
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 3 Issue 1 Article 1

January 2012

Predicting Fault-prone Software Module Using Data Mining Predicting Fault-prone Software Module Using Data Mining

Technique and Fuzzy Logic Technique and Fuzzy Logic

Ajeet Kumar Pandey
Reliability Engineering Centre Indian Institute of Technology Kharagpur Kharagpur, W.B. -721302,
ajeet.mnnit@gmail.com

Neeraj Kumar Goyal
Indian Institute of Technology - Kharagpur, ngoyal@hijli.iitkgp.ernet.in

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Pandey, Ajeet Kumar and Goyal, Neeraj Kumar (2012) "Predicting Fault-prone Software Module Using Data
Mining Technique and Fuzzy Logic," International Journal of Computer and Communication Technology:
Vol. 3 : Iss. 1 , Article 1.
DOI: 10.47893/IJCCT.2012.1105
Available at: https://www.interscience.in/ijcct/vol3/iss1/1

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol3
https://www.interscience.in/ijcct/vol3/iss1
https://www.interscience.in/ijcct/vol3/iss1/1
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol3%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol3/iss1/1?utm_source=www.interscience.in%2Fijcct%2Fvol3%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

Predicting Fault-prone Software Module Using Data Mining Technique and
Fuzzy Logic

Ajeet Kumar Pandey*, Neeraj Kumar Goyal
Reliability Engineering Centre

Indian Institute of Technology Kharagpur
Kharagpur, W.B. -721302

Email: ajeet.mnnit@gmail.com, ngoyal@hijli.iitkgp.ernet.in

Abstract--This paper discusses a new model towards
reliability and quality improvement of software systems by
predicting fault-prone module before testing. Model utilizes
the classification capability of data mining techniques and
knowledge stored in software metrics to classify the software
module as fault-prone or not fault-prone. A decision tree is
constructed using ID3 algorithm for existing project data in
order to gain information for the purpose of decision
making whether a particular module id fault-prone or not.
The gained information is converted into fuzzy rules and
integrated with fuzzy inference system to predict fault-prone
or not fault-prone software module for target data. The
model is also able to predict fault-proneness degree of faulty
module. The goal is to help software manager to concentrate
their testing efforts to fault-prone modules in order to
improve the reliability and quality of the software system.
We used NASA projects data set from the PROMOSE
repository to validate the predictive accuracy of the model.

1 INTRODUCTION

Due to the increased dependency of modern system on
software-based system, software reliability and quality
has become the primary concern during the software
development. It is difficult to produce fault-free software
due to the problem complexity, complexity of human
behaviors, and the resource constrains. System failures
due to the software failure are common and results in
undesirable consequences, which can adversely affect
both reliability and safety of the system. A software
system consists of various modules and, in general, it is
known that a small number of software modules are
responsible for majority of the failures. Moreover, it is
also known that early identification of faulty module can
help in producing software of quality and reliability more
cost effectively. Therefore, it is desirable to classify the
software module as fault-prone (FP) or not fault-prone
(NFP) just after the coding phase of software
development. Once the modules are classified as FP or

NFP, more testing efforts can be put on the fault-prone
module to produce reliable software.

A fault is a defect in source code that causes failures
when executed [1]. Software modules are said to be fault-
prone, when there are a high probability of finding faults
during its operation. In other words, a fault-prone
software module is the one containing more number of
expected faults than a given threshold value. The
threshold value can take any positive value and depends
on the project specific criteria. In general, when a
software module has been identified as fault-prone, more
and more testing efforts are applied to improve its quality
and reliability. The amount of testing effort applied to a
faulty module should be proportional to its degree of
fault-proneness. In other words, it is undesirable to apply
equal amount of testing efforts to all the software
modules. The testing efforts should be allocated on the
basis of its degree of fault-proneness.

This paper proposes a model for prediction of fault-
prone software module using fuzzy logic [2] and data
mining techniques [3]. Furthermore, fault-prone modules
are converted into fuzzy sets [4] to predict their degree of
fault-proneness.

 Rest of the paper is organized as follows: the
following section presents literature survey related with
the problem. Section 3 gives the brief idea about of data
mining techniques and fuzzy set theory. Section 4
describes the proposed model. Section 5 contains results
and discussion whereas conclusions are presented in
Section 6.

2 LITERATURE SURVEYS

Predicting the fault-prone software modules is of a great
interest among the software quality researchers and
industry professionals. As a result of this, various efforts
have been made for software fault prediction using
methods such as Decision Trees [5], Neural Networks [6],

1
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1

Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

Support Vector Machines [7], Bayesian Methods [8],
Naïve Bayes [9], Fuzzy Logic [10, 11], Dempster–Shafer
Belief Networks [12], Genetic Programming [13], Case-
based Reasoning [14, 15], and Logistic Regression [16,
17].

On reviewing literature, it is found that various
machine learning approaches [18] such as supervised,
semi-supervised, and unsupervised have been used for
building a fault prediction models. Among these,
supervised learning approach is widely used and found to
be more useful for predicting fault-prone modules if
sufficient amount of fault data from previous releases are
available. Generally, these models use software metrics of
earlier software releases and fault data collected during
testing phase. The supervised learning approaches can not
build powerful models when data is limited. Therefore,
the some researchers presented a semi-supervised
classification approach [19, 20] for software fault
prediction with limited fault data.

Menzies et al. [9] shown that defect predictors can be
learned from static code attributes since they are useful,
easy to use, and widely used. Taking clues from [9]
Pandey and Goyal [21] have presented an early fault
prediction model using process maturity and software
metrics. Software metrics have been shown to be good
indicators of software quality, and the number of faults
present in the software. Software metrics, which represent
the software product and its process, can be collected
relatively earlier during software development. Catal and
Diri [22] investigated the effects of data size, metrics, and
the feature selection techniques for software fault
prediction. They have also presented a systematic review
of various software fault prediction studies [23].

From the literature, it has been found that the decision
tree induction algorithms such as CART, ID3 and C4.5
are efficient technique for module classification. These
algorithms uses crisp value of software metrics and
classify the module as a fault-prone or not fault-prone. It
has been found that most of the early phase software
metrics have fuzziness in nature and crisp value
assignment seems to be impractical. Also a software
module can’t be completely fault-prone or not fault-
prone. In other words it is unfair to assign a crisp value of
software module representing its fault proneness.

3 RESEARCH BACKGROUND

3.1 Data Mining

Today’s advanced information systems have enabled
collection of increasingly large amounts of data. To
analyze these data, the interdisciplinary field of
Knowledge Discovery in Databases (KDD) has emerged.
KDD comprises of many steps namely, data selection,
data preprocessing, data transformation, data mining and
data interpretation and evaluation. Data mining forms a
core activity in KDD [3].

Data mining entails the overall process of extracting
knowledge from large amounts of data. Different types of
data mining are discussed in the literature such as
regression, classification and associations. The focus here
is on classification technique, which is the task of
classifying the data into a predefined class to its
predictive characteristics. The result of a classification
technique is a model which makes it possible to classify
future data points based on a set of specific characteristics
in an automated way. In the literature, there are many
classification techniques, some of the most commonly
used being ID3, C4.5, logistic regression, linear and
quadratic discriminant analysis, k-nearest neighbor,
Artificial Neural Networks (ANN) and Support Vector
Machines (SVM) [3]. Among these ID3 (Iterative
Dichotomiser), a well known decision tree induction
algorithm, is found to be an efficient, widely used and
practical classification technique. This paper integrate
ID3 algorithm with fuzzy inference system to predict
software module as FP or NFP.

3.2 Fuzzy set theory

3.2.1 Crisp and fuzzy sets. Crisp or Classical set can be
defined as a collection of well defined distinct object. In
other words, crisp sets contain objects that satisfy precise
properties of membership. For crisp set, an element x in
the universe X is either a member of some crisp set (A) or
not. This binary issue of membership can be can be
represented by a characteristic function as:

1,
() =

0,A

ifx A
x

ifx A
χ

∈⎧
⎨ ∉⎩

where, ()A xχ gives an unambiguous membership of the
element, x in a set A.

A fuzzy set is a set containing elements that have
varying degree of membership in the set. Unlike crisp set,
elements in a fuzzy set need not be complete and can also
be member of other fuzzy sets on the same universe. In
this way, fuzzy set allows partial membership as well as
binary membership. Let Ã is a fuzzy set of A, if an

2
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1

Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

element in the universe, say, x is a member of fuzzy set Ã
then this mapping is given by a membership function
µÃ(x). The membership function µÃ(x), gives the degree of
membership for each element in the fuzzy set Ã and is
defined in range [0, 1] where 1 represents elements that
are completely in Ã, 0 represents elements that are
completely not in Ã, and values between 0 and 1
represent partial membership in Ã. Formally, a fuzzy set
Ã can be represented using Zadeh’s notation [4] as:

31 2

1 2 3

 .. n

n

µ µµ µÃ x x x x
⎧ ⎫= + + + +⎨ ⎬
⎩ ⎭

, where µ1, µ2 …µn are

the membership value of the elements x1, x2… xn
respectively in the fuzzy set Ã.

Let FP% is a fuzzy set representing collection of fault-
prone modules m1, m2 . . . mn. Let µ1, µ2 …µn are the
membership value of module m1, m2 . . . mn.
respectively. These membership values represent the
degree of fault-proneness of a faulty module. Taking
these points into consideration, a fuzzy set of fault-prone
module can be described using Zadeh’s notation [4] as:

31 2

1 2 3
 .. n

n

µ µµ µ
FP

m m m m
⎧ ⎫= + + + +⎨ ⎬
⎩ ⎭

% .

3.2.2 Fuzzy profiles development.

Software metrics are measurement of the software
development process and product. These software metrics
have been shown to be good indicator of software quality,
and the number of faults present in the software and can
be collected relatively earlier during software
development [21]. Knowledge is stored in the software
metrics can be used for quality prediction of the
developing software. IT has also been found that early
phase software metrics have fuzziness in nature and crisp
value assignment seems to be impractical [21]. Also a
software module can’t be completely fault-prone or not
fault-prone. In other words it is unfair to assign a crisp
value of software module representing its fault proneness.

Membership functions of a software metrics can be
developed by selecting a suitable method from the various
available methods such as triangular, trapezoidal, gamma
and rectangular [2]. However, triangular membership
functions (TMFs) are widely used for calculating and
interpreting reliability data because they are simple and
easy to understand [10]. Here, we have considered
various software metrics as input variable for the model.

Furthermore, we assume that these software metrics are
of logarithmic nature and can be divided into five
linguistic categories namely very low (VL), low (L)
medium (M), high (H) and very high (VH), depending on
their actual value. Considering these, fuzzy profile ranges
(FPR) of software metrics are developed using the
following formula and shown in fig. 1.

(){ }
(){ }

10

10

log 1: 5
1

log 5
FPR

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 1. Fuzzy profiles of input variables

Fuzzy profile of each input variables may take the values:
VL (0; 0; 0.14), L (0; 0.14; 0.32), M (0.14; 0.32; 0.57), H
(0.32; 0.57; 1.0) and VH (0.57; 1.0; 1.0).

Output of the model is DFP (Fault-prone Degree),
which is also assumed to fallow logarithmic scale and
can be categorizes into seven linguistic categories
such as: very very low (VVL), very low (VL)
medium (M), high (H), very high (VH) and very very
high (VVH). Therefore fuzzy profile range (FPR) of
DFP can be developed using the following formula
and shown in fig. 2.

 Figure 2. Fuzzy profiles of output variables

Fuzzy profile of output variable may take the values:
VVL (0; 0; 0.08), VL (0; 0.08; 0.17), M (0.17; 0.29;

(){ }
(){ }

10

10

log 1: 7
1

log 7
FPR

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦

3
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1

Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

0.44), H (0.29; 0.44; 0.64), VH (0.44; 0.64; 1.0) and
VVH (0.64; 1.0; 1.0).

4 PROPOSED MODEL

4.1 Model architecture

The model architecture is shown in Fig. 3. The model is
implemented in MATLAB utilizing fuzzy logic toolbox.
The basic steps of the model are identification of input-
output variables, development of fuzzy profile of these
input/output variables, defining relationships between
inputs and output variables using fuzzy inference system
(FIS). Software metrics, as listed in Table 1, are
considered as input variables for the proposed model and
output variable of the model is degree of fault-prone
(DFP) of a module, that decides whether module is a
fault-prone module (FP) or a not fault-prone (NFP).

Figure 3. Proposed model architecture

4.2 Data collection

This study makes the use of KC2 project data [24] which
is a public domain data set and was made available
through Metric Data Program (MDP) at NASA. The KC2
project is the science data processing unit of a storage
management system used for receiving and processing
ground data for missions, and written in C++ language.
This project data set contains 522 program modules, of
which 107 modules have one or more faults while
remaining 415 modules are fault-free i.e. have no
software faults.

Each program module in the KC2 was characterized by
21 software metrics (5 different lines of code metrics, 3
McCabe metrics, 4 base Halstead metrics, 8 derived
Halstead metrics, 1 branch-count) and 1 target metric,
which says whether a software module is fault-prone or

not. Out of these 21 software metrics, only 13 metrics (5
different lines of code metrics, 3 McCabe metrics, 4 base
Halstead metrics, and 1 branch- count) are utilized
because 8 derived Halstead metrics do not contain any
extra information for software fault prediction. Theses
metrics are given in Table 1.

Table 1. Software metrics inside KC2 project [24]

Metrics Information

LOC McCabe’s line count of code
EL Executable LOC
CL Comment LOC
BL Blank LOC

CCL Code and comment LOC
n1 No. of unique operators
n2 No. of unique operands
N1 Total no. of operators
N2 Total no. of operands
CC McCabe’s cyclomatic complexity
EC McCabe’s essential complexity
DC McCabe’s design complexity
BC Branch count of flow graph

4.3 Decision tree construction

Decision tree is one of the most efficient classification
techniques. Many algorithms have been proposed for
building decision trees. The most popular are ID3
(Iterative Dichotomiser 3) introduced by Quinlan [25],
and its modifications, e.g. C4.5 which makes a decision
tree for classification from symbolic data.

A decision tree is a flow-chart-like structure where
each internal node denotes a test on an attribute, each
branch represents outcome of the test, and leaf node
represent the target class. Internal nodes are denoted by
rectangles, and leaf nodes are denoted by ovals [3].
Figure 4 shows a simple decision tree for a software
module, where testing attributes are various software
metrics, branch represent the outcome of the test e.g. low
(L), medium (M) or high (H) and target classes are FP
and NFP.

Decision trees are comprised of two major procedures
(1) building procedure or induction (2) classification
procedure or inference. Building procedure starts with an
empty tree to select an appropriate test attribute for each
decision node using some attribute selection measure. The
process continues for each sub decision tree until
reaching leaves with their corresponding class. The
knowledge represented in decision tree can be extracted
and represented in the form of classification “IF-THEN”

4
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1

Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

rules. Classification procedure uses these “IF-THEN”
rules to classify new instances, having only values of all
its attributes. We use the associated label to obtain the
predicted class value of the target data.

Figure 4. A simple decision tree

Attribute selection is generally based on information gain,
serves as a criterion in choosing test attribute at each
decision node. Partitioning consists of partitioning the
training set according to all possible attributes values
which leads to the generation of one partition for each
possible value of the selected attribute. Stopping, stops
the partitioning process if (i) all the remaining objects
belongs to only one class, then the node is declared as a
leaf labeled with this class value (ii) there is no further
attribute to test. For software module classification, ID3
algorithm steps can be summarized as follows:

1. Take all the metrics of project data and count
their information gain.

2. Choose a metric as a test-metric with highest
information gain value.

3. Create nodes for this test-metric and do partition.
4. Repeat (1)-(3) recursively until

(i) If all data for a selected node
belongs to the same class.

(ii) If there are no more remaining
metrics on which the data may be
further partitioned.

(iii) If there are no data for the selected
node.

These steps can be applied to a set of data to generate
decision trees. Classification rules are extracted form the
resulting decision tree by tracing a path from the root to a
leaf node. The accuracy of the derived classifier can be
estimated using Confusion Matrix and discussed in the
following section.

4.4 Estimating classifier accuracy

Existing project data [24] are used data to derive the
classifier after then different target data sets are applied to
the classifier to estimate the accuracy of the model.
Accuracy of the model is considered as the comparison
factor with the earlier traditional models and may be
obtained using Confusion Matrix [26] as given in Table 2.
A confusion matrix contains information about actual and
predicted classifications done by a classification system.

Table 2. A confusion matrix

Predicted
Label FP NFP

Actual FP True Positive (TP) False Negative(FN)
NFP False Positive (FP) True Negative (TN)

• TP and TN are the number of correct predictions

that an instance is positive and negative
respectively.

• FP and FN are the number of incorrect
predictions that an instance is positive and
negative respectively.

Authors such as, El-Emam et al. [27], Elish et al. [7] have
used confusion matrix as the basis for determining
predictive accuracy of the classifier. The predictive
accuracy, also known as correct classification rate, is
defined as the ratio of the number of modules correctly
predicted to the total number of modules. It is calculated
as follows:

()
()

100
TP TN

Accuracy
TP TN FP FN

⎡ ⎤+
= ×⎢ ⎥

+ + +⎢ ⎥⎣ ⎦

For example, consider a model which predicts for 10,000
software modules whether each module is fault-prone or
not fault-prone. This model correctly predicts 9,700 not
fault-prone, and 100 fault-prone. The model also
incorrectly predicts 150 modules which are not fault-
prone to be fault-prone and 50 modules which are fault-
prone to be not fault-prone. The confusion matrix results
the model accuracy to 98% and shown in Table 3.

Table 3. Confusion matrix of software modules

 Predicted
 Label FP NFP

5
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1

Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

Actual FP 100 50
 NFP 150 9700

4.5 Proposed algorithm

Step 1 Identify the target class C {FP, NFP},
for a given project data.
Step2 Compute the information gain value for
each metric in the project data.
Step 3 Choose a metric as a test-metric with
highest information gain value.
Step 4 Create a node for this test-metric and do
partition.
Step 5 Repeat Step 1-Step 3 recursively until

Step 5.1 if all data for a selected node belongs
to the same class
Step 5.2 if there are no more remaining metrics
on which the data may be further partitioned.
Step 5.3 if there are no data for the selected
node.

Step 6 Returns (Decision Tree).
Step 7 Extract classification rules form the
decision tree.
Step 8 Use these rules as fuzzy rules in to FIS
at step 9.
Step 9 Develop a FIS (inputs are software metrics
and outputs are FP or NFP modules).
Step 10 Classify the project data into target class
(FP or NFP) using developed FIS.

Figure 5. A decision tree using 60% of KC2 data set

5 RESULTS AND DISCUSSION

We examined the decision tree learning algorithm ID3
and implement this algorithm using MATLAB
programming. Various decision trees are generated using
20%, 40%, 60% and 80% of KC2 project data set [24].
Figure 5 shows a decision tree using 60 percent of KC2
data set. After generating decision trees, we can derive
different classifiers and accuracy of each classifier is
estimated on different mutually exclusive target data as
shown in Table 4. The experiment is repeated ten times
and each experiment type has been chosen as “Train/Test
Percentage” of the data. The accuracy of each repetition is
shown on Table 4. It is obvious form Table 4 that the
prediction accuracy increases with increasing training
data.

Model accuracy is estimated as the overall average
accuracy obtained from ten different experiment results.
The accuracy of the proposed model using KC2 data set
is found to be 87.37 percent, which is better than the
earlier models [28, 29] and are given in Table 5.

Next, we show the dependence of prediction accuracy
on the training data. For this we have developed six
different FIS namely, MP5_95, MP10_90, MP20_80,
MP40_60, MP60_40, and MP20_80, using KC2 data set.
Initially, when training data size is very small (5 percent),
prediction accuracy is found to be 70.22 percent and it
suddenly grows to 83.47 as soon as size of training data is
increased to 10 percent. It is found that on further
increasing the size of training data, the prediction
accuracy grows slightly and reaches up to 95.08 percent
as shown in Table 6.

6 CONCLUSIONS

This paper presented a model for prediction of fault-prone
module for a large software system using ID3 algorithm
and fuzzy inference system. Model is also able to predict
the fault-prone degree of a faulty module when it is
converted into a fuzzy set. By doing so, the project
manager can prioritize their testing effort to achieve
software system having more quality and reliability.
Model results are promising when compared with some
of the earlier models for KC2 dataset. Some useful
directions for future work may include analyzing the
amount of testing efforts saved by the model.

6
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1

Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

Table 4. Prediction accuracy of the model on KC2 dataset

Experiments Training
(%)

Test
(%)

Number of FP
modules

(predicted)

Accuracy
(%)

Average
(%)

1

20

20 17 81.73

81.21
2 40 42 78.85
3 60 54 80.13
4 80 32 84.12
5

40
20 6 84.62

86.04 6 40 19 87.50
7 60 26 86.02
8 60 20 25 85.58 87.16 9 40 17 88.74

10 80 20 10 95.08 95.08

Table 5. Performance results of the model on KC2 dataset

Model Class
Prediction

Rank
Prediction

Accuracy
(%)

Catal et al.[28] Yes No 82.22

Saravana et al. [29] Yes No 81.72

Proposed Model Yes Yes 87.37

Table 6. Training effect on prediction accuracy

 MP5_95 MP10_90 MP20_80 MP40_60 MP60_40 MP80_20

Training (%) 5 10 20 40 60 80

Testing (%) 95 90 80 60 40 20

Accuracy (%) 70.22 83.47 84.12 85.09 87.84 95.08

REFERENCES

1. J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability:
Measurement, Prediction, and Application (McGraw-Hill Publication,
1987).

2. T. J. Ross, Fuzzy Logic with Engineering Applications (Willy-India
3rd Edition, 2010).

3. J. Han, M. Kamber, Data Mining: Concepts and Techniques (Morgan

Kaufmann Publishers, USA, 2001).

4. L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-353.

7
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1

Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

5. T.M. Khoshgoftaar and N. Seliya, Software quality classification
modeling using the SPRINT decision tree algorithm, In the
proceedings of the 4th IEEE International Conference on Tools with
Artificial Intelligence, Washington, DC, 2002, pp. 365-374.

6. M.M. Thwin and T. Quah, Application of neural networks for software
quality prediction using object-oriented metrics, In the proceedings of
the 19th International Conference on Software Maintenance,
Amsterdam, The Netherlands, 2003, pp. 113-122.

7. K.O. Elish and M.O. Elish, Predicting defect-prone software modules
using support vector machines, Journal of Systems and Software, 81
(2008) 649-660.

8. G.J. Pai and J.B. Dugan, Empirical analysis of software fault content
and fault proneness using bayesian methods, IEEE Transactions on
Software Engineering, 33 (2007) 675-686.

9. T. Menzies, J. Greenwald and A. Frank, Data Mining Static Code
Attributes to Learn Defect Predictors, IEEE Transactions on Software
Engineering, 33 (2007) 2-13.

10. O. P. Yadav, N. Singh, R. B. Chinnam, and P. S. Goel, A fuzzy logic
based approach to reliability improvement estimation during product
development, Reliability Engineering and System Safety, 80 (2003)
63-74.

11. N. J. Pizzi, Software quality prediction using fuzzy integration: a case
study, (Springer-Verlag, 2007), pp. 67-76.

12. L. Guo, B. Cukic and H. Singh, Predicting fault prone modules by the
Dempster-Shafer belief networks, In the proceedings of the 18th IEEE
International Conference on Automated Software Engineering, IEEE
Computer Society, Montreal, Canada, 2003, pp. 249-252.

13. M. Evett, T. Khoshgoftaar, P. Chien and E. Allen, GP-based software
quality prediction, In the proceedings of the 3rd Annual Genetic
Programming Conference, San Francisco, CA, 1998, pp. 60-65.

14. T. M. Khoshgoftaar, N. Seliya and N. Sundaresh, An Empirical Study
of Predicting Software Faults with Case-Based Reasoning, Software
Quality Journal, 14 (2006) 85-111.

15. K. El Emam, S. Benlarbi, N. Goel and S. Rai, Comparing case-based
reasoning classifiers for predicting high risk software components,
Journal of Systems and Software, 55 (2001) 301-320.

16. H.M. Olague, S. Gholston and S. Quattlebaum, Empirical validation of
three software metrics suites to predict fault-proneness of object-
oriented classes developed using highly iterative or agile software
development processes, IEEE Transactions on Software Engineering,
33 (2007) 402-419.

17. N. F. Schneidewind, Investigation of Logistic Regression as a
Discriminant of Software Quality, In the proceedings of 7th
International Software Metrics Symposium, London, UK, 2001, pp.
328-337.

18. I. Gondra, Applying machine learning to software fault-proneness
prediction, Journal of Systems and Software, 81 (2008) 186-195.

19. N. Seliya N and T. M. Khoshgoftaar, Software Quality Estimation
with Limited Fault Data: A Semi-Supervised Learning Perspective,
Software Quality Journal, 15 (2007) 327-344.

20. N. Seliya and T. M. Khoshgoftaar, Software Quality Analysis of
Unlabeled Program Modules with Semi-Supervised Clustering, IEEE
Transactions on Systems, Man and Cybernetics-Part A: Systems and
Humans, 37 (2007) 201-211.

21. A. K. Pandey and N. K. Goyal, A Fuzzy Model for Early Software
Fault Prediction Using Process Maturity and Software Metrics,
International Journal of Electronics Engineering, 1 (2009) 239-245.

22. C. Catal and B. Diri, Investigating The Effect Of Dataset Size, Metrics
Set, and Feature Selection Techniques on Software Fault Prediction
Problem, Information Sciences, 179 (2009) 1040-1058.

23. C. Catal and B. Diri, A Systematic Review of Software Fault
Predictions studies, Expert Systems with Applications, 36 (2009) 7346-
7354.

24. S. J. Sayyad and T. J. Menzies, The PROMISE Repository of
Software Engineering Databases (2005),
http://promise.site.uottawa.ca/SERepository.

25. J. R. Quinlan, Induction on decision trees, Machine Learning, 1 (1986)
81-106.

26. I. Witten, and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques (Morgan Kaufmann, San Francisco, 2005).

27. K. El-Emam, W. Melo and J. C. Machado, The prediction of faulty
classes using object-oriented design metrics, Journal of Systems and
Software, 56 (2001) 63-75.

28. Catal and B. Diri, A Fault Prediction Model With Limited Fault Data
to Improve Test Process, In the proceedings of the 9th International
Conference on Product Focused Software Process Improvement,
LNCS 5089, 2008, pp. 244-257.

29. Saravana Kumar K., Early Software Reliability and Quality Prediction
(Ph.D. Thesis, IIT Kharagpur, Kharagpur, India, 2009).

8
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1

	Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic
	Recommended Citation

	Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

