
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 1 Issue 3 Article 5

July 2010

g-FSG Approach for Finding Frequent Sub Graph g-FSG Approach for Finding Frequent Sub Graph

Sadhana Priyadarshini
Department of Computer Applications ITER, SOA University, Bhubaneswar, ODISSA,
sadhana_pridarshini@rediffmail.com

Debahuti Mishra
Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha,
India, debahuti@iter.ac.in

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Priyadarshini, Sadhana and Mishra, Debahuti (2010) "g-FSG Approach for Finding Frequent Sub Graph,"
International Journal of Computer and Communication Technology: Vol. 1 : Iss. 3 , Article 5.
DOI: 10.47893/IJCCT.2010.1041
Available at: https://www.interscience.in/ijcct/vol1/iss3/5

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol1
https://www.interscience.in/ijcct/vol1/iss3
https://www.interscience.in/ijcct/vol1/iss3/5
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol1%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol1/iss3/5?utm_source=www.interscience.in%2Fijcct%2Fvol1%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

g-FSG Approach for Finding Frequent Sub Graph

g-FSG Approach for Finding Frequent Sub Graph

Sadhana Priyadarshini
Department of Computer Applications

ITER, SOA University,
Bhubaneswar, ODISSA

sadhana_pridarshini@rediffmail.com

Debahuti Mishra
Department of Computer Sc. & Engineering

ITER, SOA University,
Bhubaneswar, ODISSA

debahuti@iter.ac.in

Abstract— Informally, a graph is set of nodes, pairs of which
might be connected by edges. In a wide array of disciplines, data
can be intuitively cast into this format. For example, computer
networks consist of routers/computers (nodes) and the links
(edges) between them. Social networks consist of individuals and
their interconnections (which could be business relationships or
kinship or trust, etc.) Protein interaction networks link proteins
which must work together to perform some particular biological
function. Ecological food webs link species with predator-prey
relationships. In these and many other fields, graphs are
seemingly ubiquitous. The problems of detecting abnormalities
(outliers) in a given graph and of generating synthetic but
realistic graphs have received considerable attention recently.
Both are tightly coupled to the problem of finding the
distinguishing characteristics of real-world graphs, that is, the
patterns that show up frequently in such graphs and can thus be
considered as marks of realism. A good generator will create
graphs which match these patterns. In this paper we present
gFSG, a computationally efficient algorithm for finding frequent
patterns corresponding to geometric sub graphs in a large
collection of geometric graphs. gFSG is able to discover
geometric sub graphs that can be rotation, scaling, and
translation invariant, and it can accommodate inherent errors on
the coordinates of the vertices.

Keywords-Frequent Sub graph; Graph Isomorphisim;
Geometric dscriptors

INTRODUCTION

Over the years, these frequent patterns have been used
extensively to discover association rules, to extract prevalent
patterns that exist in the data sets, and to build effective
clustering and classification algorithms [4]. Nevertheless, as
data mining techniques have been increasingly applied to non-
traditional domains, such as scientific, spatial and relational
data sets, situations tend to occur in which we can’t apply
existing item set discovery algorithms because these problems
are difficult to be adequately and correctly modeled with the
traditional market-basket transaction approaches [5].

RELATED WORK

Discovery of frequent patterns has been studied in a variety
of data mining settings. In its simplest form, known from
association rule mining, the task is to discover all frequent item
sets[1-3]. The fundamental task of association rule and frequent
set discovery has been extended in various directions, allowing
more useful patterns to be discovered with special purpose
algorithms.[4-6] .The graph isomorphism problem In graph
theory, an isomorphism of graphs G and H is a bisections
between the vertex sets of G and H such that any two vertices u
and v of G are adjacent in G if and only if ƒ(u) and ƒ(v) are
adjacent in H. This kind of bisections commonly called "edge-
preserving bisections", in accordance with the general notion of
isomorphism being structure-preserving bisections [8-10].

GOAL OF PAPER

This paper focuses on the problem of finding frequently
occurring geometric patterns in geometric graphs-graphs whose
vertices have 2-D or 3-D coordinates associated with them.
These patterns correspond to geometric sub graphs that are
embedded in a sufficiently large number of graphs[6]. Data sets
arising in many scientific domains often contain such
geometric information and any patterns discovered in them are
of interest if they preserve both the topological and the
geometric nature of the pattern. Here we present an algorithm
called gFSG that is capable of finding frequently occurring
geometric sub graphs in a large database of graph
transactions[5].The key characteristic of gFSG is that it allows
for the discovery of geometric sub graphs that can be rotation,
scaling and translation invariant. Furthermore, to accommodate
inherent errors on the coordinates of the vertices (either due to
experimental measurements or floating point round-off errors),
it allows for patterns in which the coordinates can match with
some degree of tolerance. gFSG uses a pattern discovery
framework, which follows the level-by-level approach made
popular by the Apriori[1] algorithm, and incorporate numerous
computationally efficient algorithms for (i) computing
isomorphism between geometric subgraphs that are rotation,
scaling and translation invariant, (ii) candidate generation, and

176

International Journal of Computer and Communication Technology (IJCCT), ISSN:2231-0371, Vol-1, Iss-3

g-FSG Approach for Finding Frequent Sub Graph

(iii) frequency counting[3-6]. In addition, gFSG incorporates
an iterative pattern shape optimization algorithm whose goal is
to identify the geometric shape of patterns that lead to the
highest support

G-FSG—FREQUENT GEOMETRIC SUBGRAPH DISCOVERY
ALGORITHM

The gFSG was designed to operate on a database of
geometric graphs (either 2D or 3D) and find all sub graphs
accordingly FSG follows the level-by-level structure of the
Apriori algorithm [1] and shares many characteristics with the
previously developed frequent sub graph discovery algorithm
for topological graphs[10]. The motivation behind this choice
is the fact that the level-by-level structure of Apriori requires
the smallest number of sub graph isomorphism computations
during frequency counting, as it allows it to take full
advantage of the downward closed property of the minimum
support constraint and achieves the highest amount of pruning
when compared with the most recently developed depth first-
based approaches such as dEclat [3], Tree Projection [2], and
FP-growth [4]. In fact, despite the extra overhead due to
candidate generation that is incurred by the level-by-level
approach, recent studies have shown that because of its
effective pruning, it achieves comparable performance with
that achieved by the various depth-first-based approaches, as
long as the data set is not dense or the support value is not
extremely small. At the same time, the relatively simple
algorithmic structure of this approach allows us to focus on
the non-trivial aspects of operating on geometric graphs.

The gFSG provides two basic approaches for constructing
the shape of the frequent geometric pattern. The first approach
uses an arbitrarily selected embedding of a graph as its
representative geometric shape, whereas the second approach
employs an iterative shape optimization phase that tries to
greedily select as its representative, a geometric shape that
will maximize the frequency of the corresponding sub graph.
These two approaches provide different performance-coverage
trade-offs. The first approach is faster but it may fail to
identify some of the frequent sub graphs, whereas the second
approach is somewhat slower, but in general, finds a larger
number of frequent geometric sub graphs [7]. However,
regardless of the method, due to their inherently heuristic
nature, both of them may miss some of the patterns, especially
as the value of r increases.

TABLE-I: The notation used in the algorithm

Notation Notation
D A data set of graph transactions

t A graph transaction in D
k-(sub) graph A (sub)graph with k edges
gk A k-sub graph
V(g) A set of vertices of graph g
E(g) A set of edges of graph g
Ck A set of candidates with k edges
Fk A set of frequent k-sub graph

Algorithm :GFSG(D,s,adjust_type,N)
F1,F2,F3 all frequent geometric subgraphs of size 1,2,3 in D
K 4
 while F k-1 do
for each candidate g k � C k do
 g k.S COUNT_FREQUENCY(g k,D)
 if | g k.S| < s then
 continue;
 if adjust type None then
 ADJUST_SHAPE (g k,,, D, adjust-type, N)
 Fk {gk � Ck | gk.count> sD}
 K k +1
 return F1,F2,F3.....F k-2

COUNT_FREQUENCY (g k,D)
S
for each transaction t � D do
 If candidate g k is included in t then

S S U { t }
return S

ADJUST_SHAPE (g k,,, D, adjust-type, N)
for i=1 ..N do
 compute the average of vertex coordinates of g k .S.
 if adjust-type = Simple then
 g k.S COUNT_FREQUENCY (g k,D)
 else if adjust-type = Support then
 S’ COUNT_FREQUENCY (g k,D)
 If S’ = g k.S then
 return g k.S S’
 else if adjust-type = DWC then
 if g k fails the downward closure check then
 return g k.S COUNT_FREQUENCY (g k,D)

A. Geometric graph and sub graph isomorphism

Geometric graph isomorphism

In principle, a geometric isomorphism between two graphs
g1 and g2 can be computed in two different ways. First, we
can identify all topological isomorphism between g1 and g2,
and then check each one of them to determine whether or not
there is an allowable homogeneous geometric transformation
that brings the corresponding vertices of the two graphs within
an r distance from each other (where r is the coordinate
matching tolerance). Alternatively, we can first identify the
possible set of geometric transformations that map the vertices
of g1 within an r distance of the vertices of g2, and then check
each one of them to see if it preserves the topology (and the
vertex and edge labels) of the two graphs.

Transform and map approach

Each geometric graph has its own coordinate system or
reference frame. When we check the geometric isomorphism
between g1 and g2, both should be in the same coordinate
system. However, there can be infinitely many geometric
configurations, especially when we consider rotation invariant
isomorphism. Our algorithm limits this number by using a

177

International Journal of Computer and Communication Technology (IJCCT), ISSN:2231-0371, Vol-1, Iss-3

g-FSG Approach for Finding Frequent Sub Graph

subset of the edges of the graph to define the coordinate axes.
In the two-dimensional space, it suffices to choose an edge
and its direction to determine a local coordinate system and in
the three-dimensional space, two connected non-collinear
edges .

Using topological and geometric descriptors to speed up the
computations

To further reduce the overall time spent in checking
whether two graphs are geometrically isomorphic or not, g-
FSG computes various descriptors that capture certain
topological properties and geometric transform invariants.
Geometric transform invariants are certain quantities
computed from a geometric graph that remain the same no
matter how the original graph is rotated, scaled, or
translated[7]. The key idea behind this approach is to use these
descriptors to quickly eliminate pairs of graphs that cannot be
isomorphic to each other by simply checking to see whether
their respective descriptors match or not. Since both the
topological properties and the geometric transform invariants
remain the same regardless of the principal configuration of a
particular graph, these descriptors need to be computed only
once[9-10].

B. Generating size one, two, and three frequent sub graphs

The first step in g-FSG is to determine the frequent size
one, two, and three r-tolerant geometric sub graphs using a
direct enumeration approach. This is done primarily for two
reasons. First, direct enumeration, if done efficiently, can
significantly reduce the amount of time required to find size
two and three sub graphs over an approach that uses the
general candidate-generation and frequency-counting
framework[5].This is consistent with observations of previous
studies performed in the context of frequent item sets and
sequences. Second, g-FSG’s candidate generation scheme
obtains a candidate (k +1) sub graph g k+1 by joining two
distinct frequent sub graphs gi

k and gj
k that share a common

(k-1)-sub graph h k-1. To uniquely determine the geometry of
the candidate subgraph,hk-1 must represent a rigid body. Thus,
hk-1 must have two non-collinear vertices for two-dimensional
graphs, and three non-collinear vertices for 3D graphs [3-5].
Consequently, the size k sub graphs that are joined should at
least of size two or three for two and three-dimensional,
respectively.

C. Candidate Generation

Candidate geometric sub graphs of size k+ 1 are generated by
joining two frequent geometric k-sub graphs. In order for two
such frequent k-sub graphs to be eligible for joining they must
contain the same geometric (k-1)-sub graph. We will refer to
this common geometric (k-1) sub graph among two k-frequent
sub graphs as their core .

D. Frequency counting

Once candidate sub graphs have been generated, g-FSG
computes their frequency. In the on text of the original Apriori
algorithm, the frequency counting is performed efficiently by
storing the candidate item sets in a hash-tree data structure and
then scanning each transaction to determine which of the item
sets in the hash-tree it supports[6]. However, developing such
an algorithm for frequent sub graphs is challenging (if not
impossible) because there is no natural way to build a hash
tree-like structure for graphs. For this reason, g-FSG’s
frequency counting approach considers one candidate sub
graph at-a-time and tries to determine the transactions that it is
contained in.

EXPERIMENTAL EVALUATION

The Sample isomorphic graphs are given below

Figure 1: A triangle and its geometric configuration under
rotation and translation.

Figure 2: The core- a square of 4 vertices – has more than one
auto morphism that result four in deferent candidates of size 6.

178

International Journal of Computer and Communication Technology (IJCCT), ISSN:2231-0371, Vol-1, Iss-3

g-FSG Approach for Finding Frequent Sub Graph

CONCLUSION AND FUTURE WORK

In this paper we presented an algorithm, gFSG, for finding
frequently occurring in scientific, spatial, and relational data
sets. These patterns can correspond to either exact occurrences
or occurrences that are translation, rotation, and/or scaling
invariant, and can accommodate a user-specified tolerance on
how the coordinates of the various vertices are matched. In
addition, we presented an iterative shape refinement
framework that makes it possible to optimize the discovered
patterns; thus, increasing their frequency and the number of
patterns that get discovered. Our experimental evaluation
showed that g-FSG can scale reasonably well to very large
graph databases provided that graphs contain sufficiently
many different labels of edges and vertices.

REFERNCES

[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in:
J.B. Bocca, M. Jarke, C. Zaniolo (Eds.), Proceedings of the 20th
International Conference on Very Large Data Bases (VLDB), Morgan
Kaufmann, Los Altos, CA, 1994, pp. 487–499.

[1] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate
generation, in: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Dallas, TX, 2000, pp. 1–12.

[2] X. Yan, J. Han, gSpan: graph-based substructure pattern mining, in:
Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM), 2002, pp. 721–724.

[3] X. Yan, J. Han, CloseGraph: mining closed frequent graph patterns, in:
Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003), 2003, pp. 286–
295.

[4] J. Huan, W. Wang, J. Prins, Efficient mining of frequent subgraph in the
presence of isomorphism, in: Proceedings of the 2003 IEEE
International Conference on Data Mining (ICDM’03), 2003, pp. 549–
552.

[5] X. Wang, J.T.L. Wang, D. Shasha, B.A. Shapiro, I. Rigoutsos, K.
Zhang, Finding patterns in three dimensional graphs: algorithms and
applications to scientific data mining, IEEE Trans. Knowl. Data Eng. 14
(4) (2002) 731–749.

[6] M.J. Zaki, Scalable algorithms for association mining, IEEE Trans.
Knowl. Data Eng. 12 (2) (2000) 372–390.

[7] G. Cong, L. Yi, B. Liu, K. Wang, Discovrering frequent substructures
from hierarchical semi-structured data, in: Proceedings of the Second
SIAM International Conference on Data Mining (SDM-2002), 2002.

[8] K. Wang, H. Liu, Discovering structural association of semistructured
data, IEEE Trans. Knowl. Data Eng. 12 (2000) 353–371.

[10] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, S. Arikawa,
Efficient substructure discovery from large semistructured data, in:
Proceedings of the Second SIAM International Conference on Data
Mining (SDM’02),

[11] Sadhana Priyadarshini, ,Debahuti Mishra, An Insight into Graph
Database, Proceeding of National Conference on Computational
Biology,NCCB-09,(2009)Page 68-71.

[12] Sadhana Priyadarshini , Debahuti Mishra, An approach to Graph Mining
using Apriori Algorithm Proceeding of First International Conference on
Advance computing and Communication,ICACC-2010,Page 69-72.

179

International Journal of Computer and Communication Technology (IJCCT), ISSN:2231-0371, Vol-1, Iss-3

	g-FSG Approach for Finding Frequent Sub Graph
	Recommended Citation

	g-FSG Approach for Finding Frequent Sub Graph

