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Time Analysis of the State Space of Real-time Preemptive Systems.

Abdelkrim Abdelli
LSI laboratory - Computer Science department - USTHB university of Algiers.

Abdelli@lsi-usthb.dz

Abstract

We present in this paper an algorithm making it pos-
sible an efficient time analysis of the state space of pre-
emptive real time systems modeled using Time Petri
Nets with inhibitor arcs. For this effect, we discuss
how to determine from the reachability graph linear and
quantitative properties of the remote model. Then, we
propose an algorithm to compute an approximation of
the minimal and the maximal time distances of any
firing sequence. Contrarily to other techniques, our al-
gorithm enjoys a linear complexity time cost and can
be performed on the fly when building the reachability
graph without requiring to extend the original model
with observers.

1 Introduction

Preemptive systems are systems whose tasks have
strict temporal constraints and which can be stopped
for a while and resumed afterwards (stopwatch mech-
anism). To prove the correctness of such systems,
various models, as extensions of Time Petri Nets (7)
have been proposed in the literature (5)(11)(9). For
instance, in (11) the authors defined the ITPN (In-
hibitor Time Petri Nets) model, wherein the progres-
sion and the suspension of time is driven by using stan-
dard and inhibitor arcs. Then, the state space of the
model is computed by applying the state class graph
method (3) in the same way as for a TPN . Each class
E of this graph is a pair consisting of a marking M
and a set of inequalities D. However, unlike in TPN
where D is always given in the form of a DBM (Dif-
ference Bound Matrix) system (6), for an ITPN the
system D can enjoy a polyhedral form which can not
be encoded in DBM . In this case, D needs complex
data structures to be represented in memory and re-
quires a much higher time to be solved1. As a result,
the exact state class graph computation algorithm (9)
has reported memory overflows and prohibitive calcu-
lation times. To circumvent this issue, DBM approx-
imation techniques (1)(5)(11) have proposed to over-
approximate the system D by the tightest DBM sub-

1The complexity of computing a class is exponential in the
number of variables whereas it is polynomial for a DBM system.

system including it. These approaches make it possible
to build efficiently in a lesser time, a graph which can
however derive additional firing sequences that are not
accessible in the exact graph. This construction makes
it possible to preserve a subset of properties than can
be sufficient to model-checking the system.

Within this contest, one of the main property of in-
terest is to check over WCRT or BCRT (Worst and
Best case response times) of an action or a run. For
this effect, the authors in (4)(12)(11) have proposed
to extend the original model with an observer con-
taining additional places and transitions modeling the
quantitative property. Then they need to compute the
reachabiliy graph of it in order to workout whether the
property holds or not. This method is quite costly as
it requires, for each property to check, to extend the
net with the appropriate observer before computing its
reachability graph wherein the property is worked out.

In (5), the authors proposed an interesting method
for quantitative timed analysis. They compute first the
DBM approximation of the graph. Then, given an un-
timed transition sequence from the over-approximated
state class graph, they can obtain the feasable timings
between the firing of the transitions of the sequence as
the solution of a linear programming problem. In par-
ticular, if there is no solution, the transition sequence
has been introduced by the over-approximation and
can be cleaned up, otherwise the solution set allows
to check timed properties on the firing times of transi-
tions. However, this method needs, for each sequence
analysis, an exponential complexity time as a result of
solving a linear programming problem.

Within this context, we propose in this paper an al-
gorithm making it possible the real time analysis of pre-
emptive systems modeled by using the ITPN model.
This consists in computing an over approximation of
the minimal and the maximal time distances of any fir-
ing sequence of the graph in a linear complexity time.
Moreover, our algorithm is performed only once and
can be either applied on the fly when building the
graph, or after its construction without requiring to
extend the ITPN with observers.

The remainder of this paper is organized as follows:
In Section 2 , we present the syntax and the formal se-
mantics of the ITPN model. In Section 3, we discuss
of the state class graph method as well as its DBM over
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approximation. In Section 4, we show how to deter-
mine the properties of interest from the graph and then
we present our algorithm to compute the quantitative
properties of the model.

2 Time Petri Net with inhibitor arcs

Time Petri nets with inhibitor arcs (ITPN) (11) ex-
tends time Petri nets(7) to Inhibitor arcs and stop-
watches (8). Formally, an ITPN is defined as follows:

Definition 1. An ITPN is given by the tuple
(P, T,B, F,M0, I, IH) where: P and T are respectively
two nonempty sets of places and transitions; B is the
backward function 2 : B : P × T −→ N = {0, 1, 2, ..};
F is the forward function F : P × T −→ N ; M0

is the initial marking function M0 : P −→ N ; I is
the delay mapping I : T −→ Q+ × Q+ ∪ {∞} , where
Q+ is set of non negative rational. We write I(t) =
[tmin(t), tmax(t)] such that 0 ≤ tmin(t) ≤ tmax(t) ;
IH : P ×T −→ N is the inhibitor arc function; there is
an inhibitor arc connecting the place p to the transition
t, if IH(p, t) �= 0.

  

P1 

t1 [50,50] 

t4 [10,20] 

P2

  

t5 [18,20] 

P3

t6 [20,28]

TASK
 

1
  2   3

Obs1

Obs2

Tfalse 

[W+1,∞] 

false

Tok        [0,0]

Empty 

[0,0] 

TASK TASK Observer

t2 [100,150] t3 [150,150] 

Figure 1. ITPN modeling two periodic tasks and
a sporadic one.

For instance, let us consider the ITPN model,
drawn in continuous lines in Figure 1. This example
describes periodical and sporadic tasks executed in par-
allel (5). This example models three independent tasks
that are conflicting for a common resource (CPU): Two
periodic tasks 1 and 3 (of period 50 and 150 time units),
and one sporadic task with a minimum and maximum
inter-arrival times of [100, 150]. The task 1 (modeled
by the transitions t1 and t4), has a higher priority than
that of two other tasks, and the sporadic task has a
higher priority than that of the third task. The priori-
ties are modeled by using inhibitor arcs. The inhibitor
arcs are the arcs ended by a circle that connect the
places p1, p1 and p2 to respectively the transition t5, t6
and t6. Initially, the place p1 is marked; hence t4 is
enabled and activated. However, t5 and t6 are enabled

2
N denotes the set of positive integers. In the graphical repre-

sentation, we represent only arcs of non null valuation, and those
valued 1 are implicit.

but inhibited. The transition t5 remains inhibited as
long as there will exist a token in place p1. However
t6 still remain inhibited as long as both the places p1

and p2 are marked. For more details, the formal se-
mantics of the ITPN model is introduced in the next
section.

Let RT := (P, T, B, F, M0, I, IH) be an ITPN.

- We call a marking the mapping, noted M, which
associates with each place a number of tokens:
M : P → N.

- A transition t is said to be enabled for the marking
M, if ∀p ∈ P,B(p, t) ≤ M(p); the number of to-
kens in each input place of t is greater or equal to
the valuation of the arc connecting this place to
the transition t. Thereafter, we denote by Te(M)
the set of transitions enabled for the marking M .

- A transition t is said to be inhibited for a marking
M, if it is enabled and if there exists an inhibitor
arc connected to t such that the marking satisfies
its valuation (t ∈ Te(M))∧∃p ∈ P, 0 < IH(p, t) ≤
M(p). We denote by Ti(M) the set of transitions
that are inhibited for the marking M .

- A transition t is said to be activated for a marking M,
if it is enabled and not inhibited, (t ∈ Te(M))∧
(t /∈ Ti(M)); we denote by Ta(M) the set of tran-
sitions that are activated for the marking M .

- Let M be a marking ; two transitions ti and tj en-
abled for M are said to be conflicting for M , if
∃p ∈ P, B(p, ti) + B(p, tj) > M(p).

For instance, let us consider again the ITPN
of Figure 1 ; its initial marking is equal to M0 :
{p1, p2, p3} → 1; the sets of enabled, inhibited, and ac-
tivated transitions for M0 are respectively Te(M0) =
{t1, t2, t3, t4, t5, t6} , T i(M0) = {t5, t6} , and Ta(M0) =
{t1, t2, t3, t4} .

The semantics of an ITPN is defined as a labeled
transition system, as follows:

Definition 2. The semantics of an ITPN is defined
as a labeled transition system ST = (Γ, e0,→), such
that:

• Γ is the set of accessible states: Each state, noted
e, pertaining to Γ is a pair (M, V ) where M is a
marking and V is a valuation function that asso-
ciates with each enabled transition t of Te(M) a
time interval that gives the range of relative times
within which t can be fired. Formally we have : ∀t
∈ Te(M), V (t) := [x(t), y(t)]

• e0 = (M0, V 0) is the initial state, such that: ∀t ∈
Te(M0), V 0(t) := I(t) := [tmin(t), tmax(t)].

• →∈ Γ×(T ×Q+)×Γ is a transition relation, such
that we have ((M,V ), (tf , tf ), (M↑, V ↑)) ∈→, iff:
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(i) tf ∈ Ta(M).

(ii) x(tf ) ≤ tf ≤ MIN
∀t∈Ta(M)

{y(t)} .

and we have:

∀p ∈ P, M↑(p) := M(p) − B(p, tf ) + F (p, tf ).

∀t ∈ Te(M↑)

if t /∈ New(M↑):

if t ∈ Ta(M)

[x↑(t), y↑(t)] := [MAX(0, x(t) − tf ), y(t) − tf ]

if t ∈ Ti(M)

[x↑(t), y↑(t)] := [x(t), y(t)]

if t /∈ New(M↑)

[x↑(t), y↑(t)] := I(t) = [tmin(t), tmax(t)]

– where New(M↑) denotes the set of transi-
tions newly enabled for the marking M↑.
These transitions are those enabled forM↑

and not for M , or those enabled for M↑ and
M but are conflicting with tf for the marking
M . Otherwise, an enabled transition which
does not belong to New(M↑) is said to be per-
sistent.

If t is an enabled transition for a state e, we note t
a clock associated with t that takes its values in Q+.
t measures the residual time of the transition t rela-
tively to the instant where the state e is reached. The
time progresses only for activated transitions, whereas
it is suspended for inhibited transitions. Therefore, a
transition tf can be fired at relative time tf from an
accessible state e, if (i) tf is activated for the marking
M , and if (ii) the time can progress within the firing
interval of tf without overtaking those of other acti-
vated transitions. After firing tf the accessible state,
noted e↑, is obtained:

• by consuming a number of tokens in each input
place p of tf (given by the value B(p, tf )), and by
producing a number of tokens in each output place
p of tf (given by the value F (p, tf ));

• by shifting the interval of a persistent activated
transition with the value of the firing time of tf .
However, the intervals of persistent inhibited tran-
sitions remain unchanged. Finally, a newly en-
abled transition is assigned its static firing inter-
val.

Similarly as for TPN, the behavior of an ITPN
can be defined as a sequence of pairs (t, δ), where t is
a transition of the net and δ ∈ Q+. Therefore, the se-
quence S t = ((t1f , δ1), (t2f , δ2), .., (tnf , δn)) denotes that
t1f is firable after δ1 time units, then t2f is fired after
δ2 time units and so on, such that tnf is fired after the
absolute time

∑n
i=1 δi. Moreover, we often express the

behavior of the net as an untimed sequence, denoted by

S, obtained from a timed sequence S t by removing the
firing times: If S t = ((t1f , δ1), (t2f , δ2), ..., (tnf , δn)), then
S = (t1f , t2f , .., tnf ). As the set of time values is assumed
to be dense, the model ST is infinite. In order to ana-
lyze this model, we need to compute an abstraction of
it that saves the most properties of interest. The state
class graph preserves the untimed sequences of ST, and
makes it possible to compute a finite graph in almost
all cases.

3 ITPN state class graph

For a TPN(7), the state class graph method (3) al-
lows to compute a symbolic graph that preserves chiefly
the linear properties of the model. Likewise, this con-
struction can be applied to an ITPN . This will con-
sists in gathering in a same class all the states accessible
after firing the same untimed sequence; all the states of
a same class have the same marking M . Hence, a class
is defined by the pair (M, D) where M is the common
marking of all the states of the class, and D is a set of
inequalities encoding the firing space of the class. More
formally, a class of an ITPN (4) is defined as follows:

Definition 3. Let ST = (Γ, e0,→) be the LTS asso-
ciated with an ITPN . A class of states of an ITPN ,
denoted by E, is the set of all the states pertaining to
Γ that are accessible after firing the same untimed se-
quence S = (t1f , .., tnf ) from the initial state e0. A class
E is defined by (M,D), where M is the marking acces-
sible after firing S, and D is the firing space encoded
as a set of inequalities.
For Te(M) = {t1, .., ts}, we have : D = D̂ ∧ D̃

D̃ :=

⎧⎨⎩ ∧i �=j (tj − ti ≤ dij)∧i≤s (di• ≤ ti ≤ d•i)

with (tj , ti) ∈ Te(M)2 dij ∈ Q ∪ {∞} ,
d•i ∈ Q+ ∪ {∞} , di• ∈ Q+

D̂ :=∧ k=1..p (α1kt1 + .. + αskts ≤ dk)
with dk ∈ Q ∪ {∞} , (α1k, .., αsk) ∈ Zs and3

∀k, ∃(i, j), (αik, αjk) /∈ {(0, 0), (1,−1)}
We denote by the element {•} the earliest instant at

which the class E is reached. Therefore, the value of
the clock ti expresses the time relative to the instant •
at which the transition ti can be fired. Thus for each
valuation ψ satisfying the system D, it corresponds a
unique state e = (M, V ) accessible in ST after firing
the sequence S.

In case of a TPN , the system D is reduced to the
subsystem D̃. The inequalities of the latter have a
particular form, called DBM (Difference Bound Ma-
trix )(6). For TPN ′s, the firing space of a class can al-
ways be encoded as a DBM system. This form makes
it possible to apply an efficient algorithm to compute
a class, whose overall complexity is O(m3), where m

3Z denotes the set of relative integers.
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is the number of enabled transitions. However, for
TPN augmented with stopwatches, the set of valua-
tions pertaining to a given class can not be encoded
anymore with DBMs. Actually, inequalities of gen-
eral form (called also polyhedra), are needed to encode
the firing space of a class. These constraints given by
the subsystem D̂, induce a higher complexity that can
be exponential in the worst case.

To tackle this issue, the DBM over approximation
technique has been proposed as an alternative solution
to analyze preemptive real time systems (11)(5)(1).
This approach consists in cutting off the inequalities
of the subsystem D̂ when the latter appears in D; it
thereby keeps only those of the subsystem D̃ to rep-
resent an over approximation of the space of D. This
solution makes it possible to build a less richer graph
than the exact one, but nevertheless with lesser ex-
penses in terms of computation time and memory us-
age. Besides, the DBM over-approximation may com-
pute an infinity of unreachable markings while the ex-
act construction is indeed bounded. Formally, a DBM
approximated class graph can be defined as follows:

Definition 4. Let R be an ITPN. The DBM-
approximated class graph of R, noted G̃R, is the ty-
ple (C̃E, Ẽ0, �−→) where: C̃E is a set of approximated
classes such that each approximated class, noted Ẽ, is
a pair (M, D̃) such that : M is a marking and D̃ is a
DBM system ; Ẽ0 = (M0, D̃0) is a special class of C̃E
called the initial class ; �−→: is relation between classes
defined on C̃E × T × C̃E.

In the sequel, we encode the system D̃ as a square
matrix where each line and corresponding column, are
indexed by an element of Te(M) ∪ {•} . In concrete
terms, we have:

∀(ti, tj) ∈ Te(M)2 ∧ (ti �= tj), D̃[•, ti] := d̃•i;
D̃[ti, •] := −d̃i• ; D̃[ti, tj ] := d̃ij ; D̃[ti, ti] := 0 ;
D̃[•, •] := 0.

Taking on the previous definition, if E = (M, D) is
a class accessible in the exact graph, noted GR, then
the class Ẽ = (M, D̃) is an overapproximation of E,
since the space of states of E is included in that of
Ẽ. Hence, by substituting Ẽ for E in the graph GR, it
results that the class Ẽ may derive additional sequences
that are not firable indeed in GR from E. We thereby
obtain an overapproximation of the graph GR. This
abstraction of the state space of an ITPN allows to
preserve a subset or properties which is, in general,
sufficient for the analysis of the model. Furthermore,
it should be noticed that the finitness of the exact state
class graph is undecidable even for bounded nets (4).
However, the graph obtained by DBM approximation
is ensured to be finite when the net is bounded. This
makes it possible to compute a finite approximation
when the exact one does not terminate.

4 State class graph analysis

The aim of computing the state class graph is to de-
duce the main important properties of the model (e.g.
reachability, deadlock, liveness,...etc). Concerning the
exact graph GR, all the linear properties of the model
(those that could be checked by using linear logics like
LTL), are preserved. Therefore, to check whether an
ITPN satisfies a given property, it requires to check
over it on its graph GR. On the other hand, as con-
cerns the approximated graph G̃R, the construction
preserves a subset of properties of the ITPN ; the main
ones are given next:

• Any marking M, sequence S and state e accessible
in GR, are accessible in G̃R.

• Any marking M, sequence S and state e inacces-
sible in G̃R, are not accessible in GR.

From previous relations, one can check over proper-
ties of safety : ”something bad never happens”. There-
fore, if the graph G̃R enjoys the later property, then the
graph GR satisfies it too. Conversely, if the property
is false in G̃R (i.e, the system is not safe), then we can
extrapolate and state that there is a probability that
the system is not safe with the risk to be pessemistic4.
Moreover, schedulability and evaluation of quantitative
properties are typical properties of interest for such ap-
plications. A schedulability consists in checking for in-
stance that an occurrence of a task is always processed
before the arrival of a new one; this property is satis-
fied if the marking is Safe. As concerns the example of
Figure 1, the exact graph as as well as the over ap-
proximated one enjoy safe markings; the markings of
the graphs are 1-bounded. Furthermore, to check over
a quantitative property on the graph, we can extend
the ITPN with an observer (containing new places and
transitions), making it possible to model this property.
Then, we need to verify whether the marking of some
places of the observer are reachable or not in the graph
(11)(12)(4). The Figure 1 shows an observer (depicted
in dotted lines), to check the following property: ’The
task 3 ( t3 and t6) is always executed in less than W
time units’. The property holds if the place false is
never marked or if the model does not fire the transi-
tion Tfalse. This property becomes false in the exact
graph from W = 89 and from W = 137 for the over-
approximated graphs. Hence, the exact value for the
WCRT (Wort Case Response Time) for this task is
88, while the approximated value is 136.

However, this technique is costly since it requires to
compute the reachability graph of the extended model
in order to check over the quantitative property5. To
tackle this issue, we propose hereafter an efficient al-
gorithm that allows to compute an approximation of

4We may find an additional path G̃R that does not satisfy a
safety property, while all paths in GR satisfy it.

5Each quantitative property is modeled by a different ob-
server; this implies to run for each a new graph construction
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the maximum and the minimum time distances of any
firing sequence in a linear complexity time.

4.1 Minimal and maximal time distances of a fir-
ing sequence

In the sequel, the notations assume that the ap-
proach applies to the approximated graph G̃R. How-
ever, the technique can be applied too to the exact
graph GR. With this intention, it needs to consider
for each class E accessible in GR the subsystem D̃ in
place of the general polyhedral system D. Considering
a given sequence included in both graphs G̃R and GR,
the computed distances are exact regarding the graph
G̃R whereas they are overapproximated for the exact
graph GR.

So, let us consider the firing of a sequence of tran-
sitions Sn

i =
(
ti+1
f , .., tnf

)
; Sn

i describes a path in the

graph G̃R going from the node representing the class
Ẽi to the node which represents the class Ẽn. There-
fore, the time distance of the sequence (ti+1

f , .., tnf ) is
given by the sum ti+1

f +.. + tnf , and the minimum and
the maximum of the latter are worked out within the
firing space of the sequence Sn

i , defined as follows:

Definition 5. Let Ẽn be a class accessible in G̃R
from the class Ẽi after firing the sequence Sn

i =(
ti+1
f , .., tnf

)
. We denote by space(Sn

i ) the firing space

defined on (Q+)n−i of vectors (θi+1, .., θn) such that
the sequence Sn

i can be fired at relative times ti+1
f =

θi+1, .., tnf = θn.

space(Sn
i ) :=⎧⎪⎪⎨⎪⎪⎩

(
ti+1
f , .., tnf

)
:= (θi+1, .., θn) ∈ (Q+)n−i |

∀en ∈ Ẽn,∀j ∈ {i, .., n − 1} ∃ej ∈ Ẽj ,

ei
ti+1
f−→ ..ej

tj+1
f−→ ..

tn
f−→ en

⎫⎪⎪⎬⎪⎪⎭
A vector (θi+1, .., θn) is an admissible solution if

there exists a state ei = (M i, V i) in Ẽi which can
fire sequentially the transition ti+1

f at relative time
ti+1
f := θi+1, ti+2

f at relative time ti+2
f := θi+2, .., and

finally the transition tnf at relative time tnf := θn to

reach the state en = (Mn, V n) accessible in Ẽn. More-
over, as a class contains all the states accessible after
firing the same sequence of transitions, therefore for
each valuation of (ti+1

f , .., tnf ) taken from space(Sn
i ), it

corresponds a unique state among those accessible in
Ẽn. Therefore, the space space(Sn

i ) determines also
the space of the class Ẽn. Hence the next definition
shows how we can express the firing space of the class
Ẽn in terms of that of the class Ẽn−1.

Definition 6. The space space(Sn
i ) can be written

in terms of space(Sn−1
i ), as follows: If space(Sn−1

i )
�= ∅, then space(Sn

i ) :=

{
(θi+1, .., θn) |

(
ti+1
f , .., tn−1

f

)
:= (θi+1, .., θn−1) ∈ space(Sn−1

i )∧(
tn
f = θn

)
∧

(
x(tn

f ) ≤ tn
f ≤ MIN

∀t∈T a(M)
{y(t)}

)

Put in another way, if tnf is firable within
space(Sn−1

i ), then space(Sn
i ) represents all the vec-

tors of space(Sn−1
i ) (states of Ẽn−1), that satisfy the

firing condition of tnf and the restriction of the space

space(Sn
i ) to the vectors

(
ti+1
f , .., tn−1

f

)
is the sub set

of space(Sn−1
i ) that satisfies these conditions.

Therefore, thanks to the introduction of the firing
space, the minimum and the maximum time distances
of a sequence Sn

i can be defined as follows:

Definition 7. (Time distance function) Let Ẽn

be a class accessible in G̃R, after firing the sequence
Sn

i =
(
ti+1
f , .., tnf

)
. For point (n), we define the time

distance function, noted DSn, that computes the min-
imum and the maximum time distances of all subse-
quences starting from points i ∈ {0, .., n} up to point
(n).

DSn : ({0, .., n} ∪ Te(M))2 −→ Q ∪ {∞}
∀i ∈ {0, .., n − 1} , ∀t ∈ Te(M)

DSn[i, n] := MAX
space(Sn

i )
{ti+1

f + .. + tnf };
DSn[n, i] := − MIN

space(Sn
i )
{ti+1

f + .. + tnf };

DSn[i, t] := MAX
space(Sn

i )
{ti+1

f + .. + tnf + yn(t)};
DSn[t, i] := − MIN

space(Sn
i )
{ti+1

f + .. + tnf + xn(t)};
DSn[i, i] := 0; DSn[n, n] := 0.

Each coefficient of the function DSn needs to find
out the vector (θi+1, .., θn) of space(Sn

i ) so that the
related expression is optimized. Hence if t is an en-
abled transition for Ẽn, then DSn[t, i] (respectively,
DSn[i, t]), represents the opposite value of the min-
imum time distance from the firing point (i) up to
the minimum bound of the transition t (respectively,
the maximum time distance from the firing point (i)
up to the upper bound of the transition t). Further,
DSn[i, n] (respectively, DSn[n, i]), computes the maxi-
mum time distance (respectively, the opposite value of
the minimum time distance), between the firing points
(i) and (n). The computation formulae of the function
DSn are performed recursively by making projections
on previous firing spaces, as defined in next proposi-
tion.

Proposition 1. Let Ẽn−1 = (Mn−1, D̃n−1) be a class
accessible in G̃R, from the class Ẽi = (M i, D̃i) after
firing the sequence Sn−1

i =
(
ti+1
f , .., tnf

)
, and let Ẽn =

(Mn, D̃n) be a class accessible from Ẽn−1 after firing
the transition tnf . The function DSn associated with
Ẽn is computed recursively from DSn−1, as follows:

DSn [n,n] := 0 ; DSn [n, t ] :=D̃n [•, t ]; DSn [t ,n] :=D̃n [t , •].
∀i ∈{0, .., n − 1} ,
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DSn [i ,n] := MIN
∀t∈Ta(Mn)

{DSn−1 [i, t]} ;

DSn [n, i ] := DSn−1 [tnf , i ].

∀i ∈{0, .., n − 1} , ∀t ∈ Te(Mn)

If t is persistent

If t /∈ Ti(Mn−1) (t is not inhibited for the point n− 1)

DSn [i , t ] := MIN (DSn−1 [i , t ], DSn [i ,n]+D̃n [•, t ]).

DSn [t , i ] := MIN (DSn−1 [t , i ], DSn [n, i ]+D̃n [t , •]).

If t ∈ Ti(Mn−1) (t is inhibited for the point n − 1)

DSn [i, t] :=

MIN

⎧⎨⎩ DSn−1 [i, t] + MIN
∀t′∈Ta(Mn−1)

{
D̃n−1 [•, t′]

}
DSn [i, n] + D̃n[•, t]

DSn [t, i] := MIN

{
DSn−1 [t, i] + D̃n−1 [tn

f , •]
DSn [n, i] + D̃n[t, •]

If t is newly enabled.

DSn [i , t ] := DSn [i ,n] + tmax(t)

DSn [t, i] := DSn [n, i] − tmin(t)

To compute the minimum and maximum time dis-
tances of the sequence Sn

i we need to scroll up the path
starting from the node representing the class Ẽi to the
node representing the class Ẽn.

The algorithm starts at point (i) by computing
the elements DSi [i, t] and DSi [t, i]. After that, for
each intermediate node j ∈ [i + 1, n − 1], it proceeds
first to compute recursively the elements DSi [j, i] and
DSi [i, j] before DSi[i, t] and DSi [t, i]. Once the node
(n) is reached, it has only to determine the coeffi-
cients DSn [n, i] and DSn [i, n]. The latter are respec-
tively the opposite value of the minimal time distance
and the maximal time distance between the nodes (i)
and (n). However, it should be noticed that previous
values are over approximated relatively to the exact
graph GR, namely the interval [−DSn [n, i], DSn [i, n]]
that we compute with our algorithm embeds the exact
one. Moreover, the complexity of computing the last
interval depends on the length of the sequence (n− i),

and is assessed to o((n−i)×(m)) where m =
∑ n−1

j=i |Tej |
n−i

is the average number of transitions enabled for an in-
termediate node (j) in the sequence Sn

i .

The application of our technique to the example of
Figure.1 allows to check over any quantitative prop-
erty without requiring to exetend the original model
with an observer. By the way, it determines the same
WCRT for the previous property, namely 136 whatever
it is applied on the exact or the approximated graph.
Moreover, it should be noticed that the function DSn

can be saved along in the expression of a class which
makes it possible to check afterwards over any other
quantitative property without requiring further com-
putations.

5 Conclusion

We have proposed in this paper an algorithm mak-
ing it possible an efficient time analysis of the state
space of preemptive real time systems modeled using
Time Petri Nets with inhibitor arcs. For this effect, we
discussed how to determine from the reachability graph
linear and quantitative properties of the remote model.
Then, we have proposed an algorithm to compute an
approximation of the minimal and the maximal time
distances of any firing sequence. Contrarily to other
existing techniques, our algorithm enjoys a linear com-
plexity time cost and can be performed on the fly when
building the reachability graph without requiring to ex-
tend the original model with observers.
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