
International Journal of Computer Science and Informatics International Journal of Computer Science and Informatics

Volume 3 Issue 3 Article 5

January 2014

DYNAMIC DETECTION OF DESIGN INCONSISTENCY DURING DYNAMIC DETECTION OF DESIGN INCONSISTENCY DURING

SOFTWARE DEVELOPMENT USING DAID APPROACH SOFTWARE DEVELOPMENT USING DAID APPROACH

SUMA. V
Dayananda Sagar College of Engineering, Bangalore, India, sumavdsce@gmail.com

ARFA BAIG
Department of Information Science and Engineering, Dayananda Sagar Institutions, Bangalore, India,
arfa.61@gmail.com

DIVYASHREE B J
Department of Information Science and Engineering, Dayananda Sagar Institutions, Bangalore, India,
divyabj08@gmail.com

N B SONALI
Department of Information Science and Engineering, Dayananda Sagar Institutions, Bangalore, India,
sonalinayakank@gmail.com

S AKSHAYA
Department of Information Science and Engineering, Dayananda Sagar Institutions, Bangalore, India,
akshayashankar@gmail.com
Follow this and additional works at: https://www.interscience.in/ijcsi

 Part of the Computer Engineering Commons, Information Security Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
V, SUMA.; BAIG, ARFA; B J, DIVYASHREE; SONALI, N B; and AKSHAYA, S (2014) "DYNAMIC DETECTION OF
DESIGN INCONSISTENCY DURING SOFTWARE DEVELOPMENT USING DAID APPROACH," International
Journal of Computer Science and Informatics: Vol. 3 : Iss. 3 , Article 5.
DOI: 10.47893/IJCSI.2014.1140
Available at: https://www.interscience.in/ijcsi/vol3/iss3/5

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer Science and Informatics by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcsi
https://www.interscience.in/ijcsi/vol3
https://www.interscience.in/ijcsi/vol3/iss3
https://www.interscience.in/ijcsi/vol3/iss3/5
https://www.interscience.in/ijcsi?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcsi/vol3/iss3/5?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Dynamic Detection of Design Inconsistency During Software Development using Daid Approach

International Journal of Computer Science and Informatics ISSN (PRINT): 2231 –5292, Volume-2, Issue-3, 2012

81

DYNAMIC DETECTION OF DESIGN INCONSISTENCY DURING
SOFTWARE DEVELOPMENT USING DAID APPROACH

SUMA V1,ARFA BAIG2,DIVYASHREE B J3,N B SONALI4 & S AKSHAYA5

1,2,3,4,5Department of Information Science and Engineering, Dayananda Sagar Institutions, Bangalore, India

Email:sumavdsce@gmail.com
arfa.61@gmail.com,divyabj08@gmail.com,sonalinayakank@gmail.com,akshayashankar@gmail.com

Abstract-Evolution of software has lead to the fast growth of technology whose impact can be witnessed in all the domains
of scientific and engineering applications. Hence engineering high quality software is one of the core challenges of all IT
industries. The software models which are being used for the development of the software products may lead to
inconsistencies. Nevertheless, theexistence of several methodologies during the development process in order to overcome
inconsistencies operates at static mode leading towards expensive nature of rework on those inconsistencies. Therefore, this
paper presents a dynamic model which resolves the aforementioned issue by capturing inconsistencies dynamically in an
automated mode using Dynamic automated inconsistency detection (DAID) model. The implementation results of DAID
capture the design inconsistencies dynamically at the time of their injection points in lieu of inconsistency detection during
validation testing. This approach of dynamic design inconsistency detection reduces cost, time and its associated overheads.
Further implementation of DAID in an automated mode increases productivity, quality and sustainability in IT industries.

Keywords: Software Quality; Consistency Checking; Software Development Life Cycle; Design Techniques, Analysis of
inconsistencies.

I. INTRODUCTION

For the persistence of software industry, total customer
satisfaction is necessary. Hence emergence of high quality
software is necessary. Attributes of high quality software
includes development of software product within the
scheduled budget, resources,time and more importantly to
be flaw free. Hence it is rudimentary for any software
generating organization to implement highly structured
development process. Since quality does not emerge as an
end factor but is realized as a continual process, the entire
software development life cycle comprising of
requirements analysis phase, design phase, incrimination
phase and testing should be individually and
cumulativelydefect free. Further, most of the
ITindustriesuse objects oriented approach to implement
their applications. It is worth to note that designing
software models enables one to convert the theoretical
requirement specifications into implementable code.
However, from our adherent interpretation on several
projects across several software industries indicate that the
design phase is more error prone due to the existence of
conventional mode of designing. Currently, there exists
several design models to detect design. The current
approach of design models uses batch consistency and type
based approaches which detects the inconsistencies in the
design model. However, these approaches have a major
limitation as it is time consuming and use manual
annotations .It further leads to accelerated cost with
diminished quality and productivity which is a foremost
risk for any software company. Hence, inconsistency
detection in design models should be carried out to avoid
unnecessary rework. However, it is seen that the problem of
delayed detection of design inconsistency is due to lack of
automated mode of detecting inconsistency. Further, they
unearth these inconsistencies during validation testing
rather than their detection dynamically at the time of their
injection points. Hence the scope of this research is to
reduce injection of design inconsistencies dynamically.
This paper introduces the development of an automated

design checking inconsistency checking technique
usingDynamic automated inconsistency detection (DAID)
model. The implementation results of DAID model is
presented in this paper using a sample ATM case study.
Section II of this paper provides background work for the
above-stated problem. Section III elucidates the research
design and Section IV provides the description of the
developed model. SectionV provides implementation of
DAID model and results .Section VI summarizes the entire
work.

II. LITERATURE SURVEY

Several researches is progressive in detecting the
inconsistencies in software models. Authors in [1], state
that the consistency is performed using inter-view point
rules to detect the inconsistencies [1].To make the
consistency checking easier authors of [2] have used graph
representation comprising of class and sequence diagram
[2].However, author in [3] recommends UML design
models tend to detect and repair inconsistencies and they
further suggest the designer to be aware of design flaws
inorder to overcome the design inconsistencies [3].Authors
of [4] has proposed technique to tolerate and manage
inconsistencies during software development[4].Authors in
paper [5] provide various options and approaches for fixing
inconsistencies [5].Author in [6] suggests use of various
metamodels and consistency rules for fixing inconsistencies
during development activity [6].However, author in [7] has
introduced a new technique to automatically decide when to
evaluate the consistency rules and works with black box
consistency rules [7].Authors in [8] expresses that
regression testing techniques to identify inconsistencies and
other flaws existing in the software [8]. Authors in [9] state
that major defects are seen at design phase for the
applications developed in product based industries.
Therefore, authors in [10] have proposed development of
dynamic model to reduce design inconsistencies
dynamically.

International Journal of Computer Science and Informatics ISSN (PRINT): 2231 –5292, Volume-3, Issue-3

169

Dynamic Detection of Design Inconsistency During Software Development using Daid Approach

International Journal of Computer Science and Informatics ISSN (PRINT): 2231 –5292, Volume-2, Issue-3, 2012

82

III. RESEARCH DESIGN

Consistency rules are conditions on a model, using
which the model is validated. Instantaneous
consistency checking thus requires a perceptive of
how the model changes. This research proceeds with
the identification of design problem in an automated
manner by listing out the various inconsistencies
related to every part or phase of the designed model.
With the knowledge of existing works this research
lead us to propose a dynamic and automated
technique of detecting the design inconsistencies
during software development process. Consequently,
the next step was to contrast the existing techniques
with respect to cost and time objectives that lead us to
major differences stating the efficiency of our
approach. From the data analysis, this investigation
has directed to introduce an innovative technique
through which design inconsistencies are detected in
an automated manner without human intervention
right at the time of its inception .This is achieved with
the implementation of DAID (Dynamic and
Automated Inconsistency Detection) model.

IV. DAID MODEL

The architecture of DAID model is shown in Figure1.This
section provides an explanation on the operations of DAID
model using a sample ATM example.
Working of DAID model starts with the generation of SRS
from the designer followed by the design specifications.
Traditionally, the inconsistencies detected aremodified in
implementation phase which leads to rework. Our model
perceives the inconsistencies in the design before the model
enters the implementation phase in order to unearth design
flaws.
Consider the case study which is an ATM application.
DAID Model verifies card using the rule checker. In case
an inconsistency is detected (Card is invalid), the rule
checker reports the inconsistencies to the designer. The
designer in turn, rectifies the model and reverts it back to
the DAID model for rechecking. This rechecking
mechanism is allowed to happen only for two cycles. This
will help us to check the efficiency of the designer based on
the design complexity as well as the time constraint. In
cases where there are no inconsistencies (such as a card is
valid) detected, the above mentioned process is not
performed and the design directly enters code construction
phase.

Figure1.DAID Model [10]

An ATM application has several classes andin this paper a
sample class is depicted in figure 2. Accordingly, accounts
class can be either of type savings account or current
account.There can be inconsistencies observed during the
design of this class. Table 1 depicts a sample list of design
inconsistencies that may occur in the sampled ATM
application.

Figure2. Class Diagram

Table 1.Sample inconsistency list of ATM application

Figure 3.1, Figure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5
illustrate the sequence diagrams for various sampled
inconsistencies observed in ATM application.

Figure3.1. ATM sequence diagram for inserting card

Figure3.2 ATM sequence diagram for checking amount

International Journal of Computer Science and Informatics ISSN (PRINT): 2231 –5292, Volume-3, Issue-3

170

Dynamic Detection of Design Inconsistency During Software Development using Daid Approach

International Journal of Computer Science and Informatics ISSN (PRINT): 2231 –5292, Volume-2, Issue-3, 2012

83

Figure 3.3 ATM sequence diagram for checking

communication lines

Figure 3.4 ATM Sequence diagram for card rejection due to

duplication.

Figure 3.5 ATM Sequence diagram for out of cash

From the Figure 3.1, Figure 3.2, Figure 3.3, Figure 3.4 and
Figure 3.5, we can infer that there can be inconsistencies
such as rejection of card, invalid amount, out of cash and
duplication of card which needs to be addressed at the time
of their injection in order to reduce overheads during
software development process.

V.RESULTS

Figure 4.Snapshot of an ATM Transaction UML Diagram built

in ArgoUML.

Consider the following UML Diagram of anATM
application which is constructed in the ArgoUMLsoftware.
ArgoUML allows us to construct any UML diagram which
can be exported and given as input in SDMetrics.

The aim is to provide a high level comprehensive view of
transformation of user requirements into consistent design
specifications using a simplified UML model which is
constructed in ArgoUML and it can be in the form of class
diagram, sequence diagram and also use case diagram.
The completed design is then saved and in order to check
for the inconsistencies, this file is exported with the help of
XMI (XML metadata interchange) which enables easy
interchange between ArgoUML and SDMetrics.
SDMetrics analyzes the structure of the UML models by
making use of the design rule checking to automatically
detect incomplete, incorrect, redundant or inconsistent
design. It finds problems at the design stage, even before
they are committed to source code.

Rule Checker:
The rules shown in the following table are cross checked by
the rule checker against the UML diagram which is given
as input.

Table.2 Rules and their description

Report Generator
Once the model is analyzed with the help of the rules, the
list of inconsistencies will be displayed by the report
generator which checks whether the given model is
consistent.
Once the rule checking for each model element in the UML
diagram is completed, the metrics is calculated and is
displayed as a table which is shown below in Figure 5:-

Figure 5. Snapshot of list of inconsistencies

International Journal of Computer Science and Informatics ISSN (PRINT): 2231 –5292, Volume-3, Issue-3
171

Dynamic Detection of Design Inconsistency During Software Development using Daid Approach

International Journal of Computer Science and Informatics ISSN (PRINT): 2231 –5292, Volume-2, Issue-3, 2012

84

Figure 6 and Figure 7 illustrate the cost and time analysis using
DAID.

Figure 6.Cost comparison

From Figure 6, we can infer that an ATM application when
developed using DAID, the cost required for rework of
design inconsistencies is very low than when compared to
cost required to fix design inconsistencies in the traditional
approach. This cost reduction is observed to be in 40% as
depicted in the graph, since inconsistencies are fixed at the
time of its injection at the design phase itself. Similar
inference can be drawn for all other inconsistencies.

Figure 7. Time comparison

From Figure 7, we can infer that in the case study of ATM
application, time required to fix inconsistencies detected
during design phase dynamically using DAID has reduced
to 4 hours which is less than the time required to rework on
the design flaw when detected in the traditional mode after
implementation of the design. This is due to fixing of the
design inconsistencies at the time of its injection in the
design phase itself. Similar inference can be drawn for all
other inconsistencies.

VI. CONCLUSION

Development of quality software is one of the
trivialactivities of any software industry. However, the

current scenarioin most of the IT industries focuses on
quality measurement at the final stages and not at all the
phases. Since, design phase is one of the injections and
dwelling point for several design inconstancies, it is
imperative to resolve those flaws without enabling them to
propagate. There exists several design quality models
which operate in the static mode rather than dynamic
detection of design flaws. This paper therefore
introducesDynamic and Automated Inconsistency
Detection (DAID)model along with consistency rules so as
to facilitate fast, accurate, and dynamic detection of design
inconsistencies using the predefined design rules right at
the design phase itself.The approach described here works
on UML models that can be exported to various formats
such as XMI (XML Meta data interchange) and their
consistency can be checked through software such as
SDMetrics.Using the DAID model, the efficiency of the
designer can be measured. Further, the complexity of the
code and incomplete requirements specification can be
tested. This approach further enhances the productivity and
the quality of the product in the industry with reduction in
cost and time for rework of defects.

REFERENCES

[1]. S.EasterBrook, A.Finkelstein,J.Kramer and B.Nuscibeh,

“Coordinating distributed ViewPoints:The anatomy of a
consistency check”,1994.

[2]. C. Forgy, “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem”, 1982.

[3]. NentwichC,Emmerich W and Finkenstein A: “Consistency
Management with Repair Actions”,Proc.of the 25th
International Confernce on Software Engineering(ICSE), pp.
455-464, 2003

[4]. R.Balzer, “Tolerating Inconsistency”,Proc. 13th
International Conference on Software Engineering, pp. 158-
165, 1991.

[5]. A. Egyed, “FixingInconsistencies in UML DesignModels”,
Proc.29th International Conference on Software Engineering,
pp. 292-301, 2007.

[6]. A. Egyed, E. Letier, and A. Finkelstein, “Generating and
Evaluating Choices for Fixing Inconsistencies in UML
Design Models”, Proc. 23rd International Conference on
Automated Software Engineering, 2008.

[7]. I. Groher, A. Reder, and A. Egyed, “Incremental Consistency
Checking of Dynamic Constraints,” Proc. 12th,
International Conference on FundamentalApproaches to
Software Engineering, 2010

[8] GauravDuggal,Mrs.BhartiSuri“Understanding Regression
Testing Techniques”.Visit

http://www.rimtengg.com/coit2008/proceedings/SW15.pdf

[9]. V. Suma, T. R. Gopalakrishnan Nair, “Effectiveness of
Defect prevention in IT for product development”,
International Conference, TeamTech 2008, IISc, Bangalore,
proceedings pp 81, 2008.

[10]. Suma V, Arfa Baig, Divyashree B J, N B Sonali, S. Akshaya,
“Dynamic and Automated Technique of Detecting the
Design Inconsistencies”, International Conference on
Innovative Computing and Information Processing (ICCIP -
2012), Mahendra Engineering College, Tamil Nadu, India,
29th – 31st March 2012.

International Journal of Computer Science and Informatics ISSN (PRINT): 2231 –5292, Volume-3, Issue-3
172

	DYNAMIC DETECTION OF DESIGN INCONSISTENCY DURING SOFTWARE DEVELOPMENT USING DAID APPROACH
	Recommended Citation

	DYNAMIC DETECTION OF DESIGN INCONSISTENCY DURING SOFTWARE DEVELOPMENT USING DAID APPROACH

