
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 2 Issue 2 Article 7

April 2011

Distributed Computing for Ubiquitous Systems Distributed Computing for Ubiquitous Systems

Mona Mani
Ghaziabad, Uttar Pradesh, India, monachristian@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Mani, Mona (2011) "Distributed Computing for Ubiquitous Systems," International Journal of Computer
and Communication Technology: Vol. 2 : Iss. 2 , Article 7.
DOI: 10.47893/IJCCT.2011.1080
Available at: https://www.interscience.in/ijcct/vol2/iss2/7

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol2
https://www.interscience.in/ijcct/vol2/iss2
https://www.interscience.in/ijcct/vol2/iss2/7
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol2/iss2/7?utm_source=www.interscience.in%2Fijcct%2Fvol2%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Distributed Computing for Ubiquitous Systems

Distributed Computing for Ubiquitous Systems

Mona Mani
Ghaziabad, Uttar Pradesh, India

monachristian@gmail.com

Abstract—Distributed computing provides a strong foundation
on top of which a powerful ubiquitous system can be realized.
However, distributed computing is not solely sufficient for the
ubiquitous systems –a completely new era of computer world
which is not based on the conventional mainframes or PCs but
on the virtually intelligent silent objects/devices used for day-
to-day human activities. This article de scribes basics of
ubiquitous systems at introductory level and discusses
developing a ubiquitous system as an extension to DIICS
(Distributed Intelligent Instrument Control System) – a
temperature monitor and control system developed by t he
author. Moreover, it also discusses significant role of Tini
InterNet Interface - a technology used in DIICS, for embedded
device support in ubiquitous systems. It also discusses how
distributed system fundamentals best fits for ubiquitous
systems. Furthermore, it discusses various distributed system
goals and specifies how these goals can contribute to
ubiquitous systems solely or partially. It also specifies
respective changes, and demand for new or adapted
architecture/platform, to accommodate it for an efficient
ubiquitous system. Towards the end it describes Remote
Process Call (RPC) and Event Notification model, two
powerful distributed system techniques.

Keywords-Distributed computing, Ubiquitous systems, Calm
technology, Distributed system goals, RPC, Event Notification
model

I. INTRODUCTION

Ubiquitous technology is a third important era in the
world of computer technology [1]. In the realm of man and
machine utilization, Mainframe, the first era involves so
many people interacting with a single computing unit,
followed by the second paradigm of personal computing
where a human interacts with machines which works in
unnatural way to the human being. Human Computer
Interaction comes with an aid to accommodate the system as
much as possible to the natural human tendencies. However,
as a revolutionary approach, a ubiquitous system comes up
with an idea of an omnipotent system virtually invisible
through its integration with day-to-day objects. It provides an
environment where everyday objects are made smart enough
to sense and response human presence and activities in the
most humanistic way.

As specified in the Wikipedia, Ubiquitous computing
(ubicomp) is a post-desktop model of human-computer
interaction in which information processing has been
thoroughly integrated into everyday objects and activities. A
person does ordinary activities using ubiquitous system made
up of various computational devices in the form of ‘smart’

daily objects. [2]. The idea of ubiquitous computing as
invisible computation was first articulated by Mark Weiser
in 1988 at the Computer Science Lab at Xerox PARC [3].

Ubiquitous Computing as being a pervasive and
omnipotent system may include anything and everything like
home environment monitoring and controlling for variables
like temperature, humidity, water capacity and level,
pressure etc, kitchen auto inventory-purchase system
management, food menu generator based on items
availability, human identification and home security system,
smart car, smart watch etc. Mark Weiser, the father of the
Ubiquitous Computing well describes it with a virtual
scenario of a smart home environment in “The Computer for
the 21st Century” [4]. He also highlights the revolutionize
power of ubiquitous computing in changing the
fundamentals of the digital world and its influence on human
lives by saying “Neither an explication of the principles of
ubiquitous computing nor a list of the technologies involved
really gives a sense of what it would be like to live in a world
full of invisible widgets”.

II. UBIQUITOUS SYSTEM AS AN EXTENSION TO DIICS
Ubiquitous space at a broad and general scale can think

of as a core user’s home, office and other remote locations
dispersed globally. The ubiquitous system can think of as
three integration levels as specified below,

1.1 Design and deployment of Smart components
corresponding to daily human factors.
1.2 Integration and communication among this smart
components distributed in small proximity of home/office.
1.3 Home/office components interacting with outside world.

The author has developed DIICS - an N-tire temperature
monitoring and control system stepping parallel to the kind
of applications that comprehend with the social and
industrial demands for security systems, equipment
automation, smart and entertaining home appliances, and
environmental control systems. Integrated technologies,
Distributed computing and embedded device support through
Tini Internet Interface (TINI) [5], used in DIICS provides a
powerful platform covering 1.1, 1.2 and 1.3 efficiently. TINI
- a chip set developed by Dallas Semiconductors is a
powerful tool with hardware as well as software support to
design and deploy a wide verity of ‘smart’ devices.
Considering DIICS as one of the units/sub-modules and
extending it by adding various task specific modules
corresponding to various human operations provide means to
materialize a ubiquitous system.

107

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

ECG QRS Enhancement Using Artificial Neural Network

Figure 1: DIICS Architecture

RMI
server

DB
server

Client 1

Client n TINI chip set N with
Embedded sensors

TINI chip set 1 with
Embedded sensors

TINI chip set 2 with
Embedded sensors

Fig. 1 shows the DIICS n-tire client-server architecture
where RMI (Remote Method Invocation) server serves
central role for distributed computing and TINI is an
embedded device technology to incorporate non-network
type devices/sensors as network entities into the system
network. Fig. 2 shows a ubiquitous architecture which is an
extended approach to the DIICS architecture. A ubiquitous
system can have client-server architecture with a hidden
master system/server or else it can have a P2P architecture
where all network entities are in equal level relationships
without any master system over them.

A ubiquitous system needs a number of interaction
screens generally for user interaction to serve input and/or
information presentation in the most humanistic way.
Location or position of these screens may vary depending
upon the context. For example, a digital calendar can be
mounted on wall or desktop; a door can have a security
screen; a considerably big screen can take its place on room
wall for weather information, stock exchange information or
some entertainment touch screen tool; the master bed room
may have a screen specifying position and activities or video
streaming of children or other family members; the kitchen
may have single or multiple different size screens to take
cooking or cleaning instruction; some device/equipment
mounted screens etc. A ubiquitous system may have
different strategies for activation/deactivation of the screens
like all-time visible, pop up screens based on current context
with respect to environmental or external factors. More
specifically, ubiquitous system entities based on its work-
load distribution with respect to functional, presentation and
data management for context awareness can be classified as,

1) Exclusive for presentation
2) Fully task performing
3) Task performing with presentation/interaction.

This ubiquitous characteristic best fits with that of the
client-server architecture, well defined as “Client-Server is a
special type of co-operative distributed computing
architecture as the client(s) and server(s) co-operate to
perform the total application by distributing its presentation,
functional and data management tasks” [6].

Fig. 1 shows basic client-server communication model.
Clients are generally requestors mainly dealing with the data
presentation and servers are generally dedicated to be ready
to accept the client requests, to perform the actions for the
request and to send the reply back. Clients and servers can be
located on the same processor, different multi-processor
nodes, or on separate processors at remote locations. The
client server architecture must have at least one client and
one server. There can be more than one client and/or more
than one server. In the multi server system each server
generally stands for some task specific services.

Ubiquitous entities solely dedicated for presentation can
serve as ‘Thin client’ client-server architectural approach. As
specified on Wekipedia, “A thin client (sometimes also
called a lean or slim client) is a computer or a computer
program which depends heavily on some other computer (its
server) to fulfill its traditional computational roles” [7].
Some ubiquitous presentation screens may require being
intelligent enough to perform entry level validations or being
extra intelligent functional entities leaving only data
management on server known as database server.

 A ubiquitous entity dedicated for application business
logic can serve as an application server providing 3-tire
architecture of presentation units, an application server and a
database server as a whole. Ubiquitous system utilizes
embedded system, where one or more entities can be fully
dedicated to serve the central role to back the embedded
system functional requirements. For example, in a TINI
oriented embedded system, a ‘TINI server’ can play the
central role in providing embedded device management
system. A ubiquitous system can have an embedded device
server in addition to presentation units/clients, one or more
application servers, and one or more database servers.

Though TINI and similar technologies provide support to
design and deployment of a vast range of equipments, a huge
range of daily use objects/functioning is awaiting to
incorporate them ‘smartly’. Also, a ubiquitous oriented
master system/platform at operating system, middleware,
and application level for integration and communication can
serve as a powerful development tool.

III. DISTRIBUTED SYSTEM FUNDAMENTALS AND
UBIQUITOUS SYSTEM

A distributed system is a coherent collaborative system
of integrated computer entities that performs distributed
computing in which computer entities work together
collectively to achieve an on-demand task. Wikipedia
specifies, “A distributed system consists of multiple
autonomous computers that communicate through a
computer network. The computers interact with each other in
order to achieve a common goal” [8]. Also, “Distributed
computing is the process of aggregating the power of several
computing entities to collaboratively run a single
computational task in a transparent and coherent way, so that
they appear as a single, centralized system”[9], and
“Distributed computing is a programming model in which
processing occurs in many different places (or nodes) around
a network. Processing can occur wherever it makes the most
sense, whether that is on a server, personal computer,
handheld device, or other smart device” [10].

Figure 1: Basic Client/Server Communication Architecture [6]

108

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

Distributed Computing for Ubiquitous Systems

Chip sets
with

processing unit,
local

programmed
and/or

programmable
memory, sensors
or specific h/w...

Commo
n

memory

Common
processing

units

I/O interfaces

Ubiquitous
network

Figure 2: Ubiquitous Network

IV. PREPARE YOUR PAPER BEFORE STYLING

An important characteristic of a distributed system is to
provide a single coherent system utilizing total power of all
the available resources at a time. Ubiquitous network
includes a large number of smart devices, dedicated for
specific tasks oriented design and functionality which is
different than that of other devices. Due to this unique
characteristic devices may not be compatible to perform a
collaborative task. The most basic characteristic of
collaborative task performance does not sound suitable for
ubiquitous network of high diversity over task-specific
unique devices, then why to park ubiquitous systems on top
of distributed systems?

Mark Weiser, the father of ubiquitous system emphasizes
on the need of working towards the unique capability of
physical diversity, saying, “Trends in "distributed
computing" are to make networks appear like disks, memory,
or other non-networked devices, rather than to exploit the
unique capabilities of physical dispersion. The challenges
show up in the design of operating systems and window
systems” [4].

The most significant requirement of ubiquitous systems
is the realization of such heterogeneous system. Distributed
system’s powerful feature of efficient performing over the
heterogeneity can serve as the basics of ubiquitous systems.
Piece of software performing operating system (and/or
middleware) can be realized to manage the network diversity
and to provide a repository of devices available to perform
on-demand collaborative task at a time.

V. DISTRIBUTED SYSTEM GOALS AND UBIQUITOUS
TECHNOLOGY

Features like transparency, scalability, fault tolerance etc
serves the basics of ubiquitous systems. This section includes
discussion for their intact or adaptive usefulness to the
ubiquitous systems.

A. User Connectivity and Resource Sharing
Distributed systems aims to connect various users and

provide them an easy and controlled way to access and share
various resources transparently. When it comes to the user
connectivity, Ubiquitous system is fundamentally different

with the basic aim of emphasizing on the day-to-day
functions of a single or a group of persons’ life style. It
mainly deals with the connectivity of the smart and unique
devices which are different than mainframe/PC. All
components of a Mainframe/PC enters in on/off state
through a single switch event, but ubiquitous
subunits/devices requires activation/deactivation as and
when required based on some real time parameters or events
than the whole system at a time. Ubiquitous system features
a highly dynamic special kind of ubiquitous space, and thus
resource management based on connectivity and sharing of
smart heterogeneous task oriented devices, can be one of the
major goals of a ubiquitous system.

A TINI with its basic characteristic of providing a task-
oriented network entity with unique identification through
Ethernet address with IEEE registered MAC ID can serve
vital role by providing mechanisms for an efficient
ubiquitous network/space management system. TINI enables
easy addition/removal and activation/deactivation at
subunit/equipment level. Distributed systems which allow
pooling of the resources including CPU cycles, data storage,
I/O devices can be utilized as an efficient platform to realize
resource management.

Fig. 3 shows user connectivity in DIICS. In a client-
server based ubiquitous system request generated by an
entity, based on user interaction or some internal/external
change factors can be served by a server(s) through calls or
callbacks. Callbacks are a high level depiction of event-
notification model explained in section 6.

B. Scalability
Scalability is a term used to measure system expansion-

extension capacity. Tanenbaum (1985) citing Neumann [11]
defines three different scales to find the scalability of a
system. First measure to find system scalability is size
scalability that how easily more users and resources can be
added to the system. Second, a geographically scalable
system is one in which the users and resources may lie far
apart. The third measure is the administrative scalability to
find how easily the system still can be managed even if it
spans many independent organizations. However
unfortunately, system often exhibits loss of performance as
the system scales up in one or more of these three
dimensions.

Figure 3: DIICS connectivity and sharing

RMI
Serv

er

Clie
nts

Register/deregister and other
information passing calling remote

method on server

Temperature
violation alerts
through Java

Temperature
samples

through Java messa
ges

109

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

ECG QRS Enhancement Using Artificial Neural Network

A distributed system design for Local Area Network
(LAN) that uses synchronous communication is difficult to
scale geographically into a Wide Area Network (WAN)
distributed system which requires asynchronous
communication. Also, for the application demand where
further processing depends on the result/outcome of the
current request synchronous communication is inefficient.

A ubiquitous system where daily human
operations/functioning are the foremost priority, home/office
centric LAN communications are likely to be at considerably
high frequency. At the same time, it would be a short vision
to think a ubiquitous system limited to a small proximity like
a house, in today’s world of globalization where a life style
is greatly involved in the long distant social, business,
entertainment, tours and travel etc. affairs. Considering a
general scenario where most of the operations/events are
local home/office centric and the core user utilizes various
service utilities for global activities, a ubiquitous system
generally requires high frequency short distance, as well as
global communications. However, the frequencies of local
communication and global communication are highly human
life style centric depending on various personal, social,
regional, cultural etc aspects. These aspects require
ubiquitous system to emphasis more on networking and
communication architectures that provides efficient local as
well as global both communications than on the geographical
scaling.

Analysing target users’ communication frequencies
categorised in in-house, remote-LAN and global-WAN helps
realizing efficient communication architecture and/or to
accommodate it to the application specific requirements. For
the systems where such analysis can not be done/predicted in
prior, a real-time efficient and intelligent communication
system, which can sense/analyze on-demand communication
type and deploys synchronous or asynchronous
communication with batch processing and parallelism, is
required to serve the purpose. Replica and cashing are such
related communication issues that come into the
considerations for various applications.

A local ubiquitous system is less difficult to scale at
administrative level, but administrative standardization and
scaling for a system based on various communities diverse
over various cultures and regions is difficult over global
perspectives. It may conflict with different issues like
policies regarding resource usage, management and security.

Size scaling, in a ubiquitous system where addition of
new nodes is all to gather a new approach, is an important
goal as its components are apart from the conventional frame
of nodes/computers. Architecture must provide easy ways to
change the physical level without need of much change in
the logical view or business logic. As discussed in the
section III.A, A TINI with its basic characteristic of
providing a task-oriented network entity provides scalability
via easy addition/removal of any unit/equipment.

C. Transparency
Distributed system aims transparency by providing its

users a view of a single coherent system hiding the
underneath complexity. At programming level, object
oriented programming languages like Java simplifies the
development of distributed ubiquitous system with powerful
features like transparency and openness. A ubiquitous

system can utilizes advantage of transparency. In addition to
that, a ubiquitous system also known as Calm technology,
aims to provide a virtually natural system by hiding the
awareness of the fact of the machines being used can also be
thought of as a transparency at different level. This can be
achieved through making day-to-day equipments/objects
smart. Applicability of distributed system and TINI
embedded device which supports distributed computing has
been discussed in various sections of this article. A number
of basic transparencies for distributed systems, defined by
Tanenbaum and Renesse [11], can further be explored with
respect to ubiquitous systems.

D. Openness

Tanenbaum and Renesse defines open distributed systems
as, “An Open Distributed System is a system that offers
services according to standard rules that describe the syntax
and semantics of those services” [11]. Openness can be a
powerful tool in development of an efficient ubiquitous
system. Moreover, standardization and compatibility
supporting design, development and deployment of daily
human operation based components can serve vital role
providing interoperable, portable, flexible, and scalable
(shrinking and expansion both) ubiquitous system. Standard
task specific components, based on various lifestyle factors
like personal, social, regional, cultural etc, can allow users
to choose their own specifications to construct or to scale a
ubiquitous system.

E. Fault Tolerance

As defined by Gartner, “The term fault is usually used to
name a defect at the lowest level of abstraction, e.g., a
memory cell that always returns the value 0” [12]. As
ubiquitous systems aims usability of daily human life
operations, some components like fire alarm, security
systems etc that deals with the life and death of human
beings must be fault tolerant. Fault tolerance over specific
components rather than entire system will serve as an
efficient approach. Fault tolerance of a ubiquitous system
should be flexible enough to accommodate it according to
application needs without much changes in respective other
views of physical, logical or business logic. As discussed in
the section III.A, A TINI with its basic characteristic of
providing task-oriented network entities facilitates to
provide support to fault tolerance at unit/equipment level.

VI. REMOTE PROCEDURE CALL – A DISTRIBUTED
COMPUTING COMMUNICATION TECHNIQUE

Providing high degree of transparency to it programmers
RPC looks like an IPC (Inter Process Communication) made
on the same/local computer hiding the complexity of remote
communication. Network communication in a distributed
system occurs through RPC. Wikipedia defines RPC as,
“Remote Procedure Call (RPC) is a protocol that allows a
computer program running on one computer to cause a
subroutine on another computer to be executed without the
programmer explicitly coding the details for this interaction.
When the software in question is written using object-
oriented principles, RPC may be referred to as remote
invocation or remote method invocation” [13].

110

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

Distributed Computing for Ubiquitous Systems

Traditionally RPC is a synchronous operation in which
the client procedure will be suspended until the remote
procedure returns result/status data. In addition to
transparency, it also provides another powerful feature of
concurrency through asynchronous lightweight processes
known as threads.

Fig. 4 shows RPC functioning, where RPC stub
comprising of client stub module and server stub module
initiates a RPC requests, builds the messages through coding
and encoding of arguments/return values of message
calls/replies. Registry known as binding server/agents binds
client and server and serves the need for locating the server
for a client’s RPC request.

Fig. 5 shows RPC process. Following are the steps in a
typical processing cycle.

1. Client procedure calls client stub in normal way
2. Client stub builds message by marshalling the call

parameters in to the partially filled header packet
buffer obtained by client procedure.

3. The RPC run time obtains the remote object
reference and calls the local Operating System
(OS).

4. The client’s OS sends the message to the remote
OS using the remote object reference.

5. The server OS sends the message to the server
stub.

6. The server stub unpacks the parameters and calls
the server.

7. The server executes the procedure and sends the
result back to the server stub.

8. Server stubs packs the result/status data and sends
the built message to the local OS.

9. The server OS sends the result message to the
client OS.

10. The client OS gives the message to the client stub.
11. The client stub unpacks the result message and

sends the result to the client.

VII. EVENT AND NOTIFICATION MODEL IN RPC
Traditional RPC communication mechanism, also known

as Polling is inefficient for the applications where client
(service requestor) is required to contact the server (service
provider) contiguously to get information updates. Output
units like LCDs/PDAs in a ubiquitous system may frequently
require to be updated based on some internal/external
information source. With the traditional approach, in such
type of applications, clients can be implemented with an
infinite loop prompting the server after a specified quantum
of time. A small quantum may end up with a client
requesting and/or updating the unchanged information
unnecessary, and a large quantum may insert a delay in
keeping the client up to date for the information change,
possibly leading to a serious inconsistency. An efficient
approach is to implement a mechanism through which the
server sends information updates to the clients whenever
information change occurs. The basic idea is to reflect a set
of remote objects based on object changes occurring through
some external/internal source. Publishers-Subscribers
concept based Events and Notification model implements
this functioning.

VIII. CONCLUSION

N-tire Client-server based distributed architecture best
fits for the ubiquitous requirement of work load distribution
at functional, presentation and data management level among
various network entities. Network diversity and, resource
management based on connectivity and sharing of smart
heterogeneous task-oriented devices, are crucial aspects of
ubiquitous systems. Distributed systems, with its powerful
features like efficient functioning over heterogeneous
network with transparency, builds the basics of ubiquitous
systems. TINI, with its basic characteristics of embedding
non-network type devices as unique network entities,
provides an efficient resource management systems
supporting easy addition/removal or activation/deactivation
of various task-oriented units/equipments. Openness with
standardization and compatibility supporting design,
development and deployment of daily human operation
based components can serve vital role providing
interoperable, portable, flexible, and scalable (shrinking and
expansion both) ubiquitous system. Fault tolerance over

Figure 4: RPC Architecture [14]

Figure 5: RPC Process [14]

111

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

ECG QRS Enhancement Using Artificial Neural Network

specific components rather than entire system is a ubiquitous
requirement and can be efficiently achieved though TINI or
similar embedded device technologies. An architecture
supporting size scaling as well as flexibility over
choosing/changing task specific components without need of
much change in the logical view or business logic is also one
of the ubiquitous requirements and can be served efficiently
using TINI or similar embedded technologies. A real-time
intelligent communication system, which can sense/analyze
on-demand communication type (based on geographical
distance) and deploys synchronous or asynchronous
communication with batch processing and parallelism, can
provide an efficient network communication.

REFERENCES

[1] Wieser, M (March 1996) Ubiquitous Computing PARC available at,
http://sandbox.xerox.com/ubicomp/ (Accessed 15 May 2010)

[2] Wikipedia, (2010) Ubiquitous Computing Available at:
http://en.wikipedia.org/wiki/Ubiquitous_computing (Accessed 15
April 2010)

[3] Vdict (2010) Ubiquitous Computing available at:
http://vdict.com/ubiquitous%20computing,6,0,0.html (Accessed 20
May 2010)

[4] Wieser, M (September 1991) The Computer for the 21st Century
Available at:
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

[5] Dallas (2007) Getting Started With TINI, Available at:
http://www.maximic.com/products/tini/

pdfs/TINI_GUIDE.pdf (Accessed: 25 June 2010).
[6] The Open Group (2006) Client/Server Model [online] UK:TOGAF

information web site Available at:
http://www.opengroup.org/architecture/togaf8-
doc/arch/p4/views/vus_comp.htm [Accessed 2 July 2010]

[7] Wikipedia (2010) Thin Client Available at:
http://en.wikipedia.org/wiki/Thin_client (Accessed 02 July 2010)

[8] Wikipedia (2010) Distributed Computing Available at:
http://en.wikipedia.org/wiki/Distributed_computing (Accessed 15
February 2010)

[9] The Chemistry Encyclopedia (2010) Distributed Computing
Available at:
http://chemistrydaily.com/chemistry/Distributed_system [Accessed
17 March 2010]

[10] Microsoft Corporation (2001) Distributed Computing Available at:
http://docs.msdnaa.net/ark/Webfiles/glossary.htm [Accessed 10 Dec
2009]

[11] Tanenbaum, A. S. and Renesse, R. (1985) Distributed Operating
Systems 1st Ed. U.S.: Prentice Hall. [Accessed 25 JUNE 2010]

[12] Gartner, F. C. (1999) Defining Faults and Fault Models [online] USA:
ACM Computing Surveys Available at:
http://www.cs.nyu.edu/courses/fall05/G22.2631-001/survey.pdf
[Accessed 27 June 2010]

[13] Wikipedia (2010) Remote Procedure Call Available at:
http://en.wikipedia.org/wiki/Remote_procedure_call (Accessed 15
February 2010)

[14] Microsoft (2003) RPC Architecture [Online] USA: Microsoft TechNet
Available at:
http://technet2.microsoft.com/WindowsServer/en/Library/4dbc4c95-
935b-4617-b4f8-20fc947c72881033.mspx?mfr=true [Accessed 28
June 2010]

112

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

	Distributed Computing for Ubiquitous Systems
	Recommended Citation

	Distributed Computing for Ubiquitous Systems

