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Abstract--This paper discusses a new model towards 
reliability and quality improvement of software systems by 
predicting fault-prone module before testing. Model utilizes 
the classification capability of data mining techniques and 
knowledge stored in software metrics to classify the software 
module as fault-prone or not fault-prone. A decision tree is 
constructed using  ID3 algorithm for existing project data in 
order to gain information for the purpose of decision 
making whether a particular module id fault-prone or not. 
The gained information is converted into fuzzy rules and 
integrated with fuzzy inference system to predict fault-prone 
or not fault-prone software module for target data. The 
model is also able to predict fault-proneness degree of faulty 
module. The goal is to help software manager to concentrate 
their testing efforts to fault-prone modules in order to 
improve the reliability and quality of the software system. 
We used NASA projects data set from the PROMOSE 
repository to validate the predictive accuracy of the model. 

  
1 INTRODUCTION 

 
Due to the increased dependency of modern system on 
software-based system, software reliability and quality 
has become the primary concern during the software 
development. It is difficult to produce fault-free software 
due to the problem complexity, complexity of human 
behaviors, and the resource constrains. System failures 
due to the software failure are common and results in 
undesirable consequences, which can adversely affect 
both reliability and safety of the system. A software 
system consists of various modules and, in general, it is 
known that a small number of software modules are 
responsible for majority of the failures. Moreover, it is 
also known that early identification of faulty module can 
help in producing software of quality and reliability more 
cost effectively. Therefore, it is desirable to classify the 
software module as fault-prone (FP) or not fault-prone 
(NFP) just after the coding phase of software 
development. Once the modules are classified as FP or 

NFP, more testing efforts can be put on the fault-prone 
module to produce reliable software.  

A fault is a defect in source code that causes failures 
when executed [1]. Software modules are said to be fault-
prone, when there are a high probability of finding faults 
during its operation.  In other words, a fault-prone 
software module is the one containing more number of 
expected faults than a given threshold value. The 
threshold value can take any positive value and depends 
on the project specific criteria. In general, when a 
software module has been identified as fault-prone, more 
and more testing efforts are applied to improve its quality 
and reliability. The amount of testing effort applied to a 
faulty module should be proportional to its degree of 
fault-proneness. In other words, it is undesirable to apply 
equal amount of testing efforts to all the software 
modules. The testing efforts should be allocated on the 
basis of its degree of fault-proneness.   

This paper proposes a model for prediction of fault-
prone software module using fuzzy logic [2] and data 
mining techniques [3]. Furthermore, fault-prone modules 
are converted into fuzzy sets [4] to predict their degree of 
fault-proneness. 

 Rest of the paper is organized as follows: the 
following section presents literature survey related with 
the problem. Section 3 gives the brief idea about of data 
mining techniques and fuzzy set theory. Section 4 
describes the proposed model. Section 5 contains results 
and discussion whereas conclusions are presented in 
Section 6. 

2 LITERATURE SURVEYS 
 
Predicting the fault-prone software modules is of a great 
interest among the software quality researchers and 
industry professionals. As a result of this, various efforts 
have been made for software fault prediction using 
methods such as Decision Trees [5], Neural Networks [6], 
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Support Vector Machines [7], Bayesian Methods [8], 
Naïve Bayes [9], Fuzzy Logic [10, 11], Dempster–Shafer 
Belief Networks [12], Genetic Programming [13], Case-
based Reasoning [14, 15], and Logistic Regression [16, 
17]. 

On reviewing literature, it is found that various 
machine learning approaches [18] such as supervised, 
semi-supervised, and unsupervised have been used for 
building a fault prediction models. Among these, 
supervised learning approach is widely used and found to 
be more useful for predicting fault-prone modules if 
sufficient amount of fault data from previous releases are 
available. Generally, these models use software metrics of 
earlier software releases and fault data collected during 
testing phase. The supervised learning approaches can not 
build powerful models when data is limited. Therefore, 
the some researchers presented a semi-supervised 
classification approach [19, 20] for software fault 
prediction with limited fault data.  

Menzies et al. [9] shown that defect predictors can be 
learned from static code attributes since they are useful, 
easy to use, and widely used. Taking clues from [9] 
Pandey and Goyal [21] have presented an early fault 
prediction model using process maturity and software 
metrics. Software metrics have been shown to be good 
indicators of software quality, and the number of faults 
present in the software. Software metrics, which represent 
the software product and its process, can be collected 
relatively earlier during software development. Catal and 
Diri [22] investigated the effects of data size, metrics, and 
the feature selection techniques for software fault 
prediction. They have also presented a systematic review 
of various software fault prediction studies [23].  

From the literature, it has been found that the decision 
tree induction algorithms such as CART, ID3 and C4.5 
are efficient technique for module classification. These 
algorithms uses crisp value of software metrics and 
classify the module as a fault-prone or not fault-prone. It 
has been found that most of the early phase software 
metrics have fuzziness in nature and crisp value 
assignment seems to be impractical. Also a software 
module can’t be completely fault-prone or not fault-
prone. In other words it is unfair to assign a crisp value of 
software module representing its fault proneness.  

 
3 RESEARCH BACKGROUND 

 
3.1 Data Mining 
 

Today’s advanced information systems have enabled 
collection of increasingly large amounts of data. To 
analyze these data, the interdisciplinary field of 
Knowledge Discovery in Databases (KDD) has emerged. 
KDD comprises of many steps namely, data selection, 
data preprocessing, data transformation, data mining and 
data interpretation and evaluation. Data mining forms a 
core activity in KDD [3]. 

Data mining entails the overall process of extracting 
knowledge from large amounts of data. Different types of 
data mining are discussed in the literature such as 
regression, classification and associations. The focus here 
is on classification technique, which is the task of 
classifying the data into a predefined class to its 
predictive characteristics. The result of a classification 
technique is a model which makes it possible to classify 
future data points based on a set of specific characteristics 
in an automated way. In the literature, there are many 
classification techniques, some of the most commonly 
used being ID3, C4.5, logistic regression, linear and 
quadratic discriminant analysis, k-nearest neighbor, 
Artificial Neural Networks (ANN) and Support Vector 
Machines (SVM) [3]. Among these ID3 (Iterative 
Dichotomiser), a well known decision tree induction 
algorithm, is found to be an efficient, widely used and 
practical classification technique. This paper integrate 
ID3 algorithm with fuzzy inference system to predict 
software module as FP or NFP.  
 
3.2 Fuzzy set theory 

3.2.1 Crisp and fuzzy sets. Crisp or Classical set can be 
defined as a collection of well defined distinct object. In 
other words, crisp sets contain objects that satisfy precise 
properties of membership. For crisp set, an element x in 
the universe X is either a member of some crisp set (A) or 
not. This binary issue of membership can be can be 
represented by a characteristic function as: 

1,
( ) =   

0,A

ifx A
x

ifx A
χ

∈⎧
⎨ ∉⎩

 

where, ( )A xχ gives an unambiguous membership of the 
element, x in a set A. 

A fuzzy set is a set containing elements that have 
varying degree of membership in the set. Unlike crisp set, 
elements in a fuzzy set need not be complete and can also 
be member of other fuzzy sets on the same universe. In 
this way, fuzzy set allows partial membership as well as 
binary membership. Let Ã is a fuzzy set of A, if an 

2
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1



Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic 

 

element in the universe, say, x is a member of fuzzy set Ã 
then this mapping is given by a membership function 
µÃ(x). The membership function µÃ(x), gives the degree of 
membership for each element in the fuzzy set Ã and is 
defined in range [0, 1] where 1 represents elements that 
are completely in Ã, 0 represents elements that are 
completely not in Ã, and values between 0 and 1 
represent partial membership in Ã. Formally, a fuzzy set 
Ã can be represented using Zadeh’s notation [4] as: 

31 2

1 2 3

 .. n

n

µ µµ µÃ x x x x
⎧ ⎫= + + + +⎨ ⎬
⎩ ⎭

, where µ1, µ2 …µn are 

the membership value of the elements x1, x2… xn 
respectively in the fuzzy set Ã. 

Let  FP%  is a fuzzy set representing collection of fault-
prone modules m1, m2 . . . mn. Let µ1, µ2 …µn are the 
membership value of module m1, m2 . . . mn. 
respectively. These membership values represent the 
degree of fault-proneness of a faulty module. Taking 
these points into consideration, a fuzzy set of fault-prone 
module can be described using Zadeh’s notation [4] as: 

31 2

1 2 3
 .. n

n

µ µµ µ
FP

m m m m
⎧ ⎫= + + + +⎨ ⎬
⎩ ⎭

% . 

3.2.2 Fuzzy profiles development.  

Software metrics are measurement of the software 
development process and product. These software metrics 
have been shown to be good indicator of software quality, 
and the number of faults present in the software and can 
be collected relatively earlier during software 
development [21].  Knowledge is stored in the software 
metrics can be used for quality prediction of the 
developing software. IT has also been found that early 
phase software metrics have fuzziness in nature and crisp 
value assignment seems to be impractical [21]. Also a 
software module can’t be completely fault-prone or not 
fault-prone. In other words it is unfair to assign a crisp 
value of software module representing its fault proneness. 

Membership functions of a software metrics can be 
developed by selecting a suitable method from the various 
available methods such as triangular, trapezoidal, gamma 
and rectangular [2]. However, triangular membership 
functions (TMFs) are widely used for calculating and 
interpreting reliability data because they are simple and 
easy to understand [10]. Here, we have considered 
various software metrics as input variable for the model. 

Furthermore, we assume that these software metrics are 
of logarithmic nature and can be divided into five 
linguistic categories namely very low (VL), low (L) 
medium (M), high (H) and very high (VH), depending on 
their actual value. Considering these, fuzzy profile ranges 
(FPR) of software metrics are developed using the 
following formula and shown in fig. 1. 

 
( ){ }
( ){ }

10

10

log 1: 5
1

log 5
FPR

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 1. Fuzzy profiles of input variables 
 
Fuzzy profile of each input variables may take the values:  
VL (0; 0; 0.14), L (0; 0.14; 0.32), M (0.14; 0.32; 0.57), H 
(0.32; 0.57; 1.0) and VH (0.57; 1.0; 1.0).  
 

Output of the model is DFP (Fault-prone Degree), 
which is also assumed to fallow logarithmic scale and 
can be categorizes into seven linguistic categories 
such as: very very low (VVL), very low (VL) 
medium (M), high (H), very high (VH) and very very 
high (VVH). Therefore fuzzy profile range (FPR) of 
DFP can be developed using the following formula 
and shown in fig. 2. 

 
 
 

 Figure 2. Fuzzy profiles of output variables 

 
Fuzzy profile of output variable may take the values:  
VVL (0; 0; 0.08), VL (0; 0.08; 0.17), M (0.17; 0.29; 

( ){ }
( ){ }

10

10

log 1: 7
1

log 7
FPR

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦
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0.44), H (0.29; 0.44; 0.64), VH (0.44; 0.64; 1.0) and 
VVH (0.64; 1.0; 1.0). 
 

4 PROPOSED MODEL 
 
4.1 Model architecture 
 
The model architecture is shown in Fig. 3. The model is 
implemented in MATLAB utilizing fuzzy logic toolbox. 
The basic steps of the model are identification of input- 
output variables, development of fuzzy profile of these 
input/output variables, defining relationships between 
inputs and output variables using fuzzy inference system 
(FIS).  Software metrics, as listed in Table 1, are 
considered as input variables for the proposed model and 
output variable of the model is degree of fault-prone 
(DFP) of a  module, that decides whether module is a 
fault-prone module (FP) or a not fault-prone (NFP). 

 
Figure 3.  Proposed model architecture 

   
4.2 Data collection 
 
This study makes the use of KC2 project data [24] which 
is a public domain data set and was made available 
through Metric Data Program (MDP) at NASA. The KC2 
project is the science data processing unit of a storage 
management system used for receiving and processing 
ground data for missions, and written in C++ language. 
This project data set contains 522 program modules, of 
which 107 modules have one or more faults while 
remaining 415 modules are fault-free i.e. have no 
software faults. 

Each program module in the KC2 was characterized by 
21 software metrics (5 different lines of code metrics, 3 
McCabe metrics, 4 base Halstead metrics, 8 derived 
Halstead metrics, 1 branch-count) and 1 target metric, 
which says whether a software module is fault-prone or 

not. Out of these 21 software metrics, only 13 metrics (5 
different lines of code metrics, 3 McCabe metrics, 4 base 
Halstead metrics, and 1 branch- count) are utilized 
because 8 derived Halstead metrics do not contain any 
extra information for software fault prediction. Theses 
metrics are given in Table 1. 

 
Table 1.   Software metrics inside KC2 project [24] 

 
Metrics Information 

LOC McCabe’s line count of code 
EL Executable LOC 
CL Comment LOC 
BL Blank LOC 

CCL Code and comment LOC 
n1 No. of unique operators 
n2 No. of unique operands 
N1 Total no. of operators 
N2 Total no. of operands 
CC McCabe’s cyclomatic complexity
EC McCabe’s essential complexity 
DC McCabe’s design complexity 
BC Branch count of flow graph 

 
4.3 Decision tree construction 
 
Decision tree is one of the most efficient classification 
techniques. Many algorithms have been proposed for 
building decision trees. The most popular are ID3 
(Iterative Dichotomiser 3) introduced by Quinlan [25], 
and its modifications, e.g. C4.5 which makes a decision 
tree for classification from symbolic data.  

A decision tree is a flow-chart-like structure where 
each internal node denotes a test on an attribute, each 
branch represents outcome of the test, and leaf node 
represent the target class. Internal nodes are denoted by 
rectangles, and leaf nodes are denoted by ovals [3]. 
Figure 4  shows a  simple decision tree for a software 
module, where testing attributes are various software 
metrics, branch represent the outcome of the test e.g. low 
(L), medium (M) or high (H) and  target classes are FP  
and NFP. 

Decision trees are comprised of two major procedures 
(1) building procedure or induction (2) classification 
procedure or inference. Building procedure starts with an 
empty tree to select an appropriate test attribute for each 
decision node using some attribute selection measure. The 
process continues for each sub decision tree until 
reaching leaves with their corresponding class. The 
knowledge represented in decision tree can be extracted 
and represented in the form of classification “IF-THEN” 
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rules. Classification procedure uses these “IF-THEN” 
rules to classify new instances, having only values of all 
its attributes. We use the associated label to obtain the 
predicted class value of the target data. 

 
 

 
 

Figure 4. A simple decision tree 
 
Attribute selection is generally based on information gain, 
serves as a criterion in choosing test attribute at each 
decision node. Partitioning consists of partitioning the 
training set according to all possible attributes values 
which leads to the generation of one partition for each 
possible value of the selected attribute. Stopping, stops 
the partitioning process if (i) all the remaining objects 
belongs to only one class, then the node is declared as a 
leaf labeled with this class value (ii) there is no further 
attribute to test. For software module classification, ID3 
algorithm steps can be summarized as follows: 

1. Take all the metrics of project data and count 
their information gain.  

2. Choose a metric as a test-metric with highest 
information gain value. 

3. Create nodes for this test-metric and do partition. 
4. Repeat (1)-(3) recursively until  

(i) If all data for a selected node 
belongs to the same class. 

(ii) If there are no more remaining 
metrics on which the data may be 
further partitioned. 

(iii) If there are no data for the selected 
node. 

These steps can be applied to a set of data to generate 
decision trees. Classification rules are extracted form the 
resulting decision tree by tracing a path from the root to a 
leaf node. The accuracy of the derived classifier can be 
estimated using Confusion Matrix and discussed in the 
following section.  

 
4.4 Estimating classifier accuracy 
 
Existing project data [24] are used data to derive the 
classifier after then different target data sets are applied to 
the classifier to estimate the accuracy of the model. 
Accuracy of the model is considered as the comparison 
factor with the earlier traditional models and may be 
obtained using Confusion Matrix [26] as given in Table 2. 
A confusion matrix contains information about actual and 
predicted classifications done by a classification system.  
 

Table 2.  A confusion matrix 
 

Predicted 
Label FP NFP

Actual FP True Positive (TP) False Negative(FN)
NFP False Positive (FP) True Negative (TN)

 
• TP and TN are the number of correct predictions 

that an instance is positive and negative 
respectively. 

• FP and FN are the number of incorrect 
predictions that an instance is positive and 
negative respectively. 

 
Authors such as, El-Emam et al. [27], Elish et al. [7] have 
used confusion matrix as the basis for determining 
predictive accuracy of the classifier. The predictive 
accuracy, also known as correct classification rate, is 
defined as the ratio of the number of modules correctly 
predicted to the total number of modules. It is calculated 
as follows: 
                         

( )
( )

100
TP TN

Accuracy
TP TN FP FN

⎡ ⎤+
= ×⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
 

 
For example, consider a model which predicts for 10,000 
software modules whether each module is fault-prone or 
not fault-prone. This model correctly predicts 9,700 not 
fault-prone, and 100 fault-prone. The model also 
incorrectly predicts 150 modules which are not fault-
prone to be fault-prone and 50 modules which are fault-
prone to be not fault-prone. The confusion matrix results 
the model accuracy to 98% and shown in Table 3. 
 

Table 3.  Confusion matrix of software modules 
 

  Predicted  
 Label FP NFP 
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Actual FP 100 50 
 NFP 150 9700 

4.5 Proposed algorithm 
 

Step 1 Identify the target class C {FP, NFP}, 
for a given project data. 
Step2 Compute the information gain value for 
each metric in the project data. 
Step 3 Choose a metric as a test-metric with 
highest information gain value. 
Step 4 Create a node for this test-metric and do 
partition. 
Step 5 Repeat Step 1-Step 3 recursively until  

Step 5.1 if all data for a selected node   belongs 
to the same class 
Step 5.2 if there are no more   remaining metrics 
on which the data may be further partitioned. 
Step 5.3 if there are no data for the selected 
node. 

Step 6 Returns (Decision Tree). 
Step 7 Extract classification rules form the 
decision tree. 
Step 8 Use these rules as fuzzy rules in to FIS 
at step 9. 
Step 9 Develop a FIS (inputs are software metrics 
and outputs are FP or NFP modules). 
Step 10 Classify the project data into target class 
(FP or NFP) using developed FIS. 

 

 
 

Figure 5. A decision tree using 60% of KC2 data set 

5 RESULTS AND DISCUSSION 
 
We examined the decision tree learning algorithm ID3 
and implement this algorithm using MATLAB 
programming. Various decision trees are generated using 
20%, 40%, 60% and 80% of KC2 project data set [24]. 
Figure 5 shows a decision tree using 60 percent of KC2 
data set. After generating decision trees, we can derive 
different classifiers and accuracy of each classifier is 
estimated on different mutually exclusive target data as 
shown in Table 4. The experiment is repeated ten times 
and each experiment type has been chosen as “Train/Test 
Percentage” of the data. The accuracy of each repetition is 
shown on Table 4.  It is obvious form Table 4 that the 
prediction accuracy increases with increasing training 
data. 

Model accuracy is estimated as the overall average 
accuracy obtained from ten different experiment results. 
The accuracy of the proposed model using KC2 data set 
is found to be 87.37 percent, which is better than the 
earlier models [28, 29] and are given in Table 5. 

Next, we show the dependence of prediction accuracy 
on the training data. For this we have developed six 
different FIS namely, MP5_95, MP10_90, MP20_80, 
MP40_60, MP60_40, and MP20_80, using KC2 data set.   
Initially, when training data size is very small (5 percent), 
prediction accuracy is found to be 70.22 percent and it 
suddenly grows to 83.47 as soon as size of training data is 
increased to 10 percent. It is found that on further 
increasing the size of training data, the prediction 
accuracy grows slightly and reaches up to 95.08 percent 
as shown in Table 6. 

6 CONCLUSIONS 
 
This paper presented a model for prediction of fault-prone 
module for a large software system using ID3 algorithm 
and fuzzy inference system. Model is also able to predict 
the fault-prone degree of a faulty module when it is 
converted into a fuzzy set. By doing so, the project 
manager can prioritize their testing effort to achieve 
software system having more quality and reliability. 
Model results are promising when compared with   some 
of the earlier models for KC2 dataset. Some useful 
directions for future work may include analyzing the 
amount of testing efforts saved by the model. 
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Table 4.  Prediction accuracy of the model on KC2 dataset 
 

Experiments Training 
(%) 

Test 
(%) 

Number of FP 
modules 

(predicted) 

Accuracy 
(%) 

Average 
(%) 

1 

20 

20 17 81.73 
 

81.21 
2 40 42 78.85 
3 60 54 80.13 
4 80 32 84.12 
5 

40 
20 6 84.62 

86.04 6 40 19 87.50 
7 60 26 86.02 
8 60 20 25 85.58 87.16 9 40 17 88.74 

10 80 20 10 95.08 95.08 

 

 

Table 5.  Performance results of the model on KC2 dataset 
 

Model Class 
Prediction 

Rank 
Prediction 

Accuracy 
(%) 

Catal et al.[28]  Yes No 82.22 

Saravana et al. [29] Yes No 81.72 

Proposed Model  Yes Yes 87.37 

 

Table 6.  Training effect on prediction accuracy 
 

 MP5_95 MP10_90 MP20_80 MP40_60 MP60_40 MP80_20 

Training (%) 5 10 20 40 60 80 

Testing (%) 95 90 80 60 40 20 

Accuracy (%) 70.22 83.47 84.12 85.09 87.84 95.08 

 
 
REFERENCES 
 

1.   J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability: 
Measurement, Prediction, and Application (McGraw-Hill Publication, 
1987). 
 

2.   T. J. Ross, Fuzzy Logic with Engineering Applications (Willy-India 
3rd Edition, 2010). 

 
3.   J. Han, M. Kamber, Data Mining: Concepts and Techniques (Morgan 

Kaufmann Publishers, USA, 2001). 
 

4.   L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-353. 
 

7
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1



Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic 

 

5.   T.M. Khoshgoftaar and N. Seliya, Software quality classification 
modeling using the SPRINT decision tree algorithm, In the 
proceedings of the 4th  IEEE International Conference on Tools with 
Artificial Intelligence, Washington, DC, 2002, pp. 365-374. 
 

6.   M.M. Thwin and T. Quah, Application of neural networks for software 
quality prediction using object-oriented metrics, In the proceedings of 
the 19th International Conference on Software Maintenance, 
Amsterdam, The Netherlands, 2003, pp. 113-122. 
 

7.   K.O. Elish and M.O. Elish, Predicting defect-prone software modules 
using support vector machines, Journal of Systems and Software, 81 
(2008) 649-660. 
 

8.   G.J. Pai and J.B. Dugan, Empirical analysis of software fault content 
and fault proneness using bayesian methods, IEEE Transactions on 
Software Engineering, 33 (2007) 675-686. 
 

9.   T. Menzies, J. Greenwald and A. Frank, Data Mining Static Code 
Attributes to Learn Defect Predictors, IEEE Transactions on Software 
Engineering, 33 (2007) 2-13. 
 

10.   O. P. Yadav, N. Singh, R. B. Chinnam, and P. S. Goel, A fuzzy logic 
based approach to reliability improvement estimation during product 
development, Reliability Engineering and System Safety, 80 (2003) 
63-74. 
 

11.   N. J. Pizzi, Software quality prediction using fuzzy integration: a case 
study, (Springer-Verlag, 2007), pp. 67-76. 
 

12.   L. Guo, B. Cukic and H. Singh, Predicting fault prone modules by the 
Dempster-Shafer belief networks, In the proceedings of the 18th IEEE 
International Conference on Automated Software Engineering, IEEE 
Computer Society, Montreal, Canada, 2003, pp. 249-252. 
 

13.   M. Evett, T. Khoshgoftaar, P. Chien and E. Allen, GP-based software 
quality prediction, In the proceedings of the 3rd  Annual Genetic 
Programming Conference, San Francisco, CA, 1998, pp. 60-65. 
 

14.   T. M. Khoshgoftaar, N. Seliya and N. Sundaresh, An Empirical Study 
of Predicting Software Faults with Case-Based Reasoning, Software 
Quality Journal, 14 (2006) 85-111. 
 

15.   K. El Emam, S. Benlarbi, N. Goel and S. Rai, Comparing case-based 
reasoning classifiers for predicting high risk software components, 
Journal of Systems and Software, 55 (2001) 301-320. 
 

16.   H.M. Olague, S. Gholston and S. Quattlebaum, Empirical validation of 
three software metrics suites to predict fault-proneness of object-
oriented classes developed using highly iterative or agile software 
development processes, IEEE Transactions on Software Engineering, 
33 (2007) 402-419. 
 

17.   N. F. Schneidewind, Investigation of Logistic Regression as a 
Discriminant of Software Quality, In the proceedings of 7th  
International Software Metrics Symposium, London, UK, 2001, pp. 
328-337. 
 

18.   I. Gondra, Applying machine learning to software fault-proneness 
prediction, Journal of Systems and Software, 81 (2008) 186-195. 
 

19.   N. Seliya N and T. M. Khoshgoftaar, Software Quality Estimation 
with Limited Fault Data: A Semi-Supervised Learning Perspective, 
Software Quality Journal, 15 (2007) 327-344. 
 

20.   N. Seliya and T. M. Khoshgoftaar, Software Quality Analysis of 
Unlabeled Program Modules with Semi-Supervised Clustering, IEEE 
Transactions on Systems, Man and Cybernetics-Part A: Systems and 
Humans, 37 (2007) 201-211. 
 

21.   A. K. Pandey and N. K. Goyal, A Fuzzy Model for Early Software 
Fault Prediction Using Process Maturity and Software Metrics, 
International Journal of Electronics Engineering, 1 (2009) 239-245. 

22.   C. Catal and B. Diri, Investigating The Effect Of Dataset Size, Metrics 
Set, and Feature Selection Techniques on Software Fault Prediction 
Problem, Information Sciences, 179 (2009) 1040-1058. 
 

23.   C. Catal and B. Diri, A Systematic Review of Software Fault 
Predictions studies, Expert Systems with Applications, 36 (2009) 7346-
7354. 
 

24.    S. J. Sayyad and T. J. Menzies, The PROMISE Repository of 
Software Engineering Databases (2005), 
http://promise.site.uottawa.ca/SERepository. 
 

25.   J. R. Quinlan, Induction on decision trees, Machine Learning, 1 (1986) 
81-106. 
 

26.   I. Witten, and E. Frank, Data Mining: Practical Machine Learning 
Tools and Techniques (Morgan Kaufmann, San Francisco, 2005). 
 

27.   K. El-Emam, W. Melo and J. C. Machado, The prediction of faulty 
classes using object-oriented design metrics, Journal of Systems and 
Software, 56 (2001) 63-75. 
 

28.   Catal and B. Diri, A Fault Prediction Model With Limited Fault Data 
to Improve Test Process, In the proceedings of the 9th International 
Conference on Product Focused Software Process Improvement, 
LNCS 5089, 2008, pp. 244-257. 
 

29.   Saravana Kumar K., Early Software Reliability and Quality Prediction 
(Ph.D. Thesis, IIT Kharagpur, Kharagpur, India, 2009). 

 
 

 
 

8
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-3, Iss-1


	Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic
	Recommended Citation

	Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic

