
International Journal of Smart Sensor and Adhoc Network International Journal of Smart Sensor and Adhoc Network

Volume 2 Issue 4 Article 13

July 2012

DESIGN ISSUES AND CLASSIFICATION OF WSNS OPERATING DESIGN ISSUES AND CLASSIFICATION OF WSNS OPERATING

SYSTEMS SYSTEMS

ANIL KUMAR SHARMA
Department of I.T. and Computer Application, Dr. C.V.Raman University, Kota, Bilaspur, Chhattisgarh, India,
sharmaanil.mail@gmail.com

SURENDRA KUMAR PATEL
Department of I.T. and Computer Application, Dr. C.V.Raman University, Kota, Bilaspur, Chhattisgarh, India,
surendrapatelit2004@gmail.com

GUPTESHWAR GUPTA
Department of Mathematics & Information Technology, Govt. N.P.G. College of Science, Raipur,
Chhattisgarh, India, gupteshwar_gupta@yahoo.co.in

Follow this and additional works at: https://www.interscience.in/ijssan

 Part of the Digital Communications and Networking Commons, and the Electrical and Computer

Engineering Commons

Recommended Citation Recommended Citation
SHARMA, ANIL KUMAR; PATEL, SURENDRA KUMAR; and GUPTA, GUPTESHWAR (2012) "DESIGN ISSUES
AND CLASSIFICATION OF WSNS OPERATING SYSTEMS," International Journal of Smart Sensor and
Adhoc Network: Vol. 2 : Iss. 4 , Article 13.
DOI: 10.47893/IJSSAN.2013.1181
Available at: https://www.interscience.in/ijssan/vol2/iss4/13

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Smart Sensor and Adhoc Network by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijssan
https://www.interscience.in/ijssan/vol2
https://www.interscience.in/ijssan/vol2/iss4
https://www.interscience.in/ijssan/vol2/iss4/13
https://www.interscience.in/ijssan?utm_source=www.interscience.in%2Fijssan%2Fvol2%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=www.interscience.in%2Fijssan%2Fvol2%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=www.interscience.in%2Fijssan%2Fvol2%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=www.interscience.in%2Fijssan%2Fvol2%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijssan/vol2/iss4/13?utm_source=www.interscience.in%2Fijssan%2Fvol2%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN), ISSN No. 2248-9738 , Vol-2, Iss-4

281

DESIGN ISSUES AND CLASSIFICATION OF WSNS
OPERATING SYSTEMS

ANIL KUMAR SHARMA1, SURENDRA KUMAR PATEL2, & GUPTESHWAR GUPTA3

1&2Department of I.T. and Computer Application, Dr. C.V.Raman University, Kota, Bilaspur, Chhattisgarh, India
3Department of Mathematics & Information Technology, Govt. N.P.G. College of Science, Raipur, Chhattisgarh, India

E-mail: sharmaanil.mail@gmail.com, surendrapatelit2004@gmail.com, gupteshwar_gupta@yahoo.co.in

Abstract:- Wireless Sensor Networks is an emerging area of research. Wireless Sensor networks (WSNs) face lot of
problems that do not arise in other types of wireless networks and computing environments. Limited computational
resources, power constraints, low reliability and higher density of sensor nodes (motes) are just some basic problems that
have to be considered when designing or selecting a new operating system in order to evaluate the performance of wireless
sensor nodes (motes). In this paper we focused on design issues, challenges and classification of operating systems for
WSNs.

Keywords: WSN, OS, Design, Scheduling, Protocols

I. INTRODUCTION

WSNs are composed of large numbers of tiny
networked devices that communicate untethered.
Operating systems are at the heart of the sensor node
architecture. In terms of Wireless Sensor Networks
we need these things in operating system
architectures: Extremely small footprint, extremely
low system overhead and extremely low power
consumption. When designing or selecting operating
systems for tiny networked sensors, our goal is to
strip down memory size and system overhead
because typical sensor devices [1, 2, 3] are equipped
with 8-bit microcontrollers, code memory on the
order of 100KB and RAM is less than 20KB. After
evaluating various research papers at present (till
Dec, 2008) we have identified 37 operating systems
running on different wireless sensor nodes (motes).

Tiny sensor nodes/motes collectively form Wireless
Sensor Network (WSN). A WSN typically consists of
hundreds or thousands of sensor nodes. These nodes
have the capability to communicate with each other
using multi-hop communication. Wireless sensor
networks hold great promise as an enabling
technology for a variety of applications, including
data collection and event detection. [8]

The basic functionality of an operating system for
tiny sensors/motes is to hide the low-level details of
the sensors by providing a clear interface to the
external world. Processor management, memory
management, device management, scheduling
policies, multi-threading, and multitasking are some
services to be provided by an operating system. In
addition to these services the operating system should
also provide services like support for dynamic
loading and unloading of modules, providing proper
concurrency mechanisms, Application Programming
Interface (API) to access underlying hardware, and

enforce proper power management policies. In WSN
core kernel of the operating system sits at each
individual node. On top of it, middleware and
applications run as interacting modules across nodes.
Due to the significance of an operating system for
WSNs with this paper we explore the challenges and
design issues that may affect the design of an
operating system for WSNs. We first discuss the
issues and challenges involved in designing an OS for
WSNs. Secondly we discuss on these features of an
OS for tiny networked sensors: architecture,
reprogramming, execution model, scheduling, power
management, simulation support, and portability.

II. PROBLEM FORMATION

After analyzing several recently deployed WSNs and
operating systems for tiny networked sensors we
identify that three OS features – virtual memory,
preemptive priority scheduling, and OS safety – will
significantly improve WSN systems. However, it is
impossible to implement these features with
traditional OS design techniques, due to the current
situation of embedded H/W platforms. Moreover, we
envision that the H/W constraints will still exist for a
long time for energy and cost efficient miniaturized
computing devices.

III. DESIGN ISSUES AND CHALLENGES

WSN operates at two levels. One is at the network
level and the other is at node level.[6] Network level
interests are connectivity, routing, communication
channel characteristics, protocols etc and node level
interests are hardware, radio, CPU, sensors and
limited energy. At a higher level OS for WSN can
also be classified as node-level (local) and network-
level (distributed). The important issues related to
node-level are limited resource management;
concurrency handling, power management and

 Design issues and classification of WSNs Operating Systems

International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN), ISSN No. 2248-9738 , Vol-2, Iss-4

282

memory management where as issues related to both
are inter-node communication, failure handling,
heterogeneity and scalability. This section discusses
the important issues (of both node and network-level)
to be considered while designing an operating system
for WSN. These issues discuss the challenges and
motivate the design requirements of an operating
system needed for WSN [5][7].

 Restricted Computational Resources
○ Power
○ Memory
○ Bandwidth Battery Power
○ Processing

 Portability
 Customizability
 Multitasking
 Network Dynamics
 Distributed Nature

○ Inter-Node Communication
○ Failure Handling and

Disconnection
○ Scalability

IV. DESIGN CHARACTERISTICS

The following are the important design characteristics
to be considered while designing an operating system
for Tiny Networked sensors [2].

A. Flexible Architecture
Architecture of the kernel influences the way it
provides services. Two things that are affected by the
OS architecture are: Run-time reconfigurability of the
services, and Size of the core kernel.

Facility of adding kernel services or updating them
depends entirely on the architecture of the operating
system. Size of the core kernel is another factor that
depends on the architecture. If the architecture allows
to bundle all the required services together into a
single system image, then size of the core kernel
increases. All the services that constitute core kernel
may not be required all the time for the applications
running. On the other hand such architecture can also
support building application specific single system
image kernel that binds only the required services for
an application. Even though this reduces the size of
the kernel, it does not allow running multiple
applications. Moreover such architecture makes entire
image to be replaced if there are any changes to the
kernel or application.If the architecture allows gluing
services at run-time, this reduces the core size of the
kernel, that is provides flexibility in updating or
replacing the corresponding service, which is
modified or changed without replacing the entire
image of the kernel.
B. Efficient Execution Model
The execution model provides the abstraction of
computational unit and defines services like

synchronization, communication, and scheduling.
These abstractions are used by the programmer for
developing applications. Communication service
defines the way the computational units
communicate. They communicate to exchange data,
delegation of functionalities and signaling. While
communicating there can be data that is shared.
Accessing shared data requires proper
synchronization mechanisms to avoid race conditions.
At a given instance application might be required to
perform concurrency intensive tasks. The context
switching among the tasks is required in order to
avoid blocking of the tasks from execution. Flexible
computational unit aids in having flexible architecture
for the system. Scheduling of computational units is
crucial in the case of mission critical applications,
where execution of them after their deadlines will
lead to catastrophic situations.

At a given instance application might be doing
multiple jobs. This requires proper scheduling of the
processor to execute those jobs. Scheduling defines
the order in which the computational unit has to gain
access to processor.

C. Clear Application Programming Interface (API)
APIs play vital role in providing clear separation
between the low level node functionalities and the
application program. Operating system should
provide comprehensive set of APIs to interact with
system and it’s I/O. This helps user in flexibly
developing applications without considering low
level functionalities of the sensor node hardware. The
system API may include

 Networking API
 Sensor data reading API
 Memory manipulation APIs
 Power management API
 Task management APIs

These APIs allow the application developer to build
applications and use the available resources
efficiently. APIs related to memory access are
important to reconfigure the software running on the
sensor node dynamically. APIs related to posting of
events/tasks and setting the delays associated with the
tasks gives the programmer flexibility in scheduling
them.

D. Reprogramming
Reprogramming is a mandatory feature for OS and it
simplifies the management of software in sensor
nodes. It is the process of dynamically updating the
software running on the sensor nodes.
Reprogramming got much attention in WSN because
of the inaccessibility of the sensor nodes after
deployment and due to the presence of large number
of them in the network. Without reprogramming, it is
difficult to add, modify or delete the software from
the running system in WSN.

 Design issues and classification of WSNs Operating Systems

International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN), ISSN No. 2248-9738 , Vol-2, Iss-4

283

Code is distributed over the air using code
dissemination protocols. These protocols deal with
the splitting and compressing the code to be sent for
updating the software on the nodes. Communication
in these protocols is either single-hop or multi-hop. In
single-hop method the nodes are directly connected to
the base station either through wired or wireless and
then reprogrammed. In multi-hop communication
method, the code is sent hop-by-hop in the network.
After the reception of code at the node, it has to either
add or update the existing software running on it.
This requires efficient memory management
mechanisms. For reprogramming to be successful at
any time in the running system the code should be
relocatable. Relocatable code is position independent
that can be run in any location of the memory. This is
an important requirement for reprogramming as the
modified code has to be loaded and run in any part of
the available free memory. The underlying execution-
environment plays a vital role in facilitating
reconfigurability. Operating system should allocate
memory dynamically to facilitate loading of software
components at run time. It should also provide inter
component communication which helps in
dynamically linking the components.

E. Resource Management
One of the fundamental tasks of an operating system
is to manage the system resources efficiently.
Resources available in a typical sensor node are
processor, program memory, battery, and sensors etc.
Efficient use of processor involves using a scheduler
with optimal scheduling policy. Usage of memory
involves memory protection, dynamic memory
allocation, etc. Battery should be treated as a special
resource. Sleep modes help in power management of
battery. Managing sensors include controlling sensing
rate. It is the responsibility of the operating system to
follow necessary mechanisms in order to consume the
power in optimized way in turn prolonging the life of
the WSN [2].

F. Real-time Nature
This is the optional design characteristic and is
application specific. Real-time applications of WSN
can be classified into periodic and a periodic, critical
and non critical. The classical example for the
periodic task is monitoring application, where the
data is read from the environment or habitat in a
periodic manner. Target tracking or fire explosion are
the examples for a periodic tasks. These examples
again can be classified into critical and non-critical
tasks. This classification is based on whether the
execution of the tasks is in stipulated time or not.
Satisfying real-time constraints is also one of the key
requirements for critical applications in WSN. For
example in applications like fire detection in nuclear
reactors, preventive action should be taken within
hard deadlines. Real-time constraints of the

applications can be satisfied with the help of a real-
time scheduler by following with proper scheduling
policy.

V. CLASSIFICATIONS FOR WSN
OPERATING SYSTEMS

Architecture, execution model, reprogramming,
scheduling, and power management are the important
design features that forms basis for our classification.
Below is an overview of the design features:
A. Architecture
Architecture of the kernel influences the way it
provides services. There are mainly three kinds of
architectures in the literature. They are:
 Monolithic

Application + Necessary OS components = Single
system image
 Modular

Application and OS is built as a set of interacting
modules
 Virtual Machine

Application as a set of static and dynamic
components = Network wide single system image

There is a trade-off between performance and the
flexibility depending on the architecture that is
chosen. Monolithic kernel always forms a single
system image for the node. This is not preferred if
there are frequent changes in the requirements of the
application, which might cause the reconfiguration of
existing software on the node. Modular architecture
fits well if there is a requirement for reconfiguration.
It simplifies the problems of code maintenance and
modification. But there is a overhead in loading and
unloading modules dynamically if the modules are
position dependent. This overhead also includes
allocation of contiguous memory for a single module.
Virtual machine architecture considers the whole
network of nodes as single entity. This gives
flexibility in developing applications. As application
is composed of instructions specific to virtual
machine, reprogramming is easy.

B. Execution Model
The kernel transitions and DVM are major sources of
overhead impacting the execution speed of an
application. [4] Execution model drives the
performance of the operating system for WSN.
Execution model or programming model used by
most of the embedded systems is event-based. But
thread-based programming model can also be used at
some cost. There exists trade-offs among these two.
The other execution models that are quite often used
are state based, object based and data centric. State
based approach is similar to FSM and offers many
advantages like concurrency, reactivity and
reconfigurability. Every application is composed of
states and responds to events which results in state
transitions based on different inputs.

 Design issues and classification of WSNs Operating Systems

International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN), ISSN No. 2248-9738 , Vol-2, Iss-4

284

Reconfigurability can be achieved simply by
changing the state transition table associated with the
application.

C. Reprogramming
Reconfigurability got much attention in WSNs
because of the inaccessibility of the sensor nodes
after being deployed in large number. In WSN
literature, reconfigurability is the ability to add/
delete/ modify the software module running on the
node. This functionality is useful when there is a need
to tune the application software according to the user
requirements and make the application adaptable. For
example, at run time it might require to change filter
condition of an aggregation mechanism or add a fault
tolerant service to make routing protocol robust.
Reconfigurability also enables to deploy
heterogeneous nodes i.e. different nodes running
different software modules. Reconfigurability is
accomplished using code distribution protocols.

Reprogramming can be done at different granularities
ranging from tuning a variable to changing the entire
image of software on the node. Application level
reprogramming replaces the entire application image.
Modular level or component level reprogramming
replaces/updates the module or component of an
application. Instruction level and variable level gives
the flexibility in changing instructions and tuning
parameters of the application respectively.

D. Scheduling
Real-time systems can be classified into periodic and
a periodic, critical and non critical. Most of the
applications of WSN can be classified into the
mentioned categories. The classical example for the
periodic task is monitoring application, where the
data is read from the environment or habitat in a
periodic manner. Target tracking or fire explosion are
the examples for a periodic tasks. These examples
again can be classified into critical and non-critical
tasks. This classification is based on whether the
execution of the tasks is in stipulated time or not.
Satisfying real-time constraints is also one of the key
requirements for critical applications in WSN. For
example in applications like fire detection in nuclear
reactors, preventive action should be taken within
hard deadlines. Real-time constraints of the
applications can be satisfied with the help of a real-
time scheduler by following a proper scheduling
policy.

E. Power Management
Power management interfaces provided by an
operating system can be used to enforce an optimal
way of utilizing energy. Conserving power involves
accessing/controlling components on the sensor node.
Power management interfaces are used to
control/access these components. The components
which expose power management interfaces are

processor, radio and battery. The components that can
be controlled to conserve power are processor and
radio.

F. Miscellaneous
 Simulation Support

The applications can be tested on the simulation
environment provided by the operating system,
before they are actually deployed in the network. The
same code that is tested on simulation environment
should be able to run on sensor nodes.
 Portability

Portability of the operating system to different
hardware platforms is important in order to cope up
with the upcoming hardware platforms.

VI. CONCLUSION

We have presented design issues, challenges,
characteristics and classification of operating systems
for WSN’s. The objectives of this paper were to
provide background knowledge of problem formation
on different operating systems for Tiny Networked
Sensors. Important points of the realization phase
such as the WSN operating system architecture,
execution model and reprogramming are discussed.

The survey explores the existing design approaches
as well as new requirements to be considered in the
future applications of OS for wireless sensor
networks. Finally, this paper includes helps the
researchers in understanding various aspects while
building WSN system software in particular to OS.
The issues presented here Motivates the design
principles to be considered while designing an OS for
WSN.

REFERENCES

[1] Antônio Augusto Fröhlich and Lucas Francisco Wanner:
“Operating System Support for Wireless Sensor Networks”.
Journal of Computer Science 4 (4): 272-281, 2008. ISSN
1549-3636

[2] Adi Mallikarjuna Reddy, V AVU Phani Kumar, D
Janakiram and G Ashok Kumar: “Operating Systems for
Wireless Sensor Networks: A Survey-Technical Report”,
IIT Madras, Chennai, India, May 3, 2007.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pis-
ter: “A System Architecture for Networked Sensors”,
ASPLOS-IX 11/00 Cambridge, MA, USA 2000.

[4] Lin Gu , John A. Stankovic “t-kernel: Providing Reliable
OS Support to Wireless Sensor Networks”, SenSys’06,
November 1–3, 2006, Boulder, Colorado, USA.

[5] Gregory J. Pottie, “Wireless sensor networks,” in IEEE
Information Theory Workshop Proceedings, June 1998.

[6] Kayvan Atefi,, Mohammad Sadeghi,, Arash Atefi “Real-
Time Scheduling Strategy for Wireless Sensor Networks
O.S”, International Journal of Distributed and Parallel
Systems (IJDPS) Vol.2, No.6, November 2011.

[7] Lalit Saraswat,Pankaj Singh Yadav “A Comparative
Analysis of Wireless Sensor Network Operating Systems”,
Proceedings of the 5th National Conference; INDIACom-

 Design issues and classification of WSNs Operating Systems

International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN), ISSN No. 2248-9738 , Vol-2, Iss-4

285

2011 Computing For Nation Development, March 10 – 11,
2011 Bharati Vidyapeeth‟s Institute of Computer
Applications and Management, New Delhi

[8] Prabal Dutta,Mike Grimmer, Anish Arora, Steven Bibyk,
David Culler “Design of a Wireless Sensor Network
Platform for Detecting Rare, Random, and Ephemeral
Events”

	DESIGN ISSUES AND CLASSIFICATION OF WSNS OPERATING SYSTEMS
	Recommended Citation

	DESIGN ISSUES AND CLASSIFICATION OF WSNS OPERATING SYSTEMS

