
International Journal of Computer Science and Informatics International Journal of Computer Science and Informatics

Volume 3 Issue 2 Article 3

October 2013

Model Based Software Development: Issues & Challenges Model Based Software Development: Issues & Challenges

N Md Jubair Basha
IT Department, Muffakham Jah College of Engineering & Technology, Hyderabad, India,
jubairbasha@mjcollege.ac.in

Salman Abdul Moiz
IT Department, MVSR Engineering College, Hyderabad, India, Salman.abdul.moiz@ieee.org

Mohammed Rizwanullah
IT Department, Muffakham Jah College of Engineering & Technology, Hyderabad, India,
Rizwanullah.md@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcsi

 Part of the Computer Engineering Commons, Information Security Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
Basha, N Md Jubair; Moiz, Salman Abdul; and Rizwanullah, Mohammed (2013) "Model Based Software
Development: Issues & Challenges," International Journal of Computer Science and Informatics: Vol. 3 :
Iss. 2 , Article 3.
DOI: 10.47893/IJCSI.2013.1123
Available at: https://www.interscience.in/ijcsi/vol3/iss2/3

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer Science and Informatics by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcsi
https://www.interscience.in/ijcsi/vol3
https://www.interscience.in/ijcsi/vol3/iss2
https://www.interscience.in/ijcsi/vol3/iss2/3
https://www.interscience.in/ijcsi?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcsi/vol3/iss2/3?utm_source=www.interscience.in%2Fijcsi%2Fvol3%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Special Issue of International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- II, Issue-1, 2

226

Model Based Software Development: Issues & Challenges

N Md Jubair Basha1, Salman Abdul Moiz2 & Mohammed Rizwanullah3
1&3IT Department, Muffakham Jah College of Engineering & Technology, Hyderabad, India

2IT Department, MVSR Engineering College, Hyderabad, India
E-mail : jubairbasha@mjcollege.ac.in1, Salman.abdul.moiz@ieee.org2, Rizwanullah.md@gmail.com3

Abstract - One of the goals of software design is to model a system in such a way that it is easily understandable. Nowadays the
tendency for software development is changing from manual coding to automatic code generation; it is becoming model-based. This
is a response to the software crisis, in which the cost of hardware has decreased and conversely the cost of software development has
increased sharply. The methodologies that allowed this change are model-based, thus relieving the human from detailed coding. Still
there is a long way to achieve this goal, but work is being done worldwide to achieve this objective. This paper presents the drastic
changes related to modeling and important challenging issues and techniques that recur in MBSD.

Keywords - model based software; domain engineering; domain specificity; transformations.

I. INTRODUCTION

 Model is an abstraction of some aspect of a system.
Model-based software and system design is based on the
end-to-end use of formal, composable and manipulable
models in the product life-cycle. An emerging common
thread is that modeling languages are domain-specific:
they offer software developers concepts and notations
that are tailored to capture essential characteristics of
their application domain [1].

 This paper presents the state-of-the-art of the
Model-Based Software Development. Section-II
presents the Model-Based Software Engineering
(MBSE) and Model Centric Software Development
(MCSD). The process Domain Engineering process [2]
is presented with the specific domain in section –III.
The purpose of DARE-COTS tool is discussed along
with the scope of product lines. Section –IV highlights
the research challenges in terms of Multi Aspect
Modeling. Section –V introduces basics, different
usages and important issues of techniques that recur in
MBSD. Finally Section VI describes the related survey
work concludes the paper.

II. MODEL BASED SOFTWARE ENGINEERING

 Model based Software Engineering is the idea of
achieving code reuse and perform maintenance and
product development through the use of software
modeling technology and by splitting the production of
software into two parallel engineering processes namely

domain engineering and application. The system
described by a model may or may not exist at the time
the model is created. Models are created to serve
particular purposes, for example, to present a human
understandable description of some aspect of a system
or to present information in a form that can be
mechanically analyzed.[3,4]. Model-based development
approaches can be roughly classified on the primary
abstraction level of their focal software model.

 Model-driven engineering (MDE) is a software
development methodology which focuses on creating
and exploiting domain models (that is, abstract
representations of the knowledge and activities that
govern a particular application domain), rather than on
the computing (or algorithmic) concepts. The MDE
approach is meant to increase productivity by
maximizing compatibility between systems (via reuse of
standardized models), simplifying the process of design
(via models of recurring design patterns in the
application domain), and promoting communication
between individuals and teams working on the system
(via a standardization of the terminology and the best
practices used in the application domain).

A. Model-Centric Software Development

 The idea of using models to alleviate software
complexity has been around for many years. However,
researchers have largely applied models to selected
elements of the development process, particularly
structural and compositional aspects in the design phase

International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- 3, Issue- 2

84

 Model Based Software Development: Issues & Challenges

Special Issue of International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- II, Issue-1, 2

227

and model checking and verification in the testing
phase. The different stages of software development
lifecycle are insufficiently interconnected with each
other due to the lack of a unified way to express relevant
concepts at an appropriate level of abstraction.

 Model-Centric Software Development (MCSD) is
an attempt at realizing a knowledge hub for the software
development lifecycle. The core idea of this approach is
to use models that are both concise and expressive
across the development process to express the relevant
concepts of each area such that they become transparent
and can be used in other areas. Model-centric
approaches to software development have been around
for many years but it is the special field of model-driven
software development dealing with the generation of
executable code from implementation-level models that
has stirred particular interest over the last few years.
MCSD, however, encompasses a much broader scope
and areas such as business process modeling,
architectural models, or enterprise-wide federated
repositories.

 MCSD can offer a tremendous chance to leverage
individual intellectual assets in software engineering in
general and to fulfill Domain Driven Design's promise
of business/technology alignment in particular when
employed properly but can also bring a project to the
brink of failure when ignoring the remarkable level of
additional complexity it introduces both on the technical
and organizational level.

B. Model Driven Development and Automatic
Programming

 Model-driven development (MDD) typically
focuses on software design models [5]. MDD and
automatic programming [6] both rely on the machine to
generate complete code from software artifacts of a
higher-level abstraction. The difference becomes
obvious if we compare source models and generated
code in automatic programming and MDD. Both of
them generate complete source code. However, most
decisions in generated code of MDD are actually
specified by designers in source models, and this is an
important reason that MDD emphasizes complete and
precise modeling.[7]

III. DOMAIN ENGINEERING

 Domain Engineering (DE) is a process in which the
reusable component is developed and organized and in
which the architecture meeting the requirements of this
domain is designed. The “domain” refers to the
functional areas covered by a group of application
systems that have the same or similar software
requirements [8].

 Domain engineering process [2] is depicted in
figure 1. DE consists of three main stages i.e. domain
analysis, domain design and domain implementation.
For Domain Analysis support, DARE-COTS tool is
presented [9]. Initially, in a particular domain it is
mandatory to get the universal and variable
characteristics of group systems. By abstracting the
characteristics, domain analysis model can be generated.
Based on this model the domain specific software
architecture can be designed and then reusable
components will be generated and organized.

 Thus, when developing a new system in new
domain, we have to identify the system’s requirements
and specification as per the domain model, and can
generate the new design as per the Domain Specific
Software Architecture (DSSA), then select the particular
components to assemble the new system. The process of
developing an only single application system is called
Application Engineering.

 In [2] the method of domain engineering which is
described and the DSSA of Product Quality Tracking
System has been presented. The discussion shows on
how to develop an open and reusable product quality
tracking system on the basis of domain engineering. The
research shown in this article specifies the need of
reusing the major functionality of the system when the
application which is developed in a similar domain for
which the components are available. Further research
has to focus on a specific product quality tracking
system using asserts and to perfect the component
repository. Massiom et al [10] evaluated an application
of domain analysis in a specific domain, i.e. production
management and measured the results with some
improvements to be done by integrating domain analysis
method in standard development.

Fig.1 : Process of Domain Engineering [2]

International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- 3, Issue- 2

85

 Model Based Software Development: Issues & Challenges

Special Issue of International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- II, Issue-1, 2

228

IV. CHALLENGES

 What MBSD suggests is essentially a role transition
of software models from documentation to development.
This implies an enhanced requirement on software
models for completeness and precision, compared with
the traditional use of models. It also demands an
efficient mechanism of model-implementation mapping,
which is not only about generating model-prescribed
code, but also about managing the consistency between
model and code over the passage of time. In general, no
MBSD approach can survive in the long run if the cost
of model-implementation mapping significantly exceeds
that of working on code directly. This section describes
the research challenges in multi-aspect modeling of
MBSD from the perspectives of what it is, why it is
hard, and how existing mechanisms are deficient in
addressing it.

A. Multi-Aspect Modeling

 Software models in the development of complex
software often need to describe the system from
multiple aspects, such as structure, behavior, and non-
functional properties. Important research progress has
been made in this area [11, 12]. However, most of
existing modeling technologies are based on the
assumption that software models are documentation
artifacts that are peripheral to code development. With
regard to structure, models such as UML class diagrams
may be fine for use in MBSD. With regard to behavior,
few models created with current technologies are
amenable to software synthesis in MBSD; the situation
with regard to non-functional models is even worse. The
challenge is that software models in MBSD not only
have to contain enough details to generate relatively
complete code, but also need to be, and stay, simpler
than the software programs created during this process.

 Existing behavioral modeling methods include
those that are based on formal notations and those that
are more informal, but with a practical bias. None,
however, provides an appropriate form for MBSD.
Formal behavioral modeling methods include the use of
process algebras like CSP and the pi-calculus. Providing
a basis for automatic analysis is one of their main
purposes. They are seldom appropriate for software
development because of their limited expressiveness. In
most cases, developers would rather write code directly.
Examples of more informal methods include interaction
diagrams, state diagrams, and activity diagrams of
UML. Traditionally, these methods are mainly for
communication and system comprehension. Their
incompleteness properties have decided that they cannot
be used alone for behavioral modeling in MDD [13],
which emphasizes complete modeling. In cases where
only executions of significance are concerned, such as
architecture-centric development, practical methods like

sequence diagrams may be a good choice after some
form of extension [11].

V. TECHNIQUES

A. Domain Specificity

Basics : Exploiting domain specificity is primarily
about developing artifacts that may be reused in
developing multiple applications within a given domain.
In domain-specific MBSD, reusable assets include
DSLs, domain components, and reference architecture.
The use of DSLs raises the level of abstraction, and
improves the expressive power of software models. A
library of reusable components supports software
implementation through component composition.
Reference architectures serve guides to the composition
process. They simplify the management of supplier
relationships by describing the specific contexts in
which components operate.

Different usages : Domain-specific MBSD includes
application generators, MIC, DSSA, and generative
software development. A significant discriminator of
these four approaches is the domain asset being reused.
The application generator approach reuses code
generators; MIC uses DSLs to model embedded
systems; DSSA and generative software development
both recognize reference architectures, domain
components, and configuration knowledge as reusable
assets. DSSA is different from generative software
development because the latter uses a configuration
generator to implement configuration knowledge and
automate the selection of components [14], whereas this
is usually done manually in DSSA. In addition, the
creation of reference architecture in generative software
development is primarily to identify “uses”
dependencies between component categories and
facilitates the implementation of components. In
contrast, the DSSA approach uses reference
architectures as a key element in the creation of a
specialized architecture.

Issues : The exploitation of domain specificity plays a
significant role in MDD, which faces the challenge of
complete modeling and full code generation. What a
generic MDD (e.g. MDA) does is directly specifying
system (dynamic) details in software models. This not
only makes models complicated and potentially
degrades their usability, but also imposes a high
requirement on the extensibility of the modeling
language used. Domain-specific MDD [15] is much
more favorable at this point. On the one hand, a DSL is
more expressive than a generic modeling language (e.g.
UML) when applied in a specific domain. One the other
hand, reuse of domain specific code generators or
components greatly reduces the amount of generated

International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- 3, Issue- 2

86

 Model Based Software Development: Issues & Challenges

Special Issue of International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- II, Issue-1, 2

229

code, and thus, the information that has to be specified
in software models.

B. Metamodeling

Basics : A Meta model is a model that is written in a
meta language to define some specific modeling
language [13]. In essence, meta modeling is important
because it provides a means for the machine to read,
write, and understand models that previously were
interpreted only by people. From this perspective, met
modeling plays a key role in automating MBSD. With
models understandable to computers, tools can be built
for model creation, code generation, and consistency
management.

Different usages : Met modeling is primarily used in
MDD and architecture centric software development. A
representative example is MDA, which is based on
OMG’s four-layer meta-level hierarchy [13]. Its primary
modeling language, UML, is defined by a metamodel
written in MOF. Different from MDA, MIC as another
MDD approach uses UML as its metalanguage to define
its DSLs. In particular, MIC includes a generic
modeling environment that can be customized by the
metamodel of a domain language to support modeling in
a given domain. At this point, it is very similar to
ArchStudio [16], a metamodeling based tool for
architecture-centric software development. The
modeling notation used by ArchStudio is xADL, an
XML-based architecture description language.
Significantly, users are allowed to extend the schemas of
xADL for new features. ArchStudio reads schemas and
automatically generates a data-binding library for new
tools.

Issues : Meta level and software abstraction level are
two different concepts in MBSD. Meta level reflects the
linguistic instance-of relationship between a model and
its metamodel. In other words, a model is written in a
language that is defined by the models metamodel at a
higher meta level. In contrast, software abstraction level
characterizes a software model in terms of to what
extent it hides unimportant information to a software
developer. For example, the abstraction provided by
software architecture allows a software architect to
focus on principal design decisions without worrying
about implementation details. From this perspective,
meta level and abstraction level are orthogonal concepts.

C. Iterative Transformation

Basics : Iterative transformation is extensively used in
transformational programming. The central idea is to
break a transformation that crosses an abstraction gap
into sufficiently small steps, so that each step generates
another representation that is easier to implement than
the first. What this means in the context of MBSD is an
incremental way to map source models into

implementations, especially when source models are too
abstract to directly generate code from.

Different usages : Style-based architecture refinement is
just a typical application of this idea. It maps an abstract
architecture into a concrete architecture through a series
of small transformations, each of which involves the
application of a preproved transformation pattern that is
specific to an architecture style. Software Factories use a
similar approach, so called progressive transformation,
to map domain-specific models into implementations.
Layers of simplifying abstractions are successively
generated during this process. Another less obvious
example is MDA, where the use of PSM to facilitate the
mapping of PIM to a working implementation on a
middleware platform actually reflects the same spirit of
iterative transformation.

Issues : The applications of iterative transformation
presented above are all limited to certain ranges, such as
a specific architecture style, an application domain, or a
middleware platform. In addition, their source and
generated models usually stay close in terms of
conceptual level. At this point, we think this represents
proper uses of iterative transformation. Not only the
development portion that can be pre-planned and
specified is increased, but also the complexity level is
reduced. This is different from automatic programming
discussed in Section II, which assumes software
development can be pre-planned in a generic way and,
in general, faces a significant conceptual gap between
requirements specifications and executable programs.

VI. CONCLUSION

 The literature of [6,7,17] specifically discuss the
advantages, disadvantages, difficulties and facilities of
MDD, an important branch of MBSD. This paper
discusses the techniques for the challenging issues in the
MBSD. Especially, Section V throws so many
opportunities for the research issues in future directions.
As a part of our research work we will consider this
MBSD as an approach for the development of Domain
Specific Components that will leads to the Generic
MDD. The issues and challenges presented in this paper
are useful for the research initiators to carry out further
research in MBSD. By considering these issues we can
design a model which is reusable. A Generic Framework
has to be developed.

ACKNOWLEDGMENT

The work was partly supported by the R & D Cell of
Muffakham Jah College of Engineering & Technology,
Hyderabad, India. The authors would like to thank to all
the people from Industry and Academia for their active
support.

International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- 3, Issue- 2
87

 Model Based Software Development: Issues & Challenges

Special Issue of International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- II, Issue-1, 2

230

REFERENCES

[1] Janos Sztipanovits. "Model-based Software
Development". ESMD-SW Workshop, NASA,
March, 2007.

[2] Youxin Meng, Xinli Wu, Yuzhong Ding,”
Research and Design on Product Quality
Tracking System Based on Domain
Engineering”, IEEE, 2010.

[3] H. Stachowiak. Allgemeine Modelltheorie.
Springer- Verlag Wien, 1973.

[4] D. Harel and B. Rumpe. Modelling languages:
Syntax, Semantics and all that stuff , IEEE
Software, 2004.

[5] France, R. and Rumpe, B. 2007. Model-driven
Development of Complex Software: A Research
Roadmap. In 2007 Future of Software
Engineering (May 23 - 25, 2007). IEEE
Computer Society, Washington, DC, 37-54.

[6] Balzer, R. 1985. A 15 Year Perspective on
Automatic Programming. IEEE Trans. Software
Engineering. 11, 11 (Nov. 1985), 1257-1268.

[7] Selic, B. 2003. The Pragmatics of Model-Driven
Development. IEEE Softw. 20, 5 (Sep. 2003), 19-
25.

[8] N Md Jubair Basha, Salman Abdul Moiz, A.A
Moiz Qyser, “ Performance Analysis of HR
Portal Domain Components Extraction ”,
International Journal of Computer Science &
Information Technologies (IJCSIT), Vol2 (5),
2011, 2326-2331.

[9] William Fakes, Ruben Prieto- Diaz, Christopher
Fox, “DARE-COTS: A Domain Analysis Support
Tool”, IEEE, USA, 1997.

[10] Massimo Fenarlio, Andrea Valerio,
“Standardizing Domain- Specific Specific
Components: A Case Study”, ACM, Vol. 5, No.2,
June, 1997.

[11] P. Clements, F. Bachmann, L. Bass et al.,
Documenting Software Architectures: Views and
Beyond: Addison Wesley, 2002.

[12] Matinlassi, M., Niemelä, E, Dobrica, L. 2002.
Quality-driven architecture design and quality
analysis method. A revolutionary initiation
approach to a product line architecture. Espoo,
VTT Publications

[13] Kleppe, A. G., Warmer, J., and Bast, W. 2003
MDA Explained: the Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman
Publishing Co., Inc.

[14] Czarnecki, K. and Eisenecker, U. W. 1999.
Components and generative programming
(invited paper). SIGSOFT Softw. Eng. Notes 24,
6 (Nov. 1999), 2-19.

[15] Kelly, S., Tolvanen, J-P., Domain-Specific
Modeling: Enabling Full Code Generation,
Wiley-IEEE Society Press, 2008.

[16] ArchStudio 4: http://www.isr.uci.edu/projects/
archstudio/

[17] Hailpern, B. and Tarr, P. 2006. Model-driven
development: the good, the bad, and the ugly.
IBM Syst. J. 45, 3 (Jul. 2006), 451-461.

���

International Journal of Computer Science & Informatics (IJCSI), ISSN (PRINT) : 2231–5292, Vol.- 3, Issue- 2

88

	Model Based Software Development: Issues & Challenges
	Recommended Citation

	Model Based Software Development: Issues & Challenges

