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Abstract— Informally, a graph is set of nodes, pairs of which 
might be connected by edges. In a wide array of disciplines, data 
can be intuitively cast into this format. For example, computer 
networks consist of routers/computers (nodes) and the links 
(edges) between them. Social networks consist of individuals and 
their interconnections (which could be business relationships or 
kinship or trust, etc.) Protein interaction networks link proteins 
which must work together to perform some particular biological 
function. Ecological food webs link species with predator-prey 
relationships. In these and many other fields, graphs are 
seemingly ubiquitous. The problems of detecting abnormalities 
(outliers) in a given graph and of generating synthetic but 
realistic graphs have received considerable attention recently. 
Both are tightly coupled to the problem of finding the 
distinguishing characteristics of real-world graphs, that is, the 
patterns that show up frequently in such graphs and can thus be 
considered as marks of realism. A good generator will create 
graphs which match these patterns. In this paper we present 
gFSG, a computationally efficient algorithm for finding frequent 
patterns corresponding to geometric sub graphs in a large 
collection of geometric graphs. gFSG is able to discover 
geometric sub graphs that can be rotation, scaling, and 
translation invariant, and it can accommodate inherent errors on 
the coordinates of the vertices.  

Keywords-Frequent Sub graph; Graph Isomorphisim; 
Geometric dscriptors  

INTRODUCTION 

Over the years, these frequent patterns have been used 
extensively to discover association rules, to extract prevalent 
patterns that exist in the data sets, and to build effective 
clustering and classification algorithms [4]. Nevertheless, as 
data mining techniques have been increasingly applied to non-
traditional domains, such as scientific, spatial and relational 
data sets, situations tend to occur in which we can’t apply 
existing item set discovery algorithms because these problems 
are difficult to be adequately and correctly modeled with the 
traditional market-basket transaction approaches [5]. 

RELATED WORK

Discovery of frequent patterns has been studied in a variety 
of data mining settings. In its simplest form, known from 
association rule mining, the task is to discover all frequent item 
sets[1-3]. The fundamental task of association rule and frequent 
set discovery has been extended in various directions, allowing 
more useful patterns to be discovered with special purpose 
algorithms.[4-6] .The graph isomorphism problem In graph 
theory, an isomorphism of graphs G and H is a bisections
between the vertex sets of G and H such that any two vertices u 
and v of G are adjacent in G if and only if ƒ(u) and ƒ(v) are 
adjacent in H. This kind of bisections commonly called "edge-
preserving bisections", in accordance with the general notion of 
isomorphism being structure-preserving bisections [8-10]. 

GOAL OF PAPER

This paper focuses on the problem of finding frequently 
occurring geometric patterns in geometric graphs-graphs whose 
vertices have 2-D or 3-D coordinates associated with them. 
These patterns correspond to geometric sub graphs that are 
embedded in a sufficiently large number of graphs[6]. Data sets 
arising in many scientific domains often contain such 
geometric information and any patterns discovered in them are 
of interest if they preserve both the topological and the 
geometric nature of the pattern. Here we present an algorithm 
called gFSG that is capable of finding frequently occurring 
geometric sub graphs in a large database of graph 
transactions[5].The key characteristic of gFSG is that it allows 
for the discovery of geometric sub graphs that can be rotation, 
scaling and translation invariant. Furthermore, to accommodate 
inherent errors on the coordinates of the vertices (either due to 
experimental measurements or floating point round-off errors), 
it allows for patterns in which the coordinates can match with 
some degree of tolerance. gFSG uses a pattern discovery 
framework, which follows the level-by-level approach made 
popular by the Apriori[1] algorithm, and incorporate numerous 
computationally efficient algorithms for (i) computing 
isomorphism between geometric subgraphs that are rotation, 
scaling and translation invariant, (ii) candidate generation, and 
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(iii) frequency counting[3-6]. In addition, gFSG incorporates 
an iterative pattern shape optimization algorithm whose goal is 
to identify the geometric shape of patterns that lead to the 
highest support 

G-FSG—FREQUENT GEOMETRIC SUBGRAPH DISCOVERY 
ALGORITHM

The gFSG was designed to operate on a database of 
geometric graphs  (either 2D or 3D) and find all sub graphs 
accordingly FSG follows the level-by-level structure of  the 
Apriori algorithm [1] and shares many characteristics with the 
previously developed frequent sub graph discovery algorithm 
for topological graphs[10]. The motivation behind this choice 
is the fact that the level-by-level structure of Apriori requires 
the smallest number of sub graph isomorphism computations 
during frequency counting, as it allows it to take full 
advantage of the downward closed property of the minimum 
support constraint and achieves the highest amount of pruning 
when compared with the most recently developed depth first- 
based approaches such as dEclat [3], Tree Projection [2], and 
FP-growth [4]. In fact, despite the extra overhead due to 
candidate generation that is incurred by the level-by-level 
approach, recent studies have shown that because of its 
effective pruning, it achieves comparable performance with 
that achieved by the various depth-first-based approaches, as 
long as the data set is not dense or the support value is not 
extremely small. At the same time, the relatively simple 
algorithmic structure of this approach allows us to focus on 
the non-trivial aspects of operating on geometric graphs. 

The gFSG provides two basic approaches for constructing 
the shape of the frequent geometric pattern. The first approach 
uses an arbitrarily selected embedding of a graph as its 
representative geometric shape, whereas the second approach 
employs an iterative shape optimization phase that tries to 
greedily select as its representative, a geometric shape that 
will maximize the frequency of the corresponding sub graph. 
These two approaches provide different performance-coverage 
trade-offs. The first approach is faster but it may fail to 
identify some of the frequent sub graphs, whereas the second 
approach is somewhat slower, but in general, finds a larger 
number of frequent geometric sub graphs [7]. However, 
regardless of the method, due to their inherently heuristic 
nature, both of them may miss some of the patterns, especially 
as the value of r increases. 

TABLE-I: The notation used in the algorithm 

Notation Notation 
D A data set of graph transactions 

t A graph transaction in D 
k-(sub) graph A (sub)graph with k edges 
gk A k-sub graph 
V(g) A set of vertices of graph g 
E(g) A set of edges of graph g 
Ck A set of candidates with k edges 
Fk  A set of frequent k-sub graph 

Algorithm :GFSG(D,s,adjust_type,N) 
F1,F2,F3  all frequent geometric subgraphs of size 1,2,3 in D 
K 4
 while F k-1  do 
for  each candidate g k � C k do 
     g k.S  COUNT_FREQUENCY(g k,D)
     if | g k.S| < s then 
     continue; 
     if adjust type  None then 
      ADJUST_SHAPE (g  k,,, D, adjust-type, N) 
     Fk  {gk  � Ck | gk.count> sD} 
     K  k +1 
     return F1,F2,F3.....F k-2 

COUNT_FREQUENCY (g k,D) 
S
for each transaction t � D do 
   If candidate g k is included in t then 

S  S U { t } 
return S   

ADJUST_SHAPE (g k,,, D, adjust-type, N) 
for i=1 ..N do  
    compute the average of vertex coordinates of g k .S.
  if  adjust-type = Simple then  
       g k.S  COUNT_FREQUENCY (g k,D) 
  else if adjust-type = Support then 
       S’  COUNT_FREQUENCY (g k,D) 
   If  S’ = g k.S then  
    return g k.S  S’ 
   else if adjust-type = DWC then 
    if g k fails the downward closure check then      
    return g k.S  COUNT_FREQUENCY (g k,D) 

A. Geometric graph and sub graph isomorphism 

Geometric graph isomorphism 

In principle, a geometric isomorphism between two graphs 
g1 and g2 can be computed in two different ways. First, we 
can identify all topological isomorphism between g1 and g2, 
and then check each one of them to determine whether or not 
there is an allowable homogeneous geometric transformation 
that brings the corresponding vertices of the two graphs within 
an r distance from each other (where r is the coordinate 
matching tolerance). Alternatively, we can first identify the 
possible set of geometric transformations that map the vertices 
of g1 within an r distance of the vertices of g2, and then check 
each one of them to see if it preserves the topology (and the 
vertex and edge labels) of the two graphs. 

Transform and map approach 

Each geometric graph has its own coordinate system or 
reference frame. When we check the geometric isomorphism 
between g1 and g2, both should be in the same coordinate 
system. However, there can be infinitely many geometric 
configurations, especially when we consider rotation invariant  
isomorphism. Our algorithm limits this number by using a 
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subset of the edges of the graph to define the coordinate axes. 
In the two-dimensional space, it suffices to choose an edge 
and its direction to determine a local coordinate system and in 
the three-dimensional space, two connected non-collinear 
edges . 

Using topological and geometric descriptors to speed up the 
computations 

To further reduce the overall time spent in checking 
whether two graphs are geometrically isomorphic or not, g-
FSG computes various descriptors that capture certain 
topological properties and geometric transform invariants. 
Geometric transform invariants are certain quantities 
computed from a geometric graph that remain the same no 
matter how the original graph is rotated, scaled, or 
translated[7]. The key idea behind this approach is to use these 
descriptors to quickly eliminate pairs of graphs that cannot be 
isomorphic to each other by simply checking to see whether 
their respective descriptors match or not. Since both the 
topological properties and the geometric transform invariants 
remain the same regardless of the principal configuration of a 
particular graph, these descriptors need to be computed only 
once[9-10]. 

B. Generating size one, two, and three frequent sub graphs 

The first step in g-FSG is to determine the frequent size 
one, two, and three r-tolerant geometric sub graphs using a 
direct enumeration approach. This is done primarily for two 
reasons. First, direct enumeration, if done efficiently, can 
significantly reduce the amount of time required to find size 
two and three sub graphs over an approach that uses the 
general candidate-generation and frequency-counting 
framework[5].This is consistent with observations of previous 
studies performed in the context of frequent item sets and 
sequences. Second, g-FSG’s candidate generation scheme 
obtains a candidate  (k +1) sub graph  g k+1 by joining two 
distinct frequent sub graphs gi

k and gj
k that share a common 

(k-1)-sub graph h k-1. To uniquely determine the geometry of 
the candidate subgraph,hk-1 must represent a rigid body. Thus, 
hk-1 must have two non-collinear vertices for two-dimensional 
graphs, and three non-collinear vertices for 3D graphs [3-5]. 
Consequently, the size k sub graphs that are joined should at 
least of size two or three for two and three-dimensional, 
respectively. 

C. Candidate Generation 

Candidate geometric sub graphs of size k+ 1 are generated by 
joining two frequent geometric k-sub graphs. In order for two 
such frequent k-sub graphs to be eligible for joining they must 
contain the same geometric (k-1)-sub graph. We will refer to 
this common geometric (k-1) sub graph among two k-frequent 
sub graphs as their core . 

D. Frequency counting 

Once candidate sub graphs have been generated, g-FSG 
computes their frequency. In the on text of the original Apriori 
algorithm, the frequency counting is performed efficiently by 
storing the candidate item sets in a hash-tree data structure and 
then scanning each transaction to determine which of the item 
sets in the hash-tree it supports[6]. However, developing such 
an algorithm for frequent sub graphs is challenging (if not 
impossible) because there is no natural way to build a hash 
tree-like structure for graphs. For this reason, g-FSG’s 
frequency counting approach considers one candidate sub 
graph at-a-time and tries to determine the transactions that it is 
contained in.  

EXPERIMENTAL EVALUATION

The Sample isomorphic graphs are given below 

Figure 1:  A triangle and its geometric configuration under 
rotation and translation. 

Figure 2: The core- a square of 4 vertices – has more than one 
auto morphism that result four in deferent candidates of size 6. 
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CONCLUSION AND FUTURE WORK

In this paper we presented an algorithm, gFSG, for finding 
frequently occurring in scientific, spatial, and relational data 
sets. These patterns can correspond to either exact occurrences 
or occurrences that are translation, rotation, and/or scaling 
invariant, and can accommodate a user-specified tolerance on 
how the coordinates of the various vertices are matched. In 
addition, we presented an iterative shape refinement 
framework that makes it possible to optimize the discovered 
patterns; thus, increasing their frequency and the number of 
patterns that get discovered. Our experimental evaluation 
showed that g-FSG can scale reasonably well to very large 
graph databases provided that graphs contain sufficiently 
many different labels of edges and vertices. 
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