
International Journal of Computer Science and Informatics International Journal of Computer Science and Informatics

Volume 3 Issue 4 Article 13

April 2014

THE MATHEMATICAL ANALYSIS OF COLUMN ORIENTED THE MATHEMATICAL ANALYSIS OF COLUMN ORIENTED

DATABASE DATABASE

AMIT KUMAR DWIVEDI
Department of Computer Science and Engineering, Rajasthan Institute of Engineering and Technology,
Jaipur, India, amitdwi@gmail.com

VIJAY KUMAR SHARMA
Department of Computer Science and Engineering, Rajasthan Institute of Engineering and Technology,
Jaipur, India, vijaymayankmudgal2008@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcsi

 Part of the Computer Engineering Commons, Information Security Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
DWIVEDI, AMIT KUMAR and SHARMA, VIJAY KUMAR (2014) "THE MATHEMATICAL ANALYSIS OF
COLUMN ORIENTED DATABASE," International Journal of Computer Science and Informatics: Vol. 3 : Iss.
4 , Article 13.
DOI: 10.47893/IJCSI.2014.1161
Available at: https://www.interscience.in/ijcsi/vol3/iss4/13

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer Science and Informatics by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcsi
https://www.interscience.in/ijcsi/vol3
https://www.interscience.in/ijcsi/vol3/iss4
https://www.interscience.in/ijcsi/vol3/iss4/13
https://www.interscience.in/ijcsi?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcsi/vol3/iss4/13?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss4%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

The Mathematical Analysis of Column Oriented Database

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-3, Issue-1, 2013

1

THE MATHEMATICAL ANALYSIS OF COLUMN ORIENTED
DATABASE

AMIT KUMAR DWIVEDI1, VIJAY KUMAR SHARMA2

1,2Department of Computer Science and Engineering, Rajasthan Institute of Engineering and Technology, Jaipur, India
Email: amitdwi@gmail.com, vijaymayankmudgal2008@gmail.com

Abstract— There are two obvious ways to map a two-dimension relational database table onto a one-dimensional storage
interface: store the table row-by-row, or store the table column-by-column. Historically, database system implementations
and research have focused on the row-by row data layout, since it performs best on the most common application for
database systems: business transactional data processing. However, there are a set of emerging applications for database
systems for which the row-by-row layout performs poorly. These applications are more analytical in nature, whose goal is to
read through the data to gain new insight and use it to drive decision making and planning.
In this paper, we study about the facts responsible for making Column Oriented database when traditional Row-oriented
databases are already present, analysis of generation of Column Oriented databases, etc. Finally It will be conclude by giving
a probabilistic analysis of Column Oriented database.

Keywords-Data warehouses, Database systems, Databases, Performance analysis

I. INTRODUCTION

The world of relational database systems is a two

dimensional world. Data is stored in tabular data
structures where rows correspond to distinct real-
world entities or relationships, and columns are
attributes of those entities. For example, a College
might store information about its students in a
database table where each row contains information
about a different student and each column stores a
particular student attribute (name, address, e-mail,
etc.).

A. Rows vs Columns

There are two obvious ways to map database tables
onto a one dimensional interface: store the table row-
by-row or store the table column-by-column. The
row-by-row approach keeps all information about an
entity together. In the College example above, it will
store all information about the first student, and then
all information about the second student, etc. The
column-by-column approach keeps all attribute
information together: all of the student names will be
stored consecutively, then all of the student
addresses, etc. Both approaches are reasonable
designs and typically a choice is made based on
performance expectations. If the expected workload
tends to access data on the granularity of an entity
(e.g., find a student, add a student, delete a student),
then the row-by-row storage is preferable since all of
the needed information will be stored together.
On the other hand, if the expected workload tends to
read per query only a few attributes from many
records (e.g.,a query that finds the most common e-
mail address domain), then column-by-column

storage is preferable since irrelevant attributes for a
particular query do not have to be accessed
The vast majority of commercial database systems,
including the three most popular database software
systems(Oracle, IBM DB2, and Microsoft SQL
Server), choose the row-by-row storage layout. The
design was optimized for the most common database
application at the time: business transactional data
processing. The goal of these applications was to
automate mission-critical business tasks. For
example, a bank might want to use a database to store
information about its branches and its customers and
its accounts. Typical uses of this database might be to
find the balance of a particular customer’s account or
to transfer $100 from customer A to customer B in
one single atomic transaction. These queries
commonly access data on the granularity an entity
(find a customer, or an account, or branch
information; add a new customer, account, or
branch). Given this workload, the row-by-row storage
layout was chosen for these systems. However,
businesses started to use their databases to ask more
detailed analytical
queries. For example, the bank might want to analyze
all of the data to find associations between customer
attributes and heightened loan risks. Or they might
want to search through the data to find customers
who should receive VIP treatment. Thus, on top of
using databases to automate their business processes,
businesses started to want to use databases to help
with some of the decision making and planning.
However, these new uses for databases posed two
problems. First, these analytical queries tended to be
longer running queries, and the shorter transactional
write queries would have to block until the analytical
queries finished (to avoid different queries reading an

International Journal of Computer Science and Informatics (IJCSI) ISSN (PRINT): 2231 –5292, Vol-3, Iss-4
284

The Mathematical Analysis of Column Oriented Database

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-3, Issue-1, 2013

2

inconsistent database state). Second, these analytical
queries did not generally process the same data as the
transactional queries, since both operational and
historical data (from perhaps multiple applications
within the enterprise) are relevant for decision
making. Thus, businesses tended to create two
databases (rather than a single one); the transactional
queries would go to the transactional database and the
analytical queries would go to what are now called
data warehouses. This business practice of creating a
separate data warehouse for analytical queries is
becoming increasingly common; in fact today data
warehouses comprise $3.98 billion [3] of the $14.6
billion database market [2] (27%) and is growing at a
rate of 10.3% annually [3]the various table text styles
are provided. The formatter will need to create these
components, incorporating the applicable criteria that
follow.

B. Properties of analytic applications
[5]The natures of the queries to data warehouses are
different from the queries to transactional databases.
Queries tend
to be:
• Less Predictable. In the transactional world, since
databases are used to automate business tasks, queries
tend to be initiated by a specific set of predefined
actions. As a result, the basic structures of the queries
used to implement these predefined actions are coded
in advance, with variables filled in at run-time. In
contrast, queries in the data warehouse tend to be
more exploratory in nature. They can be initiated by
analysts who create queries in an ad-hoc, iterative
fashion.
• Longer Lasting. Transactional queries tend to be
short, simple queries (“add a customer”, “find a
balance”, “transfer $50 from account A to account
B”). In contrast, data warehouse queries, since they
are more analytical in nature, tend to have to read
more data to yield information about data in
aggregate rather than individual records. For
example, a query that tries to find correlations
between customer attributes and loan risks needs to
search though many records of customer and loan
history in order to produce meaningful correlations.
• More Read-Oriented Than Write-Oriented. Analysis
is naturally a read-oriented endeavor. Typically data
is written to the data warehouse in batches (for
example, data collected during the day can be sent to
the data warehouse from the enterprise transactional
databases and batch-written over-night), followed by
many read only queries. Occasionally data will be
temporarily written for “what-if” analyses, but on the
whole, most queries will be read-only.
• Attribute-Focused Rather Than Entity-Focused.
Data warehouse queries typically do not query
individual entities; rather they tend to read multiple
entities and summarize or aggregate them (for
example, queries like“what is the average customer
balance” are more common than “what is the balance
of customer A’s account”).Further, they tend to focus

on only a few attributes at a time (in the previous
example, the balance attribute) rather than all
attributes.

C. Implications on Data Management
As a consequence of these query characteristics,
storing data row-by-row is no longer the obvious
choice; in fact, especially as a result of the latter two
characteristics, the column-by-column storage layout
can be better. The third query characteristic favors a
column-oriented layout since it alleviates the oft-cited
disadvantage of storing data in columns: poor write
performance. In particular, individual write queries
can perform poorly if data is laid out column-by-
column, since, for example, if a new record is
inserted into the database, the new record must be
partitioned into its component attributes and each
attribute written independently. However, batch-
writes do not perform as poorly since attributes from
multiple records can be written together in a single
action. On the other hand, read queries (especially
attribute-focused queries from the fourth
characteristic above) tend to favor the column-
oriented layout since only those attributes accessed
by a query need to be read, and thus this layout tends
to be more I/O efficient. Thus, since data warehouses
tend to have more read queries than write queries, the
read queries are attribute focused, and the write
queries can be done in batch, the column-oriented
layout is favored.
Surprisingly, the major players in the data warehouse
commercial arena (Oracle, DB2, SQL Server, and
Teradata) store data row-by-row. Although
speculation as to why this is the case is beyond the
scope of this dissertation, this is likely due to the fact
that these databases have historically focused on the
larger transactional database market and wish to
maintain a single line of code for all of their database
software [6]. Similarly, database research has tended
to focus on the row-by-row data layout, again due to
the field being historically transaction ally focused.
Consequently, relatively little research has been
performed on the column-by-column storage layout
(“column-stores”).

The overarching goal of this paper is to further the
research into column oriented databases, How
Column Oriented data base can be generated by
traditional row oriented databases. An approach of
generating column oriented database is Vertical
Partitioning. Vertical partitioning subdivides
attributes into groups and assigns each group to a
physical object. In our context [1]Vertical
Partitioning will be defined as breaking apart the
columns of high cardinality (number of columns)
tables into distinct smaller tables based on frequency
of usage of each column or set of columns. But here
the question is about the parameters responsible for
generation of Column Oriented Database? On what
basis we perform vertical partitioning.

International Journal of Computer Science and Informatics (IJCSI) ISSN (PRINT): 2231 –5292, Vol-3, Iss-4

285

The Mathematical Analysis of Column Oriented Database

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-3, Issue-1, 2013

3

II. RELATED WORK

[4] Vertical partitioning is used during the design of a
database to improve the performance of transactions:
fragments consist of smaller records, and therefore
fewer pages in secondary memory are accessed to
process a transaction. When allocating data to a
memory hierarchy, vertical partitioning is used to
store the attributes that are most heavily accessed in
the fastest memory. In the design of a multiple-site
distributed database, fragments are allocated, and
possibly replicated, at the various sites.

Vertical partitioning algorithm can be understand by
the following figure

Object definition No of logical accesses to
object by different transaction

 Fragments
Physical Environmental
cost factor

 Refined definition of fragments

Fig.1

Vertical fragments are ultimately stored in the
database by using some physical file structure. In
order to obtain improved performance, fragments
must be “closely matched” to the requirements of the
transactions. The ideal case occurs when each
transaction “matches” a fragment, because the
transaction has to access that fragment only. If certain
sets of attributes are always processed together by
transactions, the design process is trivial. But in real-
life applications one rarely comes across such trivial
examples; hence, for objects with tens of attributes,
we need to develop a systematic approach to vertical
partitioning. As pointed out in [ll], an object with m
attributes can be partitioned into B(m) different ways,
where B(m) is the mth Bell number; for large m, B(m)
approaches mm; for m =15, it is ≈109, for m = 30, it is
≈1023.

The first step in the design of a vertical partition is to
construct an ATTRIBUTE AFFINITY (AA) matrix.
Figure 1 shows an example of an attribute affinity

matrix derived from the attribute usage in Table 1.
AA is a symmetric square matrix which records the
affinity among the attributes ai’ and ai’’ as a single
number, affi’i’’ (= affi’’i’), defined below.
Let the following parameters be defined for each
transaction k:
Uki = 1 if transaction k uses attribute ai
 = 0 otherwise (Uki is an element of ATTRIBUTE
USAGE(AU) matrix).

TABLE 1

III. PROPOSED PROBABILISTIC ANALYSIS
FOR COLUMN ORIENTED DATABASE

A. Probabilistic relations between Row Oriented

database and Column Oriented database
Suppose there is a traditional row-oriented database
having a Relation R.
The relation R contains tuples (S, Ci)
Where S is the Serial no, Ci represents the set of
columns.
1 ≤ i ≤ n
Now if we want to think about Column-Oriented
database development then we first have to think why
we need Column-Oriented database and how to
derive Column-Oriented database from traditional
Row-Oriented database
Suppose the relation R having two million rows and
several columns but we have to access data only from
few columns. But as per the nature of traditional
databases unnecessary extra data from other columns
will also be read when in query is fired.
Column oriented database are generated by analyzing
the probability of hit (Affinity) that occurs on the
columns of the Relation R(S,Ci). So on some columns
there will be less hit and some of them there will be
more hits. The columns that will be more hit are
“vertically partitioned” with the serial no.
For Example – Suppose Column C1 and C5 are
generally accessed by query. So we can make two
separate relations R1(S, C1) and R2(S, C5).The
approach that will be used for separation is called
“Vertical Partitioning”. According to the above
partition of relation we can say that column C1 and C5
are of higher probability of hit.

Intuitive Design

Cost Optimization

International Journal of Computer Science and Informatics (IJCSI) ISSN (PRINT): 2231 –5292, Vol-3, Iss-4

286

The Mathematical Analysis of Column Oriented Database

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-3, Issue-1, 2013

4

If R1(S,C1) is separated first from R(S,Ci) where 1 ≤
i ≤ n. We can represent this separation by the
following probability equation

PRH(C1) = PRHMAX(Ci) (1)
where 1 ≤ i ≤ n
R2(S,C5) is separated after R1(S,C1) from R(S,Ci). We
can represent this separation by the following
probability inequality

 PRH(C1) ≥ PRH(C5)) (2)

Where PRH(C1) represents probability of hit on
columns C1, PRHMAX(Ci) represents probability of
maximum hit on columns of relation R(S, Ci) and
PRH(C5) represents probability of maximum hit on
columns C5.
Both column C1 and C5 must be higher probability of
hit than other columns because of their separation so
this complete probability equation can be represented
by following equation.

PRH(C1) ≥ PRH(C5) > PRH(Other Columns in the
relation R(S,Ci)) (3)

B. Total Probability Calculation for Column

Oriented database
Now the Column Oriented database has been
generated by the two columns C1 and C5. If column
C1 and C5 are accessed separately in a mutually
exclusive manner then total probability of hit on
Column Oriented database can be calculated by the
following equation

PHC = PH(C1)+PH(C5) (4)

If column C1 and C5 are accessed together then the
total probability of hit can be calculated by the
following equation

PHC = PH(C1)*PH(C5) (5)

Where PHC represents total probability of hit on
Column Oriented database, PH(C1) & PH(C5)
represents probability of hit on columns C1 and C5
respectively.

C. Generalized Probability Calculation
Suppose there are n columns out of which k columns
are accessed together and rest of the columns are
accessed separately in a mutually exclusive manner
then on the basis of equation (4) and (5) we may
generalized the total probability of hit by equation
below

PHC = + 


n

ki
Ci

1
 (6)

IV. FUTURE WORK

Vertical partitioning adds some redundancy in our
database system because it requires that the position
attribute to be stored in every column, which wastes
space and bandwidth. This approach also doesn’t
support logical data independence. At physical level
both relations whether it is column-store or row-store
needs to be updated at the same time to maintain
consistency. So there is a need of designing storage
layer and the query execution engine for the column
orientation of the data then it will certainly perform
better than the current approach.

V. CONCLUSION

The probabilistic analysis helps to analyze the
column oriented database development
mathematically. Vertical Partitioning is a very
efficient approach in Column Oriented database
design. We don’t have to change or modify our
Database software also we don’t need to buy any new
software. Using this approach we can make our Row
Oriented database acts as a Column Oriented
Database

REFERENCES

[1] Fadi Chalfoun, Aphelion Web Development Blog “Database

Optimization:Vertical Partitioning in MySQL” on February
11, 2010

[2] Carl Olofson. Worldwide RDBMS 2005 vendor shares.
Technical Report 201692, IDC, May 2006.

[3] Dan Vesset. Worldwide data warehousing tools 2005 vendor
shares. Technical Report 203229, IDC, August 2006

[4] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and
Jinglie dou “Vertical Partitioning Algorithms for Database
Design” Stanford University

[5] Daniel J. Abadi “Query Execution in Column-Oriented
Database Systems” Massachusetts Institute of
Technology,February 2008

[6] Michael Stonebraker, Chuck Bear, Ugur Cetintemel, Mitch
Cherniack, Tingjian Ge, Nabil Hachem, Stavros
Harizopoulos, John Lifter, Jennie

 Rogers, and Stan Zdonik. One size fits all? - part 2:
Benchmarking results.In Proceedings of the Third
International Conference on Innovative Data Systems
Research (CIDR), January 2007.



International Journal of Computer Science and Informatics (IJCSI) ISSN (PRINT): 2231 –5292, Vol-3, Iss-4
287

	THE MATHEMATICAL ANALYSIS OF COLUMN ORIENTED DATABASE
	Recommended Citation

	THE MATHEMATICAL ANALYSIS OF COLUMN ORIENTED DATABASE

