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Abstract: The field programmable gate array technology can design high performance system at low cost for wavelet 
analysis. Wavelet transform has gained the reputation of being a very effective signal analysis tool for much practical 
application. Implementation of transform needs the meeting of real-time processing for most application. The objectives of 
this paper are to compare the Haar and Daubeches technology and to calculate the bit error rate (BER) between the input 
audio signal and reconstructed output signal. It is seen that the BER using Daubechies wavelet technology is less than Haar 
wavelet. The design procedure is explained using the stat of art electronic design. Automation tools for system design on 
FPGA, simulation, synthesis and implementation on the FPGA technology has been carried out. The power hovmoller, cross 
wavelet spectra and coherence are described. A Practical step-up-step guide to wavelet analysis is given with examples taken 
from time series. The guide includes a comparison to the windowed Fourier transform. New statistical significance test for 
wavelet power spectra are developed by deriving theoretical wavelet spectra for white and red noise. Empirical formula is 
given for the effect of smoothing on significance levels and filtering. The notion of orthogonal no separable trivet wavelet 
packets, which is the generation of orthogonal university wavelet packets is introduced. A de-noising method based on 
wavelet packet shrinkage is developed. The principle of wavelet packet shrinkage for de-noising and the section of thresholds 
and threshold function are analyzed. 
 
 
1. Introduction  
 

Wavelet analysis is a common tool for analyzing the local variation of power within a time 
series by decomposing a time series into time frequency space. The process is able to measure both the 
dominant modes of variability and how those modes vary in time. Unfortunately, many studies using 
wavelet analysis have suffered from an apparent lack of quantitative results. The diffuseness has been 
exacerbated by the use of arbitrary normalization test. The transform of a signal is just another form of 
representing the signal. The wavelet transform provides a time frequency representation of the signal. 
It was developed to overcome the short coming of the short time Fourier transform, which can also be 
used to analyze no stationary signals. The STFT gives a constant resolution of frequencies for wavelet 
transform that uses multi-resolution technique by which different frequencies are analyzed with 
different resolution. 
 
           The energy with wavelet is concentrated in time or space are suited for analysis of transcend 
signals. The wavelet transform uses wave with finite energy. The analysis is done similar to the STFT 
analysis. The signal to be analyzed is multiplied with a wavelet function just as it is multiplied with a 
window function in STFT and then the transform is computed for each segment of generation. 
However unlike STFT in wavelet transform the width of the wavelet function changes with special 
component .The wavelet transform at high frequencies gives good time resolution and poor 
frequencies. Many signals like music, speech and images can be efficiently represented by wavelet that 
are translations and dilations of a single function called mother wavelet with band pass property. The 
motion of orthogonal wavelet packets which are used for shingling the generalized concept of 
orthogonal wavelet packets can be applied to the case of the spine wavelets and so on.  Since majority 
of information is multidimensional many researchers interest themselves in the investigation into 
multivariate wavelet theory. The classical method for constructing multivariate wavelets is that 
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3.2. Wavelet red noise spectrum 
 

The wavelet transform in equation (4) is a series of band pass filters of the time series. If this 
time series can be modeled as a lag-1 AR process, then it seems reasonable that the local wavelet 
power spectrum, defined as a vertical slice as in equation (13). To test this hypothesis, 100 000 
Gaussian white-noise time series and 100 000 AR (1) time series were constructed, along with their 
corresponding wavelet power spectra. The local wavelet spectra were constructed by taking vertical 
slices at time   n = 256. The lower smooth curves in Figs. 3a and 3b show the theoretical spectra from 
(13). The dots show the results from the Monte Carlo simulation. On average, the local wavelet power 
spectrum is identical to the Fourier power spectrum given by (13).Therefore, the lower dashed curve in 
Fig. 2 also corresponds to the red-noise local wavelet spectrum.  The average of all the local wavelet 
spectra tends to approach the (smoothed) Fourier spectrum of the time series.                        
 
 4. Extensions to wavelet analysis: 
 
 4.1. Filtering 
 

The wavelet transform in (4) is essentially a band pass filter of uniform shape and varying 
location and width. By summing over a subset of the scales in (9), one can construct a wavelet filtered 
time series . 

 
                            Fig.3(a,b) 
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