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Abstract Soft computing is a new approach to construct 
intelligent systems.  The complex real world problems require 
intelligent systems that combine   knowledge,   techniques   and 
methodologies from various sources. Neural networks recognize 
patterns and adapt themselves to cope with changing 
environments. Artificial neural network has potential 
applications in the field of ECG diagnosis measures. So noise 
reduced QRS complex of ECG signal is of utmost importance for   
automatic ECG interpretation and analysis. Noise is an unwanted 
energy, which interferes with the desired signal.  Noise  
cancellation  is mainly  used  as interference  canceling in  ECG, 
echo  elimination  on  long  distance    telephone transmission   
lines    and     antenna  side lobe interference   canceling.  In the 
study,   the ECG signal is   trained   following various artificial 
neural network based algorithms   to enhance the QRS complex 
by reducing noise for further analysis. 

Keywords- neural network; ECG; adaptive filter  

I. INTRODUCTION

Heart diseases, which are one of the death reasons of 
man/women, are among the important problems on this 
century. One of the ways to diagnose heart diseases is to use 
electrocardiogram (ECG) signals. ECG records the electrical 
activity of heart. The ECG signal is a time-varying signal 
reflecting ionic current flow which causes the cardiac fibers to 
contract and subsequently relax. A standard scalar 
electrocardiogram is shown in Fige1. It consists of P wave, 
PR-interval, PR segment, QRS complex, ST segment, ST 
interval and QT interval and T wave. A single normal cycle of 
ECG represents the successive atrial depolarization/ 
repolarization and ventricular depolarization/repolarization 
which occur with every heart beat. The P wave represents 
atrial depolarization, the QRS-complex represents left 
ventricular    depolarization   and the T wave represents the 
left ventricular   repolarization. 

Various methods, for QRS detection, found in literature 
are: using slope or derivative of ECG signal, methods based 
on digital filters, statistical methods, pattern recognition, 
Artificial Neural Networks, Genetic Algorithm so on. 

Figure 1. Standard scalar electrocardiogram 

II. ARTIFICIAL NEURAL NETWORK

Neural network can be trained to perform a particular 
function by adjusting the value of the connections (weights) 
between elements. Commonly neural networks are adjusted, or 
trained, so that a particular input leads to a specific target 
output. The basic architecture consists of three types of neuron 
layers: input, hidden, and output layers. The network is 
adjusted, based on a comparison of the output and the target, 
until the network output matches the target. Typically many 
such input target pairs are used in the supervised learning to 
train a network. 

Artificial Neural Network (ANN) is the generalization of 
mathematical models of biological nervous systems. In the 
artificial adaptation of human brain the artificial neural 
network has preserved three basic characteristics. Neural 
network learns from experience; generalize from learned 
responses, and abstract essential, pattern from inputs. Neural 
networks have been trained to perform complex functions in 
various fields of application including pattern recognition, 
identification, classification, speech or image processing and 
control systems. 
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A. The SOM Learning Algorithm 
During the training period, each unit with a positive 

activity within the neighborhood of the winning unit 
participates in the learning process. The learning process can 
be described by the equation: 

 wi =  (t) (x wi,) U (yi) (12) 

where w, is the weight vector of the ith unit and x is the 
input vector. The function U (yi) is zero unless yi > 0 in which 
case U (yi) = 1, ensuring that only those units with positive 
activity participate in the learning process. The factor  (t) is 
written as a function of time to anticipate our desire to change 
it as learning progresses. 

For an input vector x, the winning unit can be determined 
by: 

 ||x wc||= min {||x wi||} (13) 

where the index c refers to the winning unit. 

Instead of updating the weights of the winning unit only, a 
physical neighborhood around the unit is defined, and all units 
within this neighborhood participate in the weight-update 
process. Each weight vector participating in the update process 
rotates slightly toward the input vector, x. Once training has 
progressed sufficiently, the weight vector on each unit will 
converge to a value that is representative of the coordinates of 
the points near the physical location of the unit. 

If c is the winning unit, and Nc. is the list of unit indices 
that make up the neighborhood, then the weight-update 
equations are: 

 wi(t 1) =   (14) 

V. PERCEPTRON LEARNING RULE

The perceptron is a single layer neural network whose 
weights and biases could be trained to produce a correct target 
vector when presented with the corresponding input vector. 
The training technique used is called the perceptron learning 
rule. Suppose there is a set of learning samples consisting of 
an input vector x and a desired output d (k). For a 
classification task, the d (k) is usually 1 or 1. The 
perceptron learning rule can be stated as follows: 

1) Start with random weights for the connections. 

2)  Select an input vector x from the set of training 
samples.

3) If output yk != d(k) (the perceptron gives an incorrect 
response), modify all connections wi according to:                   
wi = (d(k) yk)xi; (  = learning rate). 

4) Go back to step 2. 
Perceptrons are trained on examples of desired behavior. 

The desired behaviour can be summarized by a set of input, 
output pairs where p is an input to the network and t is the 

corresponding correct (target) output. The objective is to 
reduce the error e, which is the difference between the neuron 
responses a and the target vector t. Each time learning rule is 
executed, the perceptron has a better chance of producing the 
correct outputs. The perceptron rule is proven to converge on a 
solution in a finite number of iterations if a solution exists. 

The perceptron learning rule thus can be summarized as 
follows:  

 Wnew = Wold  epT  and   bnew = bold   e, (15)

where e=t a.

A. Adaline Network 
The perceptron learning rule is applied to the 'adaptive 

linear elements', also named as Adaline network. The
perceptron learning rule uses the output of the threshold 
function either -1 or +1 for learning, whereas, the delta rule 
uses the net output without further mapping into output values 
-1 or +1.In a simple physical implementation as shown in the 
Fig. 4, usually the central block, the summer, is also followed 
by a quantiser which outputs either 1 of 1, depending on 
the polarity of the sum.  Although the adaptive process is here 
exemplified in a case when there is only one output, it may be 
clear that a system with many parallel outputs is directly 
implementable by multiple units of the above kind. 

If the input conductances are denoted by wi, i = 0; 1; ; ; ; n, 
and the input and output signals by xi and y, respectively, then 
the output of the central block is defined to be: 

                                     y=  (16) 

where  = w0. The problem is to determine the coeficients 
wi, i = 0, 1......., n, in such a way that the input-output response 
is correct for a large number of arbitrarily chosen signal sets. 
If an exact mapping is not possible, the average error must be 
minimised, for instance, in the sense of least squares. An 
adaptive operation means that there exists a mechanism by 
which wi can be adjusted, usually iteratively, to attain the 
correct values.  

Figure 4. Block Diagram For Adaline Network
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VI. BACKPROPAGATION 

Backpropagation networks are necessarily multilayer 
perceptrons (usually with one input, one hidden, and one 
output layer).It is a supervised learning method, and is an 
implementation of the Delta rule. It is most useful for feed-
forward networks (networks that have no feedback, or simply, 
that have no connections that loop). The central idea behind 
this solution is that the errors for the units of the hidden layer 
are determined by back-propagating the errors of the units of 
the output layer. Backpropagation requires that the activation 
function used by the artificial neurons is differentiable. 

Although back propagation can be applied to networks 
with any number of layers, just as for networks with binary 
units it has been shown that only one layer of hidden units 
succeeds to approximate any function with finitely many 
discontinuities to arbitrary precision, provided the activation 
functions of the hidden units are non-linear (the universal 
approximation theorem). 

A. Multilayer Feedforward Network 
A multilayered feedforward network has a layered 

structure as shown in Fig. 5. Each layer consists of units which 
receive their input from units from a layer directly below and 
send their output to units in a layer directly above the unit.  

The activation of a hidden unit is a function  of the 
weighted inputs plus a bias, as given in equation: 

 Yk (t+1) = k (sk(t)) = k( ) (17) 

The output of the hidden units is distributed over the next 
layer of Nh; 2 hidden units, until the last layer of hidden units, 
of which the outputs are fed into a layer of No output units. 

Figure 5. Multilayer feed forward neural network

B.  Delta Rule  
For using units with nonlinear activation functions, delta 

rule can be generalized. The activation function is a 
differentiable function of the total input, given as: 

 = ( )  (18)

where = . After correct generalization of 
delta rule, equations: 

         ,        (19)      

and .       (20)     

give a recursive procedure for computing the 's for all units in 
the network, which are then used to compute the weight 
changes according to equation.This procedure constitutes the 
generalized delta rule for a feedforward network of nonlinear 
activation function. 

C. Backpropagation Technique   
The application of the generalised delta rule thus involves two 
phases: the input x is presented and propagated forward 
through the network to compute the output values  which 
when compared with its desired value do, results in an error 
signal  which is backpropagated through the network. 

1) Present a training sample to the neural network.  

2) Compare the network's output to the desired output 
from that sample. Calculate the error in each output neuron.  

3) For each neuron, calculate what the output should have 
been, and a scaling factor, how much lower or higher the 
output must be adjusted to match the desired output. This is 
the local error.  

4) Adjust the weights of each neuron to lower the local 
error.

5) Assign "blame" for the local error to neurons at the 
previous level, giving greater responsibility to neurons 
connected by stronger weights.  

6) Repeat from step 3 on the neurons at the previous level, 
using each one's "blame" as its error. 

D.  Backpropagation Algorithm 
Initialize the weights in the network (often randomly). 

 For each example e in the training set, 

O= neural-net-output(network, e) ; forward pass 

T = teacher output for e 

Calculate error (T - O) at the output units 

Compute delta, wh for all weights from hidden layer to 
output layer ; backward pass 

Compute delta_wi for all weights from input layer to 
hidden layer ; backward pass continued 

Update the weights in the network 

Until all examples classified correctly or stopping 
criterion satisfied 

Return the network 
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So technically, back propagation is used to calculate the 
gradient of the error of the network with respect to the 
network's modifiable weights. This gradient is almost always 
then used in a simple stochastic gradient descent algorithm to 
find weights that minimize the error. It usually allows quick 
convergence on satisfactory local minima for error in the kind 
of networks to which it is suited. A major limitation of 
backpropagation is that the result may generally converge to 
any local minimum on the error surface, since stochastic 
gradient descent exists on a non-linear surface. 

VII. RESULTS
The ECG signal is generated using the fourier series and 

implemented in the software using various functions. Then it 
was trained on basis of various above stated artificial neural 
network methods. Digital signal processing techniques has 
been used for filtering and smoothening of signals, 
enhancement of visual images, and compression of data, 
recognition and generation purposes. The results obtained can 
be viewed from the graphs in Fig. 6, Fig. 7, Fig. 8, Fig. 9,   
Fig. 10 and Fig. 11 as follows.   

Figure 6. Generation Of ECG Signal 

Figure 7. Adding noise to ECG signal 

Figure 8. Enhanced ECG with mean square error   obtained   0.0768   in 
LMS algorithm 

Figure 9. Enhanced ECG with mean square error    obtained   0.3656 in 
Kohonen rule 

Figure 10. Enhanced ECG with mean square error    obtained   3.9670 in 
adaline network 
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Figure 11. Enhanced ECG with mean square error    obtained   0.0519 in 
backpropagation algorithm 

VIII. CONCLUSION

In this paper, clean & noisy ECG signal has been trained 
with noise removing algorithms as: LMS adaptive filtering, 
kohonen rule, perceptron learning rule and finally 
backpropagation algorithm. Convolution technique has been 
used for filtering of signals and enhancement of images. Thus, 
it can be concluded that noise from ECG signal was eliminated 
to a large extent, with backpropagation algorithm giving best 
result with least error as compared to other network 
algorithms. The enhanced ECG signal can be used for 
automatic ECG interpretation to help reduce the burden of 
interpreting the ECG.  
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