among the neighboring
peers by the server. This is a simple scheme where k
fragments out of m fragments are stored in each peer. Thus
there are C(n, k) ways of storing data elements in a peer.
Each client (downloader) connects to their neighboring
peers and not directly to the server.

A. Implementation
In this program a large file is split into fragments of smaller
size. Once the file is split, the file fragments are randomly

44

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-1

Copyright 2011, IPM, INDIA

distributed among r number of peers of size k. The
distribution is random as no peer has knowledge of what is
stored on the other peers.

for i = 1 to #peers_num
 do choose peer p randomly out of r total peers

Next, the downloader runs the client background process
for each of the randomly chosen peers. The downloader
program then will be waiting for each of the client programs
to send file fragments by writing to its FIFO.

 for peer_index = 1 to #peers_to_connect
 do
 call the background client program for
 peer_index.
 open the Downloader FIFO for reading
 and writing
 for message_count = 1 to #frags_to_send
 do
 extract the file fragment index i from
 buffer;
 create a file using fragment i and copy
 the buffer contents to it
 message_count++

 peer_index++

After the completion of the download, the downloader
program calls a shell script to merge the file fragments and
count if it already acquired all fragments.

The Neighboring peers Client programs:

In each client program which acts the roll of each peer which
keep some number of file fragments according to its size.
The client program get the peer ID from the download
program by whom it had been called as a background
process. Next, it generates random fragment numbers out
of the total number of fragments as each peer cannot store
repetitive file parts.
 for each random file fragment f generated by
 the client program
 do
 open the fragment and copy the contetns
 open the individual FIFO considered for that
 file.
 Add the fragment ID at the beginning of the
 buffer.
 write the fragment contents to the buffer

 [Figure-1]

[Figure-2]

III. RANDOM LINEAR CODING APPROACH

A. Random Linear Coding

In this scheme, each packet sent to peers is a linear
combination of file fragments encoded with an associated
coding vector over the finite field. For every encoded
message vector, the associated coding vector is also sent
to peers. If we have m pieces, this will take an additional
storage space of, where k is the peer size. This is typically
a small number compared to each piece of the broken file.
After the packets are downloaded, some computation needs
to be performed on the downloader system. That is, it should
solve a Gaussian elimination equation with n unknowns,
where n is the size of file fragments. The arithmetic
operations performed is all over the finite field. Once the
computation completes, the downloader merges all decoded
pieces to retrieve the original file.

It is shown in [1] that a successful download will
be achieved by connecting to a number of peers close to
“total pieces of the file” divided by “number of pieces each
peer can store”. It is also noted that this approach takes

Coding Schemes for Distributed Storage Systems: Implementation and Improvements

45

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-1

Copyright 2011, IPM, INDIA

advantage of the random uncoded storage in terms of rapid
dissemination and efficient storage.

B. Encoding and Decoding Implementation Over Finite
Field

In this scheme, the fragments of the files are vectors of size
s in a field of size q i.e. ÎF(q). If the fragments are denoted
by fi then a typical element in a peer can be written as

ci=∑
j= 1

m

β i f i where βi ∈F(q) with equal probability of

being selected from the field. The vector (β1,β2,..βm) is called
the coding vector. These coding vectors would be stored
in the peers along with the coded fragments. It’s easy to
check that the overhead of storing takes only 0.02% extra
space. The downloader solves a system of linear equation
in the finite field F(q). We implemented Gaussian elimination
over finite field using logarithm and inversed logarithm
tables[5] . These tables make arithmetic operations on finite
field faster and supports computations for higher values of
q(=32).

Multiplication = inversed log ((log a + log b)),
Division = inversed log ((log a – log b))
noting that addition and subtraction are simply the xor
operation.

Pseudocode of Encoding:

range = 2 ^ W
for combination_count = 1 to peer_size
do
 for message_count = 1 to message_size
 do
 generate a unique value in range 2 ^ W
 coding_vector[message_count] = rand_val
 sum = sum ^
 (galois_ilog(galois_log(msg_vector[msg_cou
 nt], _W) +
 galois_log(coding_vector[msg_count], _W),
 _W))
 message_count++;

 encoded_msg_vector[combination_count] = sum
combination_count++

Psuedocode of Decoding:

for combination_count = 1 to peer_size
do
 download every encoded message along with

 its coding vector
 solve n equations with Gaussian Elimination
 over the Finite Field(2 ^ W)
 store decoded file fragments

merge file fragments to retrieve the original file

IV. CONCLUSION AND FUTURE WORK

The plots in fig-1 and 2, show that it requires a lot of
fragments to download the whole file. This is due to the
unequal distribution of fragments among the peers. Several
ideas are explained in [2] to have equal distribution of
fragments among the peers. Otherwise the download time
will be more for the file. RLC coding scheme has very high
probability of getting the whole file with no extra fragments
being sent. But this is achived at the cost of encoding and
decoding done at source and receiver end respectively.
The implementation of the RLC is not complete as of now.
We provided the pseudocode for the whole process. We
are trying to apply simple matrix
theory techniques to reduce the decoding complexity. Also
in a dynamic setting where peers leave and enter the system
intermittently, [6] describes the idea for efficient coded
fragment regeneration and also minimization of repair
bandwidth. Implementation of the ideas in [6] would be
incorporated in the future stages of this work

REFERENCES

[1] Supratim Deb, Clifford Choute, Murie Medard, and Ralf Koetter-
“Data Harvesting: A Random Coding Approach to Rapid
Dissemination and Efficient Storage of Data”INFOCOM 2005.

[2] Bit torrent file sharing protocol. http://bitconjurer.org/
bittorrent

[3] Christina Fragouli, Jean-Yves Le Boudec, Jorg Widmer-Network
Coding: An instant Primer.

[4] D. Qiu and R. Srikant. “Modeling and performance analysis
of bittorrent-like peer-to-peer networks”. Aug 2004.

[5] James S. Plank “A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like Systems”. Software — Practice
& Experience, 27(9), 1997.

[6] Nihar B. Shah et al “Regenerating Codes for Distributed
Storage Networks” LNCS, 2010, Volume 6087/2010, 215-223.

Coding Schemes for Distributed Storage Systems: Implementation and Improvements

46

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-1

	Coding Schemes for Distributed Storage Systems: Implementation and Improvements
	Recommended Citation

	Coding Schemes for Distributed Storage Systems: Implementation and Improvements

