
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 1 Issue 4 Article 13

October 2010

Evaluating XPath Expressions on Light Weight BitCube Evaluating XPath Expressions on Light Weight BitCube

Mrs. Pranali P. Chaudhari
Lecturer, I.T. Department Maharashtra Academy of Engineering, Alandi (D), Pune.,
pranalichaudhari@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Chaudhari, Mrs. Pranali P. (2010) "Evaluating XPath Expressions on Light Weight BitCube," International
Journal of Computer and Communication Technology: Vol. 1 : Iss. 4 , Article 13.
DOI: 10.47893/IJCCT.2010.1060
Available at: https://www.interscience.in/ijcct/vol1/iss4/13

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol1
https://www.interscience.in/ijcct/vol1/iss4
https://www.interscience.in/ijcct/vol1/iss4/13
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol1%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol1/iss4/13?utm_source=www.interscience.in%2Fijcct%2Fvol1%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Evaluating XPath Expressions on Light Weight BitCube

Evaluating XPath Expressions on Light Weight
BitCube

Mrs. Pranali P. Chaudhari
Lecturer, I.T. Department

Maharashtra Academy of Engineering,
Alandi (D), Pune.

Email: pranalichaudhari@gmail.com
Mob: 09822357650

ABSTRACT- XML has become a popular way of
storing data and hence has also become a new
standard for exchanging and representing data on
internet. Many techniques have been proposed for
indexing and retrieval of XML documents such as X-
Tree, BitCube. In this paper a indexing structure
known as Light Weight BitCube is proposed. LWBC
is an extension to the earlier BitCube technique
which overcomes the memory management problem
of BitCube while maintaining the same query
processing efficiency as that of BitCube. Many
XPath expressions and BitCube operations are
evaluated on this LWBC to show the query
processing efficiency. The results are also compared
with XQEngine, a well known XML Query
Processing Engine. The results also show that, Light
Weight BitCube manages memory much more
efficiently than the BitCube, without compromising
on the query processing time.

Keywords: Light Weight BitCube, Bitwise
Operations, Indexing XML Documents

1. INTRODUCTION
"Information Retrieval deals with the representation,
storage and organization of, and access to
information items. The representation and
organization of the information items should provide
the user with easy access to the information in which
he is interested." [4]. Given the user query, the key
goal of an IR system is, thus, to retrieve information,
which might be useful or relevant to the user.

A majority of traditional business applications,
transactional systems and enterprise applications rely
on relational databases to maintain their data. But
now a days we are having lots of medias such as
portals, knowledge based systems, emails etc , for
getting information or communication thus a typical
organization’s enterprise information is no longer
maintained as structured data alone. Typically,
structured data are the data with a repeated structure
that can be easily stored in the data tables of a

relational database. Semi-structured databases [1],
unlike traditional databases, do not have a fixed
schema known in advance. The eXtensible Markup
Language (XML) [3] is a commonly used data
modeling technique for such data.

The representation of documents in XML paved
way for the possibility of content based retrieval. The
widespread use of XML in digital libraries, product
catalogues, scientific data repositories and across the
web prompted the development of appropriate
searching and browsing methods for XML
documents. As enterprise applications (or, web
services) continue to build upon XML, it is critical
that they include a search functionality that is fully
compatible with XML. In order to optimize query
processing, the data need to be organized (indexed) in
a way that facilitates efficient retrieval. Without
indexes, the database may be forced to conduct a full
data scan to locate the desired data record, which can
be a lengthy and an inefficient process. There is an
urgent need for an XML indexing and retrieval
technique that aids in efficient query processing.

The rest of the paper is organized as follows.
Section 2 describes some of the related work in this
area. Section 3 provides introduction to bitmap index
and BitCube, the earlier indexing techniques and
some preliminary operations performed on BitCube.
In Section 4 the proposed indexing approach is
described. In section 5, experimental results on the
approach and their comparison with previous
approaches are mentioned. Section 6, summarizes the
results of the study and draw conclusions and the
potential future work in this area.

2. RELATED WORK
The conventional techniques used for document
retrieval systems include stop lists, word stems, and
frequency tables. The words that are deemed
“irrelevant” to any query are eliminated from
searching. The words that share a common word stem
are replaced by the stem word. A frequency table is a

293

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-1, Iss-4

Evaluating XPath Expressions on Light Weight BitCube

matrix that indicates the occurrences of words in
documents. The occurrence here can be simply the
frequency of a word or the ratio of word frequency
with respect to the size of a document.

However, the size of frequency table increases
dramatically as the size of the document database
increases. To reduce frequency tables, the latent
semantic indexing (LSI) [5] technique has been
developed LSI retains only “most significant” of the
frequency table.

Commercial database supports various types
of indexes such as B+ trees, hash indexes, signature
files, inverted files [1, 2]. These indexing techniques
can be evaluated based on access/insertion/deletion
time and disk-space needed. The above Indexing
techniques, from the database and information
retrieval communities, however, are still not
satisfactory. It is partly because they cannot scale
much beyond their current point to larger collections
and partly because semantic and structural
equivalencies are not efficiently checked and
maintained in the indexes.

Index structures for semi-structured data
have been developed in recent years. Examples of
such indexes for semi-structured data are XQEngine
[10], Dataguides [9], Toxin [7] and ViST[8]. A new
data structure, called X-tree [6], has been introduced
for storing very high dimensional data.

To overcome the problem of efficiently
managing large collections of XML data, a technique
called bitmap indexing was proposed by researchers
which are used to optimize queries. The collection of
bitmaps in a bitmap index [12] forms a 2-dimensional
bit matrix. Later a 3-dimensional bit matrix is
proposed known as BitCube, [11] on which bitwise
logical operations are performed. A BitCube is
conceptually defined to store information in the form
of bits pertaining to the existence of relationships
between documents, paths and words. It supports bit
wise operations to handle various types of queries
and this is what makes it highly efficient in terms of
query processing. In spite of this advantage, it
consumes large volumes of memory.

Again an extension to BitCube a indexing
structure known as Quasi BitCube[13] was also
introduced in which the density of XML document is
first calculated and then the document having the
highest density is placed at the bottom of the
BitCube. This process is known as document
ordering. Then by chopping the above zero bits the
size of the BitCube is reduced.

In this paper the indexing structure known
as Light Weight BitCube is introduced which is
similar to the Quasi-BitCube proposed earlier but
here no density calculations are involved rather the
size reduction is achieved using the BitSet data
structure which automatically ignores the top and the
bottom zero bits. Light Weight BitCube manages
memory much more optimally and at the same time
retains the same query processing efficiency of a
BitCube. I compare the new indexing time and size
with an earlier work that uses BitCube [11]. I have
compared the indexing structure with XQEngine
[10], which is an open-source native XML database
engine, and the traditional approach of indexing.
From the retrieval perspective, also a comparison
with query processing time of the new index
enhancement schemes with BitCube and XQEngine
for different types of Xpath expressions is given.

3. PRELIMINARIES

3.1 Bitmap Index:

An XML document is defined as a sequence of
ePaths with associated element contents. An XML
document database contains a set of XML
documents. A bitmap index is 2-dimensional [12]. In
a document-ePath bitmap index, a bit column
represents an ePath, and a row represents an XML
document. XML database can be given as :

Figure 1. XML Documents Database

For the above XML database the epaths are defined
as :

p0 = e0.e1, p1 = e0.e2.e3, p2 = e0.e2.e4, p3 =
e0.e2.e5, p4 = e0.e2.e6, p5 = e0.e2.e7, p6 = e0.e8,
p7=e0.e9.

294

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-1, Iss-4

Evaluating XPath Expressions on Light Weight BitCube

Depending on these epaths for various
documents d1, d2, d3 a bitmap index is constructed.
If a document has ePath, then set the corresponding
bit to 1.Otherwise, all bits are set to 0. Thus bitmap
index is given by:

Figure 2. Bitmap Index

3.2 BitCube:

A BitCube for XML documents is defined as
BitCube = (d, p, v, b), where d denotes XML
document, p denotes ePath, v denotes word or
content for ePath, and b denotes 0 or I, the value for a
bit in BitCube (if ePath contains a word, the bit is set
to 1, and 0 otherwise).

Figure 3. BitCube

Above figure shows a BitCube for k documents. Each
document has a set of ePaths.

3.3 BitCube Operations:

There are three operations defined on
BitCube. These operations after appling on a BitCube
give us a bitmap index.

1. ePath Slice.
2. Word Slice.
3. Document Project.

3.3.1 ePath Slice :

Each bit for a particular ePath is sliced. This
operation takes a Path as input and returns a set of
documents with words associated with it.

 P-Slice(ePath) = {(doc, word) I ePath is
used in doc, and word is associated with the ePath}.

The outcome of this slicing is a bitmap
index that represents a set of documents with a set of
words. Typical web searches may not possible for
ePath.

3.3.2. Word Slice :

Each bit for a particular word can be sliced.
This operation takes a (search key) word as input and
returns a set of documents.

W-Slice(word) = {(doc, ePath) 1 word is
associated with the ePath which is in turn used in
doc}.

The outcome is a bitmap index that
represents a set of documents with a set of ePath with
which the word is associated. Typical web searches
are based on this word slice operation if they search
XML documents.

3.3.3. Document Project :

Each row of a BitCube can be projected.
This operation takes a document as input and returns
a set of ePaths with words associated with those
ePaths.

Project(doc) = {(ePath, word) I entire
content and ePath pairs appeared in doc}

The outcome is a bitmap index that
represents a set of ePaths with their content (or
words). A typical method for this project operation is
a web browsing.

4. LIGHT WEIGHT BITCUBE:

As discussed earlier An XML document is defined as
a set of (e,w) pairs, where e denotes an element path
and w denotes a word in a path. Light Weight
BitCube is an extension to BitCube technique that
retains many of its powerful features and at the same
time has a lot more structural advantage. The main
advantage of a BitCube (Light Weight BitCube) lies
in its high-speed query processing ability.

Construction of Light Weight BitCube
consists of three main steps: i. Construction of
Bitmap Index, ii. Construction of BitCube, iii.
BitCube Reduction. The main system architecture of
constructing a Light Weight BitCube is shown below:

d

d

d

P

11

1

P

1

1

1

1

1

P

1 1

0

1

P P

0

0

P

0

1

0

P

0

1

0 1

0

0

P

1

295

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-1, Iss-4

Evaluating XPath Expressions on Light Weight BitCube

Figure 4. System Architecture

The BitCube structure is sparse. There is a documents
bit vector (dbv) for each (e,w) pair. The bit is SET if
the (e,w) pair exists in the corresponding document
and RESET otherwise. In a real-time environment, it
is very unlikely that a document will contain all the
paths and the words contained in all the other
documents. This means that numerous bits towards
the top of each documents bit vector are consuming
space and are superfluous (see Figure 5).

Figure 5. a. Original Bit Vector b. Reduced Bit
Vector after removal of upper zero bits

The main characteristics of Light Weight BitCube
index structure can be summarized as follows:
i. Simple structure
ii. Memory efficient structure
iii. Efficient query processing due to bit-wise
operations

5. EXPERIMENTAL RESULTS

5.1 Experiment I (Space Measurement):

This experiment was performed to measure the
effectiveness of the Light Weight BitCube index
structure by comparing its memory size and index
time with that of the BitCube for different data sets.

Figure 6. Memory Consumption

The index times of both the structures were about the
same. Thus, when compared to BitCube, the Light
Weight BitCube structure saves significant amount of
index memory without compromising on the
indexing time.

5.2 Experiment II (Query Processing Efficiency
Measurement)

This experiment was performed to measure the
retrieval efficiency of the Light Weight BitCube
index structure by comparing it with BitCube and
XQEngine for different types of query operations.

The query processing time for two different
operations: word slice, path slice is compared. A path
slice takes a path as input and returns a set of
documents with words associated with the given
path. A word slice takes a word as input and returns a
set of documents with paths associated with the given
word.

0

0

0

1

1

0

1

1

0

1

0

0

1

1

0

1

Removal of upper
zero bits from the
bit vector

(a) (b)

Memory Consumption

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8

No of Documents
M

em
or

y

Bitcube
Reduced Bitcube

296

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-1, Iss-4

Evaluating XPath Expressions on Light Weight BitCube

WordSlice Operation

0

5000

10000
15000
20000

25000

30000

35000
40000

1 2 3 4 5 6 7 8

No of Documents

Ti
m

e
(M

ili
Se

co
nd

s)

Xqengine
Bitcube
Reduced Bitcube

Figure 7. Word Slice Comparisons

PathSliceOperation

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8

No of Documents

Ti
m

e
(M

ili
Se

co
nd

s)

Xqengine
Bitcube
Reduced Bitcube

Figure 8. Path Slice Comparisons

The results show that the query processing
using Light Weight BitCube is at least as efficient as
BitCube for all the two types of query operations.
The average word slice time of Light Weight
BitCube and BitCube remains constant (0 ms) with
the increase in the size of the document collection.

In the case of XQEngine, the word and path
slice (equivalent Xpath expressions) times increase
linearly with the increase in the size of the document
collection, which shows that the query performance
of Light Weight BitCube is significantly better than
that of XQEngine.

5.3 Experiment III (XPath Expression
Evaluation)

The test cases given below are performed for testing
the performance of Light Weight BitCube. Following
test cases are tested on eight xml files each greater
than 3 MB size. Various Xpath expressions are
evaluated and the time for processing those
expressions, in milliseconds is observed for both

XQEngine and Light Weight BitCube. Also some
additional Xpath expressions are included which are
not supported by XQEngine.

Table 1. Xpath Expression Evaluation
Comparison

6. CONCLUSION AND FUTURE WORK

Light Weight BitCube, a memory efficient indexing
scheme extended from BitCube, is proposed in this
paper. Since the information stored is in the form of
bits, the entire index structure fits into the main
memory and hence I/O operations are no longer a
concern during information retrieval. Results show
that Light Weight BitCube manages memory much
more effectively and at the same time retains the
same query processing efficiency of a BitCube. The
execution time of Light Weight BitCube for different
query operations is much more efficient than
XQEngine.

In this paper XQEngine version 0.69 is used.
Also, there is a growing demand of XML in the areas
relating to XLinks, XPointers and Security. Light
Weight BitCube, in its current form, does not take
into account relationships (parent-child, sibling, etc.)
between paths. As a result, the current structure
cannot support locating relative location paths. In
future, this index structure can be extended to support
these complex querying operations.

REFERENCES:

[1] Silberschatz, Korth, Sudarshan, Database System
Concepts, 4th Edition, Mc Graw Hill, 2002.

[2] Ramakrishnan, Gehrke, Database Management
Systems, 3rd Edition, Mc Graw Hill, 2003.

297

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-1, Iss-4

Evaluating XPath Expressions on Light Weight BitCube

[3] T. Bray et al., “Extensible Markup
Language (XML) 1.0 (Second Edition),”
W3CRecommendation, 10 Nov. 2004;
http://www.w3.org/TR/REC-xml.

[4] R. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval, Addison Wesley, 1999.

[5] C. Papadimitriou, H. Tamaki, P. Raghavan, S.
Vempala, “Latent Semantic Indexing: A Probabilistic
Analysis,” In Proc. of 17th ACM Symp. on Principles
of Database Systems, Seattle, WA, (1998) pp. 159-
168.

[6] S. Berchtold, D. A. Keim, and H. P. Kriegel, The
Xtree: An Index Structure for High-Dimensional
Data, Proc. Intl. Conf. On Very Large Data Bases,
Bombay, India, 1996, 28-39.

[7] F. Rizzolo and A. Mendelzon, “Indexing XML
Data with ToXin,” Proc. 4th Int’l Workshop Web and
Databases, Springer-Verlag, 2001, pp. 49-54.

[8] H. Wang et al., “XML Indexing and
Compression: ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, ACM
Press, 2003, pp. 110-121.

[9] R. Goldman, J. Widom, “DataGuides: Enabling
Query Formulation and Optimization in Semi-
structured Databases”, In Proc. of the Intl.
Conference on Very Large Databases, Athens,
Greece, (1997), pp. 436-445.

[10] H. Katz, “XQEngine,” Apr. 2005;
http://sourceforge.net/projects/xqengine/.

[11] J. Yoon, V. Raghavan and Venu Chakilam,
BitCube: A Three Dimensional Bitmap Indexing for
XML Documents, Thirteenth International
Conference on Scientific and Statistical Database
Management, FairFax, VA, 2001.

[12] J. Yoon, V. Raghavan and Venu Chakilam,
Bitmap Indexing-based clustering & retrieval of
XML documents, IEEE Trans. on Knowledge and
Data Engg.

[13] B. Shah, A. Gummadi, J. Yoon, and V.
Raghavan, “Efficient Dynamic Indexing and
Retrieval of XML Documents Using Three-
Dimensional Quasi-BitCube,” Proc. First Int’l
Workshop High Performance XML Processing, 2004.

298

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-1, Iss-4

	Evaluating XPath Expressions on Light Weight BitCube
	Recommended Citation

	Evaluating XPath Expressions on Light Weight BitCube

